An extension of the Error Correcting Pairs algorithm

Alain Couvreur Isabella Panaccione
Inria, LIX

Codes, Cryptology and Curves
Celebrating the influence of Ruud Pellikaan

08/03/2019

Error Correcting Pairs algorithm

PECP for Reed-Solomon codes

PECP for Algebraic Geometry codes

Algorithms for Reed Solomon codes

$$
t \leq\left\lfloor\frac{d-1}{2}\right\rfloor \quad \text { Berlekamp-Welch [1] }
$$

[1] L. R. Welch, E.R.Berlekamp. Error Correction for Algebraic Block Codes. United States Patent, 1986.

Algorithms for Reed Solomon codes

$$
t \leq\left\lfloor\frac{d-1}{2}\right\rfloor \quad \text { Berlekamp-Welch [1] } \quad \text { Error Correcting Pairs [2] }
$$

[2] R. Pellikaan. On decoding by error location and dependent sets of error positions. Discrete Mathematics, 1992.

Algorithms for Reed Solomon codes

[3] M. Sudan. Decoding of Reed-Solomon codes beyond the error-correction bound. Journal of Complexity, 1997.

Algorithms for Reed Solomon codes

$$
\begin{array}{cc}
t \leq\left\lfloor\frac{d-1}{2}\right\rfloor & \text { Berlekamp-Welch [1] Error Correcting Pairs [2] } \\
t>\left\lfloor\frac{d-1}{2}\right\rfloor & \begin{array}{c}
\text { Sudan [3] } \\
\text { Power Decoding [4] }
\end{array}
\end{array}
$$

[4] G. Schmidt, V. R. Sidorenko, M. Bossert. Syndrome Decoding of Reed-Solomon Codes Beyond Half of the Minimum Distance based on Shift-Register Synthesis. IEEE Transactions on Information Theory, 2010.

Algorithms for Reed Solomon codes

$$
\begin{aligned}
& t \leq\left\lfloor\frac{d-1}{2}\right\rfloor \\
& t>\left\lfloor\frac{d-1}{2}\right\rfloor
\end{aligned}
$$

Berlekamp-Welch [1]
Error Correcting Pairs [2]

Sudan [3]
Power Decoding [4]

Error Correcting Pairs algorithm

Problem

Let $C \subseteq \mathbb{F}_{q}^{n}$ be a linear code and $y \in \mathbb{F}_{q}^{n}$. Given $t \in \mathbb{N}$, find a codeword c such that

$$
\mathrm{d}(y, c) \leq t
$$

Problem

Let $C \subseteq \mathbb{F}_{q}^{n}$ be a linear code and $y \in \mathbb{F}_{q}^{n}$. Given $t \in \mathbb{N}$, find a codeword c such that

$$
\mathrm{d}(y, c) \leq t
$$

Hypothesis

There exist $c \in C$ and $e=\left(e_{1}, \ldots, e_{n}\right) \in \mathbb{F}_{q}^{n}$ with $w(e)=t$ such that

$$
y=c+e .
$$

We denote the support of the error vector by

$$
I=\left\{i \in\{1, \ldots, n\} \mid e_{i} \neq 0\right\} .
$$

Error Correcting Pairs algorithm:

- Localisation of errors: find J such that $I \subseteq J$;

Error Correcting Pairs algorithm:

- Localisation of errors: find J such that $I \subseteq J$;
- Syndromes linear system: recover e.

Error Correcting Pairs algorithm:

- Localisation of errors: find J such that $I \subseteq J$;
- Syndromes linear system: recover e.

Error Correcting Pairs (ECP)

Given a linear code $C \subseteq \mathbb{F}_{q}^{n}$, a pair of linear codes (A, B) with $A, B \subseteq \mathbb{F}_{q}^{n}$ is a t-error correcting pair for C if

- $A * B \subseteq C^{\perp}$;
- $\operatorname{dim}(A)>t$;
- $\mathrm{d}\left(B^{\perp}\right)>t$;
- $d(A)+d(C)>n$.

Theorem (R. Pellikaan, 1992)

Let $C \subseteq \mathbb{F}_{q}^{n}$ be a linear code. If there exists a t-error correcting pair for C, then for all $y \in \mathbb{F}_{q}^{n}$ such that

$$
y=c+e,
$$

with $c \in C$ and $w(e) \leq t$, the ECP algorithm recovers c with complexity $O\left(n^{3}\right)$.

Theorem (R. Pellikaan, 1992)

Let $C \subseteq \mathbb{F}_{q}^{n}$ be a linear code. If there exists a t-error correcting pair for C, then for all $y \in \mathbb{F}_{q}^{n}$ such that

$$
y=c+e,
$$

with $c \in C$ and $w(e) \leq t$, the ECP algorithm recovers c with complexity $O\left(n^{3}\right)$.

Proposition

If a linear code C has a t-error correcting pair, then

$$
t \leq\left\lfloor\frac{\mathrm{d}(C)-1}{2}\right\rfloor
$$

Let $J=\left\{j_{1}, \ldots, j_{s}\right\} \subset\{1, \ldots, n\}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$. We denote

- $x_{J}:=\left(x_{j_{1}}, \ldots, x_{j_{s}}\right)$ (puncturing);
- $Z(x):=\left\{i \in\{1, \ldots, n\} \mid x_{i}=0\right\}$.

Let $J=\left\{j_{1}, \ldots, j_{s}\right\} \subset\{1, \ldots, n\}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$.
We denote

- $x_{J}:=\left(x_{j_{1}}, \ldots, x_{j_{s}}\right)$ (puncturing);
- $Z(x):=\left\{i \in\{1, \ldots, n\} \mid x_{i}=0\right\}$.

Moreover, if $A \subseteq \mathbb{F}_{q}^{n}$ we will indicate

- $A_{J}:=\left\{a_{J} \mid a \in A\right\} \subseteq \mathbb{F}_{q}^{|J|}$;
- $Z(A):=\left\{i \in\{1, \ldots, n\} \mid a_{i}=0 \quad \forall a \in A\right\} ;$

Let $J=\left\{j_{1}, \ldots, j_{s}\right\} \subset\{1, \ldots, n\}$ and $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q}^{n}$.
We denote

- $x_{J}:=\left(x_{j_{1}}, \ldots, x_{j_{s}}\right)$ (puncturing);
- $Z(x):=\left\{i \in\{1, \ldots, n\} \mid x_{i}=0\right\}$.

Moreover, if $A \subseteq \mathbb{F}_{q}^{n}$ we will indicate

- $A_{J}:=\left\{a_{J} \mid a \in A\right\} \subseteq \mathbb{F}_{q}^{|J|}$;
- $Z(A):=\left\{i \in\{1, \ldots, n\} \mid a_{i}=0 \quad \forall a \in A\right\}$;
- $A(J):=\left\{a \in A \mid a_{J}=0\right\} \subseteq \mathbb{F}_{q}^{n}$ (shortening).

Localisation of errors

We define $M:=\{a \in A \mid\langle a * y, b\rangle=0 \quad \forall b \in B\}$.
Lemma
Let $y, I=\operatorname{supp}(e)$ and M as above. If $A * B \subseteq C^{\perp}$, then

- $A(I) \subseteq M \subseteq A ;$

Localisation of errors

We define $M:=\{a \in A \mid\langle a * y, b\rangle=0 \quad \forall b \in B\}$.

Lemma

Let $y, I=\operatorname{supp}(e)$ and M as above. If $A * B \subseteq C^{\perp}$, then

- $A(I) \subseteq M \subseteq A$;
- if $\mathrm{d}\left(B^{\perp}\right)>t$, then $A(I)=M$;

Localisation of errors

We define $M:=\{a \in A \mid\langle a * y, b\rangle=0 \quad \forall b \in B\}$.

Lemma

Let $y, I=\operatorname{supp}(e)$ and M as above. If $A * B \subseteq C^{\perp}$, then

- $A(I) \subseteq M \subseteq A$;
- if $\mathrm{d}\left(B^{\perp}\right)>t$, then $A(I)=M$;
- if $\operatorname{dim}(A)>t$, then $A(I) \neq 0$.

Localisation of errors

We define $M:=\{a \in A \mid\langle a * y, b\rangle=0 \quad \forall b \in B\}$.

Lemma

Let $y, I=\operatorname{supp}(e)$ and M as above. If $A * B \subseteq C^{\perp}$, then

- $A(I) \subseteq M \subseteq A$;
- if $\mathrm{d}\left(B^{\perp}\right)>t$, then $A(I)=M$;
- if $\operatorname{dim}(A)>t$, then $A(I) \neq 0$.

Proof of $A(I) \subseteq M$: given $a \in A(I)$, we get for all $b \in B$

$$
\langle a * y, b\rangle=\underbrace{\langle a * c, b\rangle}_{\langle a * b, c\rangle}+\underbrace{\langle a * e, b\rangle}_{\langle 0, b\rangle}=0 .
$$

Localisation of errors

We define $M:=\{a \in A \mid\langle a * y, b\rangle=0 \quad \forall b \in B\}$.

Lemma

Let $y, I=\operatorname{supp}(e)$ and M as above. If $A * B \subseteq C^{\perp}$, then

- $A(I) \subseteq M \subseteq A$;
- if $\mathrm{d}\left(B^{\perp}\right)>t$, then $A(I)=M$;
- if $\operatorname{dim}(A)>t$, then $A(I) \neq 0$.

Proof of $A(I) \subseteq M$: given $a \in A(I)$, we get for all $b \in B$

$$
\langle a * y, b\rangle=\underbrace{\langle a * c, b\rangle}_{\langle a * b, c\rangle}+\underbrace{\langle a * e, b\rangle}_{\langle 0, b\rangle}=0 .
$$

\longrightarrow we take $J:=Z(M)$.

Recovering e

Let $H \in \mathcal{M}(n, m)$, and H^{i} its columns. Given $J \subseteq\{1, \ldots, m\}$, we define

$$
H_{J}=\left(H^{j}\right)^{j \in J}
$$

Let us consider a full rank parity check matrix H for C.

Lemma

If $\mathrm{d}(A)+\mathrm{d}(C)>n$ and $I \subseteq J$, then there exists an unique solution for the system

$$
H_{J} \cdot E^{T}=H \cdot y^{T} .
$$

Recovering e

Let $H \in \mathcal{M}(n, m)$, and H^{i} its columns. Given $J \subseteq\{1, \ldots, m\}$, we define

$$
H_{J}=\left(H^{j}\right)^{j \in J}
$$

Let us consider a full rank parity check matrix H for C.

Lemma

If $\mathrm{d}(A)+\mathrm{d}(C)>n$ and $I \subseteq J$, then there exists an unique solution for the system

$$
H_{J} \cdot E^{T}=H \cdot y^{T} .
$$

\longrightarrow we recover e.

PECP for Reed-Solomon codes

Let $C \subseteq \mathbb{F}_{q}^{n}$ be a $\mathrm{RS}[\mathrm{n}, \mathrm{k}]$ code. There exists $f \in \mathbb{F}_{q}[x]<k$ such that $c=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$. Let us take

$$
A=R S[n, t+1], \quad B^{\perp}=R S[n, t+k] .
$$

Let $C \subseteq \mathbb{F}_{q}^{n}$ be a $\mathrm{RS}[\mathrm{n}, \mathrm{k}]$ code. There exists $f \in \mathbb{F}_{q}[x]<k$ such that $c=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$. Let us take

$$
A=R S[n, t+1], \quad B^{\perp}=R S[n, t+k] .
$$

$\operatorname{dim}(A)>t$
$A * B \subseteq C^{\perp}$
$\mathrm{d}(A)+\mathrm{d}(C)>n$

Let $C \subseteq \mathbb{F}_{q}^{n}$ be a $\operatorname{RS}[n, k]$ code. There exists $f \in \mathbb{F}_{q}[x]_{<k}$ such that $c=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$. Let us take

$$
A=R S[n, t+1], \quad B^{\perp}=R S[n, t+k] .
$$

$\operatorname{dim}(A)>t$
$A * B \subseteq C^{\perp}$
$\mathrm{d}(A)+\mathrm{d}(C)>n$
obvious

Let $C \subseteq \mathbb{F}_{q}^{n}$ be a $\operatorname{RS}[n, k]$ code. There exists $f \in \mathbb{F}_{q}[x]_{<k}$ such that $c=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$. Let us take

$$
A=R S[n, t+1], \quad B^{\perp}=R S[n, t+k] .
$$

$\operatorname{dim}(A)>t$
$A * B \subseteq C^{\perp}$
$\mathrm{d}(A)+\mathrm{d}(C)>n$
obvious
$A * C=B^{\perp}$

Let $C \subseteq \mathbb{F}_{q}^{n}$ be a $\operatorname{RS}[n, k]$ code. There exists $f \in \mathbb{F}_{q}[x]_{<k}$ such that $c=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$. Let us take

$$
A=R S[n, t+1], \quad B^{\perp}=R S[n, t+k] .
$$

$\operatorname{dim}(A)>t$
$A * B \subseteq C^{\perp}$
$\mathrm{d}(A)+\mathrm{d}(C)>n$
obvious

$$
\begin{aligned}
& A * C=B^{\perp} \\
& t<d
\end{aligned}
$$

Let $C \subseteq \mathbb{F}_{q}^{n}$ be a $\operatorname{RS}[n, k]$ code. There exists $f \in \mathbb{F}_{q}[x]_{<k}$ such that $c=\left(f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right)$. Let us take

$$
A=R S[n, t+1], \quad B^{\perp}=R S[n, t+k] .
$$

$\operatorname{dim}(A)>t$
$A * B \subseteq C^{\perp}$
$\mathrm{d}(A)+\mathrm{d}(C)>n$
obvious

$$
\begin{aligned}
& A * C=B^{\perp} \\
& t<d
\end{aligned}
$$

Proposition

We have that $\mathrm{d}\left(B^{\perp}\right)>t$ if and only if

$$
t \leq\left\lfloor\frac{\mathrm{d}(C)-1}{2}\right\rfloor
$$

Berlekamp-Welch key equations and the choice of M

Berlekamp Welch algorithm's key equation (Roth) Let $\Lambda(x):=\prod_{i \in I}\left(x-x_{i}\right)$ and $N(x):=\Lambda(x) f(x)$. Then

$$
\left(\Lambda\left(x_{i}\right)\right)_{i} * y=\left(N\left(x_{i}\right)\right)_{i}
$$

We get

- $\left(N\left(x_{1}\right), \ldots, N\left(x_{n}\right)\right) \in B^{\perp}=R S[t+k] ;$
- $\left(\Lambda\left(x_{1}\right), \ldots, \Lambda\left(x_{n}\right)\right) \in A(I)=R S[t+1](I)$;

Berlekamp-Welch key equations and the choice of M

Berlekamp Welch algorithm's key equation (Roth) Let $\Lambda(x):=\prod_{i \in I}\left(x-x_{i}\right)$ and $N(x):=\Lambda(x) f(x)$. Then

$$
\left(\Lambda\left(x_{i}\right)\right)_{i} * y=\left(N\left(x_{i}\right)\right)_{i} .
$$

We get

- $\left(N\left(x_{1}\right), \ldots, N\left(x_{n}\right)\right) \in B^{\perp}=R S[t+k] ;$
- $\left(\Lambda\left(x_{1}\right), \ldots, \Lambda\left(x_{n}\right)\right) \in A(I)=R S[t+1](I)$;
- $\left(\Lambda\left(x_{1}\right), \ldots, \Lambda\left(x_{n}\right)\right) \in \underbrace{\{a \in A \mid\langle a * y, b\rangle=0 \quad \forall b \in B\}}_{M}$.

Algorithms for Reed Solomon codes

$$
\begin{array}{cc}
t \leq\left\lfloor\frac{d-1}{2}\right\rfloor & \text { Berlekamp-Welch } \\
t>\left\lfloor\frac{d-1}{2}\right\rfloor & \begin{array}{c}
\text { Sudan } \\
\text { Power Decoding }
\end{array}
\end{array}
$$

Error Correcting Pairs
?

Algorithms for Reed Solomon codes

$t \leq\left\lfloor\frac{d-1}{2}\right\rfloor$
$t>\left\lfloor\frac{d-1}{2}\right\rfloor$

Berlekamp-Welch

Sudan

Power Decoding

Error Correcting Pairs

Proposition

We have that $\mathrm{d}\left(B^{\perp}\right)>t$ if and only if

$$
t \leq\left\lfloor\frac{\mathrm{d}(C)-1}{2}\right\rfloor
$$

Power Error Correcting Pairs algorithm with power $\ell=2$

Error Locating Pair

Given A, B, C linear codes of length $n,(A, B)$ is a t-error locating pair (QECP) for C if

- $A * B \subseteq C^{\perp}$;
- $\operatorname{dim}(A)>t$;
- $d(A)+d(C)>n$.

Pellikaan, 1992:
If I is an independent t-set of error positions with respect to B, where (A, B) is a t-error locating pair for C, then the algorithm corrects any word with error supported at I.

Power Error Correcting Pairs algorithm with power $\ell=2$

Error Locating Pair

Given A, B, C linear codes of length $n,(A, B)$ is a t-error locating pair (QECP) for C if

- $A * B \subseteq C^{\perp}$;
- $\operatorname{dim}(A)>t$;
- $d(A)+d(C)>n$.

Pellikaan, 1992:
If I is an independent t-set of error positions with respect to B, where (A, B) is a t-error locating pair for C, then the algorithm corrects any word with error supported at I.

Before we used "If $A * B \subseteq C^{\perp}$ and $\mathrm{d}\left(B^{\perp}\right)>t$, then $A(I)=M$."

Let us define e^{\prime} this way

$$
y^{* 2}=c^{* 2}+\underbrace{2 c * e+e^{* 2}}_{e^{\prime}} .
$$

Lemma

We get $\operatorname{supp}\left(e^{\prime}\right) \subseteq I=\operatorname{supp}(e)$.

Let us define e^{\prime} this way

$$
y^{* 2}=c^{* 2}+\underbrace{2 c * e+e^{* 2}}_{e^{\prime}}
$$

Lemma

We get $\operatorname{supp}\left(e^{\prime}\right) \subseteq I=\operatorname{supp}(e)$.
Power Decoding algorithm's key equations
If $\Lambda(x)=\prod_{i \in I}\left(x-x_{i}\right)$ and $N_{j}(x):=\Lambda(x) f^{j}(x)$ for $j=1,2$, then

$$
\left\{\begin{array}{l}
\left(\Lambda\left(x_{i}\right)\right)_{i} * y=\left(N_{1}\left(x_{i}\right)\right)_{i} \\
\left(\Lambda\left(x_{i}\right)\right)_{i} * y^{* 2}=\left(N_{2}\left(x_{i}\right)\right)_{i}
\end{array}\right.
$$

Hence, if we consider $A=R S[n, t+1], B^{\perp}=R S[n, t+k]$ as before, we get

- $\left(N_{1}\left(x_{1}\right), \ldots, N_{1}\left(x_{n}\right)\right) \in B^{\perp}$;
- $\left(N_{2}\left(x_{1}\right), \ldots, N_{2}\left(x_{n}\right)\right) \in B^{\perp} * C$;

Hence, if we consider $A=R S[n, t+1], B^{\perp}=R S[n, t+k]$ as before, we get

- $\left(N_{1}\left(x_{1}\right), \ldots, N_{1}\left(x_{n}\right)\right) \in B^{\perp}$;
- $\left(N_{2}\left(x_{1}\right), \ldots, N_{2}\left(x_{n}\right)\right) \in B^{\perp} * C$;
- $\left(\Lambda\left(x_{1}\right), \ldots, \Lambda\left(x_{n}\right)\right) \in A(I), M_{1} \cap M_{2}$.
where M_{1} and M_{2} are defined this way

$$
\begin{aligned}
& M_{1}:=\{a \in A \mid\langle a * y, b\rangle=0 \quad \forall b \in B\} \\
& M_{2}:=\left\{a \in A \mid\left\langle a * y^{* 2}, v\right\rangle=0 \quad \forall v \in\left(B^{\perp} * C\right)^{\perp}\right\} .
\end{aligned}
$$

Hence, if we consider $A=R S[n, t+1], B^{\perp}=R S[n, t+k]$ as before, we get

- $\left(N_{1}\left(x_{1}\right), \ldots, N_{1}\left(x_{n}\right)\right) \in B^{\perp}$;
- $\left(N_{2}\left(x_{1}\right), \ldots, N_{2}\left(x_{n}\right)\right) \in B^{\perp} * C$;
- $\left(\Lambda\left(x_{1}\right), \ldots, \Lambda\left(x_{n}\right)\right) \in A(I), M_{1} \cap M_{2}$.
where M_{1} and M_{2} are defined this way

$$
\begin{aligned}
& M_{1}:=\{a \in A \mid\langle a * y, b\rangle=0 \quad \forall b \in B\} \\
& M_{2}:=\left\{a \in A \mid\left\langle a * y^{* 2}, v\right\rangle=0 \quad \forall v \in\left(B^{\perp} * C\right)^{\perp}\right\} .
\end{aligned}
$$

\longrightarrow we take $M=M_{1} \cap M_{2}$.

PECP algorithm:

- compute $M=M_{1} \cap M_{2}$ (linear system);
- compute $J=Z(M)$;
- solve the syndrom linear system.

This algorithm can be run on all codes with an ELP.

PECP algorithm:

- compute $M=M_{1} \cap M_{2}$ (linear system);
- compute $J=Z(M)$;
- solve the syndrom linear system.

This algorithm can be run on all codes with an ELP.

```
Lemma
If A*B\subseteqC' , then }A(I)\subseteqM=M1\cap\mp@subsup{M}{2}{}\subseteqA\mathrm{ .
```

We look for a necessary condition to have $M=A(I)$.

PECP algorithm:

- compute $M=M_{1} \cap M_{2}$ (linear system);
- compute $J=Z(M)$;
- solve the syndrom linear system.

This algorithm can be run on all codes with an ELP.

```
Lemma
If A*B\subseteqC'\perp}\mathrm{ , then }A(I)\subseteqM=M1\cap\mp@subsup{M}{2}{}\subseteqA
```

We look for a necessary condition to have $M=A(I)$.

Since $M(I)=A(I)$, we get the implications:

$$
M=A(I) \Longleftrightarrow M(I)=M \Longleftrightarrow M_{I}=\{0\} .
$$

Given $a \in A$, we have by definition of M_{1}

$$
a \in M_{1} \Longleftrightarrow\langle a * y, b\rangle=0 \quad \forall b \in B .
$$

If $A * B \subseteq C^{\perp}$, this is equivalent to $a_{l} \in(e * B)_{l}^{\perp}$.

Given $a \in A$, we have by definition of M_{1}

$$
a \in M_{1} \Longleftrightarrow\langle a * y, b\rangle=0 \quad \forall b \in B .
$$

If $A * B \subseteq C^{\perp}$, this is equivalent to $a_{l} \in(e * B)_{l}^{\perp}$.

In the same way, given $a \in A$, it holds

$$
a \in M_{2} \Longleftrightarrow a_{l} \in\left(e^{\prime} *\left(B^{\perp} * C\right)^{\perp}\right)_{l}^{\perp}
$$

Lemma
We have $\left(M_{1} \cap M_{2}\right)_{I}=(e * B)_{l}^{\perp} \cap\left(e^{\prime} *\left(B^{\perp} * C\right)^{\perp}\right)_{l}^{\perp} \cap A_{l}$.

Remark

Since $A=R S[n, t+1]$ is MDS, then $A_{l}=\mathbb{F}_{q}^{t}$.
Hence $\left(M_{1} \cap M_{2}\right)_{I}=(e * B)_{l}^{\perp} \cap\left(e^{\prime} *\left(B^{\perp} * C\right)^{\perp}\right)_{l}^{\perp}$.

Remark

Since $A=R S[n, t+1]$ is MDS, then $A_{l}=\mathbb{F}_{q}^{t}$.
Hence $\left(M_{1} \cap M_{2}\right)_{I}=(e * B)_{l}^{\perp} \cap\left(e^{\prime} *\left(B^{\perp} * C\right)^{\perp}\right)_{l}^{\perp}$.

A necessary condition for $\left(M_{1} \cap M_{2}\right)$, to be the null space is

$$
\operatorname{dim}\left((e * B)_{l}^{\perp}\right)+\operatorname{dim}\left(\left(e^{\prime} *\left(B^{\perp} * C\right)^{\perp}\right)_{l}^{\perp}\right) \leq t .
$$

This inequality implies the following
Necessary condition

$$
\operatorname{dim}(B)+\operatorname{dim}\left(\left(B^{\perp} * C\right)^{\perp}\right) \geq t
$$

Decoding radius for Reed-Solomon codes and $\ell=2$ We get, as for the Power Decoding algorithm with power 2,

$$
t \leq \frac{2 n-3 k+1}{3}
$$

It is possible to write the algorithm for a general power ℓ.

Decoding radius for Reed-Solomon codes and $\ell=2$
We get, as for the Power Decoding algorithm with power 2,

$$
t \leq \frac{2 n-3 k+1}{3}
$$

It is possible to write the algorithm for a general power ℓ.

For Reed-Solomon codes, PECP has the same decoding radius as the Power Decoding algorithm, that is $t_{\text {pow }}=\frac{2 n \ell-k \ell(\ell+1)+\ell(\ell-1)}{2(\ell+1)}$.

Complexity

$\operatorname{PECP}(\ell)$:

(i) find $M=\bigcap_{i=1}^{\ell} M_{i}$;
(ii) given J, find c.

The main cost is the one of step (i), which reduces to a linear system of $O(n \ell)$ equations in

$$
t+1=O\left(\frac{2 n \ell+\ell(\ell+1)+2}{2(\ell+1)}\right)=O(n)
$$

unknowns. Hence we get the cost $O\left(n^{3} \ell\right)$.

PECP for Algebraic Geometry codes

Let χ be a smooth projective curve, $\mathcal{P}=\left\{P_{1}, \ldots, P_{n}\right\} \subseteq \chi, G$ a divisor for χ with $\operatorname{supp}(G) \cap \mathcal{P}=\emptyset$ and

$$
C=C_{L}(\chi, \mathcal{P}, G)
$$

Theorem

There exists a t-error locating pair for C such that the necessary condition gives the correcting radius

$$
t \leq \underbrace{\frac{2 n \ell-\ell(\ell+1) \operatorname{deg}(G)-2 \ell}{2(\ell+1)}-g}_{t_{\text {basic }}, t_{\text {pow }}[S W 98]}+\frac{g}{\ell+1} .
$$

Future tasks:

- study of the failure cases of the Power Decoding algorithm and the PECP algorithm for Reed-Solomon codes;
- examine the possibility to improve PECP algorithm's decoding radius for algebraic-geometry codes;
- is it possible to design a multiplicity version of ECP algorithm?

Thanks for your attention!

