Machine Learning on Graphs with Kernels

M. Vazirgiannis, G. Nikolentzos, G. Siglidis

DaScIM L LIX, Ecole Polytechnique

Tutorial Webpage: https://bit.1ly/3329sbD
Based on: https://arxiv.org/pdf/1904.12218.pdf

3 November 2019

1/129 Machine Learning on Graphs with Kernels

https://bit.ly/3329sbD
https://arxiv.org/pdf/1904.12218.pdf

Introduction

Graphs Are Everywhere

Mathemarial aspects
i

. computer-aid
computerided 3

3 aspec
problem i
o
price seies with statist
robabilisic chasceisis 5
o
Edge weights mathemat trade
1 o
2 share
3 S
3
jice
s @ s o
probabilist analysi
o characterist

seri

o
modet & method

Why graphs?

Machine Learning on Graphs with Kernels

What the Tutorial is not About

@ Kernels that compare the nodes of a single graph
e implicitly map nodes into a feature space
e similar to node embedding algorithms
e can benefit node related tasks such as node classification

[Kondor and Lafferty, ICML’02]
[Smola and Kondor, COLT /Kernel’03]

@ Graph neural networks (a.k.a. message-passing neural networks)
< main competitor of graph kernels

Idea similar to that of the Weisfeiler-Lehman subtree kernel — Consist of two
steps:

@ a message-passing step

e a readout step

[Gilmer et al., ICML’17]

4/129 Machine Learning on Graphs with Kernels

Preliminaries

Graph Preliminaries

Let G = (V, E) be a simple unweighted, undirected graph where V is the set of
vertices and E the set of edges

V ={1,2,3,4,5}

E= {(17 2)’ (15 3)(174)’ (274)7 (3’ 5)}

6/129 Machine Learning on Graphs with Kernels

Graph Preliminaries

The neighbourhood N (v) of vertex v is the set of all vertices adjacent to v,
N(v) ={u:(v,u) € E} where (v, u) is an edge between v and u

N(1) ={2,3,4}
N(5) = {3}

7/129 Machine Learning on Graphs with Kernels

Graph Preliminaries

A walk in a graph G is a sequence of vertices vy, vo, ..., vkr1 where v; € V and
(V,',V,'+1) cEfor1<i<k

Walk: 1 -2 —-4—+1—3

8/129 Machine Learning on Graphs with Kernels
/ g

Graph Preliminaries

A walk in which v; # v; < i # j is called a path

Path: 4 -1 —-3 =5

9/129 Machine Learning on Graphs with Kernels

Graph Preliminaries

A cycle is a path with (vk41,v1) € E

Cycle: 1 —»2—14

10/129 Machine Learning on Graphs with Kernels

Graph Preliminaries

A subtree is an acyclic subgraph in which there is a path between any two vertices

11/129 Machine Learning on Graphs with Kernels

Graph Preliminaries

A labeled graph is a graph with labels on vertices. Given a set of labels £,
{:V — L is a function that assigns labels to the vertices of the graph

X

L={a,p,7}

(D=« (4)=x

12/129 Machine Learning on Graphs with Kernels

Graph Preliminaries

An attributed graph is a graph with attributes on vertices. Each vertex v € V is
annotated with a feature vector h,

0.2,1.4,0.8]
[—0.4,0.3, —0.1]

[0.6,—1.1,1.4]

0.3,1.1,0.9]

G

hl,...7h5ER3

h =1[0.2,1.4,0.8]T hs=[-0.4,0.3,—0.1]"

13/129 Machine Learning on Graphs with Kernels
/ g

Graph Classification
m O_@;Q—_f
class -1 @3
class 1

class -1

oy T
vz o

class 1

Input data G € X

Output y € {-1,1}

Training set D = {(G1,y1),---,(Gn, ¥n)}

Goal: estimate a function f : X — R to predict y from f(x)

14 /129 Machine Learning on Graphs with Kernels

Graph Comparison

Definition (Graph Comparison Problem)

Given two graphs G; and G, from the space of graphs G, the problem of graph
comparison is to find a mapping

s:gxg—R

such that s(Gy, Gp) quantifies the similarity of G; and G;.

Graph comparison is a topic of high significance

- It is the central problem for all learning tasks on graphs such as clustering
and classification

- Most machine learning algorithms make decisions based on the similarities or
distances between pairs of instances (e.g. k-nn)

15/129 Machine Learning on Graphs with Kernels

Not an Easy Problem

Although graph comparison seems a tractable problem, it is very complex

Many problems related to it are NP-complete
@ subgraph isomorphism

e finding largest common subgraph

We are interested in algorithms capable of measuring the similarity between two
graphs in polynomial time

16 /129 Machine Learning on Graphs with Kernels

Graphs to Vectors

@ To analyze and extract knowledge from graphs, one needs to perform
machine learning tasks

@ Most machine learning algorithms require the input to be represented as a
fixed-length feature vector

@ There is no straightforward way to transform graphs to such a representation

17 /129 Machine Learning on Graphs with Kernels

What is a Kernel?

Definition (Kernel Function)
The function k: X x X — R is a kernel if it is:

Q symetric: k(x,y) = k(y,x)
@ positive semi-definite: Vxy, x2,...,x, € X, the Gram Matrix K defined by
Kij = k(xi,x;j) is positive semi-definite

- If a function satisfies the above two conditions on a set X, it is known that
there exists a map ¢ : X — H into a Hilbert space H, such that:

k(x,y) = (6(x), o(y))

for all (x,y) € X2 where (-,-) is the inner product in H

- Informally, k(x,y) is a measure of similarity between x and y

18/129 Machine Learning on Graphs with Kernels

Graph Kernels

Definition (Graph Kernel)

A graph kernel k : G X G — R is a kernel function over a set of graphs G

- It is equivalent to an inner product of the embeddings ¢ : X — H of a pair of
graphs into a Hilbert space

- Makes the whole family of kernel methods applicable to graphs

A

; —_\ O(G1> H

\ ¢

19/129 Machine Learning on Graphs with Kernels

Kernel Trick

@ Many machine learning algorithms can be expressed only in terms of inner
products between vectors

o Let ¢(Gy),d(Gy) be vector representations of graphs Gy, G, in a very high
(possibly infinite) dimensional feature space

e Computing the explicit mappings ¢(G1), ¢(G2) and their inner product
(p(x), d(y)) for the pair of graphs can be computationally demanding

@ The kernel trick avoids the explicit mapping by directly computing the inner
product (¢(x), #(y)) via the kernel function

20/129 Machine Learning on Graphs with Kernels

Let X = R? and
x =[x, %],y =y €Xx

For any x = [x1, %] let ¢ be a map
¢ : R? — R3 defined as:

$(x) = b, V2xaxe, 3]

Let also k : X x X — R a kernel defined
as k(x,y) = (x,y)2. Then
k(x,y) = (x,y)?
x1y1 + xoy2)?
2.2 2 2
X{yi +2x1y1x0y2 + X355

= (0(x), ¢(y))
21/129 Machine Learning on Graphs with Kernels

Classification using SVM

@ The standard SVM classifier addresses the following problem:
Given a set of N training objects along with their class labels
D= {(x,y)}¥,, xi € X, y; € Y ={-1,+1}, learn a classifier f : X — Y
that predicts the class labels of new objects

@ SVM belongs to the family of large margin classifiers
— it seeks a hyperplane that separates the instances belonging to class —1

from those belonging to class 1

@ This leads to the following dual optimization problem:

maX|m|ze Za, - = ZZCM OZJY:}/J) ¢()>

l]._j 1
subject to Za;y,-zO
C>a; >0 Vie{l,...,N}

22/129 Machine Learning on Graphs with Kernels

Graph Classification using SVM

@ The standard SVM classifier addresses the following problem:
Given a set of N training objects along with their class labels
D ={(G,y)}",, GG,y €Y ={-1+1}, learn a classifier f : X — Y
that predicts the class labels of new objects

@ SVM belongs to the family of large margin classifiers
— it seeks a hyperplane that separates the instances belonging to class —1
from those belonging to class 1

@ This leads to the following dual optimization problem:

maX|m|ze Za, - = Zza OéJ}/:yJ) (G)>

111 1
N
subject to Zoz,-y,-zo
i=1
C>a; >0 Vie{l,...,N}

23/129 Machine Learning on Graphs with Kernels

Graph Classification using SVM

@ The standard SVM classifier addresses the following problem:
Given a set of N training objects along with their class labels
D ={(G,y)}",, GG,y €Y ={-1+1}, learn a classifier f : X — Y
that predicts the class labels of new objects

@ SVM belongs to the family of large margin classifiers
— it seeks a hyperplane that separates the instances belonging to class —1
from those belonging to class 1

@ This leads to the following dual optimization problem:

maXImlze Za,—fZZany,yj Gi, Gj)

i=1 j=1
N

subject to Za,-y,-:O
i=1
C>a; >0 Vie{l,...,N}

24 /129 Machine Learning on Graphs with Kernels

Two Simple Kernels

The two kernels assume node/edge-labeled graphs

Vertex histogram kernel:

@ The vertex label histogram of a graph G is a vector f = [f1, f5,..., 4], such
that i=|{ve V:¥(v)=i}| foreachic L

@ The vertex histogram kernel is then defined as:

k(G,G") = (f,f")

Edge histogram kernel:

@ The edge label histogram of a graph G is a vector f = [f, f,...,fy] ", such
that fi = |{(v,u) € E : {(v,u) = i}| for each i € L.
@ The edge histogram kernel is then defined as:

k(G,G") = (f,f')

25 /129 Machine Learning on Graphs with Kernels

Vertex Histogram Kernel

Example

G G’

The vector representations of the two graphs are:
fG = [27 27 17 O]T
for =1[1,1,3,1]"

Hence, the value of the kernel is:
k(G,G') = {fc,fe/) =T

Expressiveness vs Efficiency

Complete Graph Kernels

Definition (Complete Graph Kernel)

A graph kernel k(Gi, Go) = (¢(G1), ¢(Gy)) is complete if ¢ is injective

?@] y
#(Gy)
Hence, for complete graph

N
kernels, ¢(G1) = &(Gy) iff Gy g O/O¥// 6(G2)

and G; are isomorphic .
Gy / 6(G3)
[l—

How hard is to compute a complete graph kernel?

Proposition

Computing any complete graph kernel is at least as hard as the graph
isomorphism problem

Gartner et al., COLT /Kernel’'03

Machine Learning on Graphs with Kernels

Complete Graph Kernels

Clearly, the vertex and edge histogram kernels are not complete
1 1
% ? f 2 2
2 2
1 3 3 1
G G’

The two graphs are not isomorphic. However

fo = for = [2,2,1,0]"

29 /129 Machine Learning on Graphs with Kernels
/ g

Expressiveness vs Efficiency

If the kernel is complete:

o Computation is at least as hard as the graph isomorphism problem
< No polynomial algorithm for the graph isomorphism problem is known

If the kernel is not complete:
@ It can be computed efficiently

@ We can have ¢(Gi) = ¢(Gy) even if Gy 2 G,
— The kernel is not expressive enough

We are interested in kernels that can be computed in polynomial time (with small
degree)

30/129 Machine Learning on Graphs with Kernels

Expressive Power of Graph Kernels

Capitalize on concepts from property testing to measure the expressive power of
graph kernels

Definition

A graph kernel identifies a property if no two graphs are mapped to the same
feature vector unless they both have or both do not have the property (e.g.,
connected vs disconnected)

Kernel | Weisfeiler-Lehman Random Walk Shortest Path Graphlet
Property subtree kernel kernel kernel kernel
Connectivity X X v X
Planarity X X X X
Bipartiteness X X X X
Triangle-freeness X X X v

Well-established kernels fail to identify fundamental properties
— However, still they achieve state-of-the-art results on many datasets

[Kriege et al., 1JCAI'18]
31/129 Machine Learning on Graphs with Kernels

Early Days of Graph Kernels

Convolution Kernels in a Nutshell

@ Decompose structured objects into comparable parts

o Aggregate the values of similarity measures for individual parts

[Haussler. Tech Report’99]

33/129 Machine Learning on Graphs with Kernels

Substructures-based Kernels

A large number of graph kernels compare substructures of graphs that are
computable in polynomial time:

o walks
@ shortest paths
@ subtree patterns

@ graphlets

These kernels are instance of the R-convolution framework

34 /129 Machine Learning on Graphs with Kernels

Graphlet Kernel

The graphlet kernel compares graphs by counting graphlets

A graphlet corresponds to a small subgraph
- typically of 3,4 or 5 vertices

Below is the set of graphlets of size 4:

ZE g edy

V o—0O O0—0O O O
O o o0—0O O O O O
G~ Gs Go Gio G

[Shervashidze et al., AISTATS’09]

35/129

Machine Learning on Graphs with Kernels

Graphlet Kernel

Let G = {graphlet,, graphlet,, . .., graphlet.} be the set of size-k graphlets
Let also fc € N" be a vector such that its i-th entry is f ; = #(graphlet; C G)

The graphlet kernel is defined as:

k(G1, G2) = (fe,, fG,)

Problems:
@ There are (Z) size-k subgraphs in a graph
@ Exaustive enumeration of graphlets is very expensive
Requires O(n*) time

o For labeled graphs, the number of graphlets increases further

36 /129 Machine Learning on Graphs with Kernels

The vector representations of the graphs above according to the set of graphlets
of size 4 is:

fe, =[0,0,2,0,1,2,0,0,0,0,0] "
fe, = [0,0,0,2,1,5,0,4,0,3,0] "

Hence, the value of the kernel is:

k(Gy, Go) = (fg,, fe,) =11

37/129 Machine Learning on Graphs with Kernels

Shortest Path Kernel

Compares the length of shortest-paths of two graphs
- and their endpoints in labeled graphs

Floyd-transformation

Transforms the original graphs into shortest-paths graphs

@ Compute the shortest-paths between all pairs of vertices of the input graph G
using some algorithm (i. e. Floyd-Warshall)

@ Create a shortest-path graph S which contains the same set of nodes as the
input graph G

@ All nodes which are connected by a walk in G are linked with an edge in S

@ Each edge in S is labeled by the shortest distance between its endpoints in G

[Borgwardt and Kriegel. ICDM’05]

38/129 Machine Learning on Graphs with Kernels

Example

Floyd-transformation

D)

O

un

G S

39/129 Machine Learning on Graphs with Kernels

Shortest Path Kernel

Given the Floyd-transformed graphs S; = (V4, E1) and S, = (V,, E>) of Gy and Gy, the
shortest path kernel is defined as:

G1, G2 Z Z kedge(el 62

e1€E eg€E

where kegge is a kernel on edges

@ For unlabeled graphs, it can be:

keage (€1, &) = 3(£(e1), £ e2)) = { 1 if fer) = l(e2),

0 otherwise

where £(e) gives the label of edge e
@ For labeled graphs, it can be:

el = { 3 @)= A AeD = e A teh) — U

otherwise

where e!, €® are the two endpoints of e

40 /129 Machine Learning on Graphs with Kernels

Floyd-transformations

41/129 Machine Learning on Graphs with Kernels

In S; we have:
- 4 edges with label 1
- 4 edges with label 2
- 2 edges with label 3

In S, we have:
- 4 edges with label 1
- 2 edges with label 2

Hence, the value of the kernel is:

k(Gl7 GZ) = Z Z kedge(e1,e2) =4-444.2=24
ack eck

42 /129 Machine Learning on Graphs with Kernels

Shortest Path Kernel

Computing the shortest path kernel includes:

- Computing shortest paths for all pairs of vertices in the two graphs: O(n%)
- Comparing all pairs of shortest paths from the two graphs: O(n*)

Hence, runtime is O(n*)

Problems:

- Very high complexity for large graphs

- Shortest-path graphs may lead to memory problems on large graphs

43 /129 Machine Learning on Graphs with Kernels

Cyclic Pattern Kernel

The cyclic pattern kernel
@ decomposes a graph into cyclic and tree patterns
@ counts the number of common patterns which occur in two graphs

Cycles:

@ Let S(G) denote the set of cycles of a graph G

@ Let also m(C) denote the canonical representation of a cycle C

@ The set of cyclic patterns of G is defined by C(G) = {n(C): C € S(G)}
Trees:

@ By removing all the edges of all cycles, the kernel obtains a set of trees

@ The kernel computes the canonical representation 7(T) of each tree T

@ The set of tree patterns of G is then defined by 7(G) = {n(T) : T is a tree}
The cyclic pattern kernel is then defined as

k(G,G")=1[C(G)NC(G)|+|T(G)NT(G)|
Problems:
- Number of cyclic and tree patterns can be exponential in the number of vertices n
- Computing the cyclic pattern kernel on general graphs is NP-hard

- Can only be applied to graphs where the number of cycles is polynomially bounded
[Horvath et al., KDD’04]

44 /129 Machine Learning on Graphs with Kernels

G/

Extract cyclic and tree patterns from G, G’

45 /129 Machine Learning on Graphs with Kernels

C, i

C(G) = {W(Cl)} = {(17273)}
C(G") ={m()} ={(1,2,3)}

Machine Learning on Graphs with Kernels

3
4 1
/
Tl
3 T1 3
/
T2
1 4

T(6) = {r(T)} ={(1,3,4)}
T(G") = {=(T1), 7(T3)} ={(1,3),(3,4)}

Machine Learning on Graphs with Kernels

Hence, kernel equal to

k(G,G")=C(G)NC(G")|+|T(G)NT(G)| =1

45 /129 Machine Learning on Graphs with Kernels

Random Walk Kernel

@ Probably the most well-studied family of graph kernels

@ Counts matching walks in two graphs

Product graph

Given two graphs G1 = (V4, E1) and Go = (V53, E), their direct product Gy is a graph
with vertex set:

Vi = {(v1,v2) : vi € Vi, v2 € V5} for unlabeled graphs
or
Vi ={(v1,v2) : vi € Vi, v» € V5, £(v1) = £(v2)} for labeled graphs

and edge set:

E, = {((V17 VQ), (U17 Uz)) : (V17 U1) € El,(VQ, Ll2) S EQ}

@ vertices: pairs of vertices from G; and G

@ draw edge if corresponding vertices of G; and G, are adjacent in G and G

[Gartner et al., COLT /Kernel’03]
46 /129 Machine Learning on Graphs with Kernels

Y
o
S
T
X

L

Random Walk Kernel

The k-th power of the adjacency matrix A of G computes walks of length k
— Afj- = number of walks of length k from vertex i to vertex j

Performing a random walk on Gy is equivalent to performing a simultaneous
random walk on G; and G,

- Common walks of length k can be computed using A%

For k € N, the k-step random walk kernel is defined as:

(61, G) = %: [Z)\ A’]
ij=1 r=0

where Ao, A1, ..., Ak positive weights and A% = |

48 /129 Machine Learning on Graphs with Kernels

Random Walk Kernel

For k — oo, we obtain the geometric random walk kernel K°(Gy, G)

If A, = X', KZ(Gi, Gy) can be directly computed as follows:

Vil o
%(Gy, Gy) = Z[ZAAf} —eT(I - M)~
ij=1 m=0

where e the all-ones vector

Problem: computational complexity is O(n®)

Solution: Efficent computation using:
- Sylvester equations
- Conjugate gradient solver
- Fixed-point iterations

- Spectral decompositions

[Vishwanathan et al., JMLR 11.Apr (2010)]

Neighborhood Aggregation Approaches

Weisfeiler-Lehman Test of Isomorphism

May answer if two graphs are not isomorphic

Run the Weisfeiler-Lehman algorithm for the following pair of graphs

1 1

51/129 Machine Learning on Graphs with Kernels

Iteration 1

First step: Augment the labels of the vertices by the sorted set of labels of
neighbouring vertices

1,1111
1,11

1,111 1,1111 111 1111

1,11 111 1,11 1,111

1,111
1,11

52 /129 Machine Learning on Graphs with Kernels

Iteration 1

Second step: Compress the augmented labels into new, short labels:

01,11 2 01,1111 — 4
01,111 — 3

4
3 4 2
2 2 2

2

3
3
3
53 /129 Machine Learning on Graphs with Kernels

Iteration 1

Are the label sets of G; and G identical?

2 4

Gy Go
Yes!!!
Continue to the next iteration

54 /129 Machine Learning on Graphs with Kernels

Iteration 2

First step: Augment the labels of the vertices by the sorted set of labels of
neighbouring vertices

4,2233

3,224 4,2233 2,24 3,234

2,33 2,34 2,24 3,234

3,224
2,33

55 /129 Machine Learning on Graphs with Kernels

Iteration 2

Second step: Compress the augmented labels into new, short labels:

02,24 -5 03,234 -9
02,33 —6
02,34 =7 o 4,2233 — 10

56 /129 Machine Learning on Graphs with Kernels

Iteration 2

Are the label sets of G; and G identical?

; 10

Gy G

Noll!l
Graphs are not isomorphic

57 /129 Machine Learning on Graphs with Kernels

Weisfeiler-Lehman Framework

Let G1, G2,..., G" be the graphs emerging from graph G at the iteration
1,2,..., h of the Weisfeiler-Lehman algorithm

Then, the Weisfeiler-Lehman kernel is defined as:

where k(-,-) is a base kernel (e.g. subtree kernel, shortest path kernel, ...)

At each iteration of the Weisfeiler-Lehman algorithm:

@ run a graph kernel for labeled graphs

@ the new kernel values are added to the ones of the previous iteration

[Shervashidze et al., JMLR 12.Sep (2011)]

58 /129 Machine Learning on Graphs with Kernels

Weisfeiler-Lehman Subtree Kernel

Counts matching pairs of labels in two graphs after each iteration

G 1 G2

59 /129 Machine Learning on Graphs with Kernels

Initialization

Feature vector for a graph G:
@(G) = {#nodes with label 1, #nodes with label 2, ..., #nodes with label /}

4 4

2 3

G1 G2

#(G) =[1,21,1,1]" ¢(G)=][1,1,2,1,1]"

k(Gi, G2) = (9(G1), 9(G2)) = 7

Iteration 1

First step: Augment the labels of the vertices by the sorted set of labels of
neighbouring vertices

4,1235 41235

1,24 5,34 1,24 5,34

2,14 3,245 2,1334 3,25

2,3 3,24

G 1 G2

61/129 Machine Learning on Graphs with Kernels

Iteration 1

Second step: Compress the augmented labels into new, short labels:

01,24 =6 023—9 o 3,25 =12
0214 =7 o 3,24 — 10 o 4,1235 — 13
02,1334 —+ 8 o 3,245 — 11 0534 =14
13 13
6 14 6 14
9 10

62 /129 Machine Learning on Graphs with Kernels

Iteration 1

Third step: Compute kernel value for iteration h = 1 and add it to previous kernel value

13 13

9 10
G Go
#(Gi) =1[1,1,0,1,0,1,0,1,1]" ¢(G;) =[1,0,1,0,1,0,1,1,1]"

k(Gl, G) = (¢(G1), #(G2)) =3
kin(G1, G2) = k(G1, G2) + k(GY, G3) = 10

63 /129 Machine Learning on Graphs with Kernels

Weisfeiler-Lehman Subtree Kernel

Computing the Weisfeiler-Lehman Subtree Kernel takes O(hm) time

- very efficient

Comparison to other well-known kernels

Runtime for labeled graphs

SuStree kemél (Ramo‘n and Gz;ertner, 2603)
—— Fast Random Walk (Vishwanathan et al., 2007) I
—— Shortest Path (Borgwardt and Kriegel, 2005)
—— 3-Graphlet (Shervashidze et al., 2009) I

—— Weisfeiler-Lehman subtree kernel (this talk) |

100

200

300

T | | | | |
400 500 600 700 800 900 1000
Graph size

64 /129 Machine Learning on Graphs with Kernels

More Recent Approaches

Lovasz 9 kernel

Compares graphs based on the orthonormal representation associated with the Lovdsz

number
- the orthonormal representation captures global graph properties

Orthonormal representation of a graph G = (V, E):
@ each vertex i € V is assigned a unit vector uj, ||ui|| =1

@ let Ug = {u1, 2, ..., un} be the set of all vectors

@ fori,jeV,if(i,j) ¢ E, then v u; =0

An interesting orthonormal representation is associated with the Lovdsz number ¥(G)

Definition (Lovdsz number)
For a graph G = (V, E),

I9(G) = 2‘('}2 e (cTu)?

where the minimization is taken over all orthonormal representations Ug and all unit

vectors ¢

[Johansson et al., ICML’14]

66 /129 Machine Learning on Graphs with Kernels

Lovasz 9 kernel

Given a subset of vertices S C V/, the Lovasz value of the subgraph induced by S is:

1
G) = -
Us(G) = mcm u,rggé(‘s (cTwj)?

where Ugs = {ui € Ug : i € S}

The Lovasz kernel is then defined as:

Gl,Gz)f Z Z 1951 Gl 1952(62))

$5Cvy szcvz
[S11=1S2]

where Z = (") ("), d = |S1| = |S.| and k(-,) is a base kernel (e.g. linear, gaussian)

Problem: Computing the Lovasz 1) kernel is very expensive since — requires computing
the Lovdsz value for all subgraphs of the two graphs

Solution: Sampling

— Evaluate the Lovasz value for a smaller number of subgraphs of size d

67 /129 Machine Learning on Graphs with Kernels

Ordered Decomposition DAGs Kernel

General idea:
@ Decomposes graphs into multisets of directed acyclic graphs (DAGs)

@ Uses existing tree kernels to compare these DAGs

Generates one unordered rooted DAG for each vertex (keeps only edges belonging to the
shortest paths)

Then, the kernel is defined as:
- Y Y kewl0.0)

DeDD(G) D'eDD(G')

where DD(G) and DD(G') are multisets that contain the DAGs extracted from G and
G', respectively, and kpag is a kernel between DAGs

[Da San Martino et al., SDM’12]

68 /129 Machine Learning on Graphs with Kernels

Ordered Decomposition DAGs Kernel

DAGs are unordered (i.e. the set of neighbours of each node is unordered)

There is a vast literature on kernels for ordered trees. Hence, the kernel:

@ transforms the unordered DAGs to ordered DAGs (based on node labels, outdegrees
of nodes, etc.)

@ projects subdags to a tree space (see Figure below)

@ applies a kernel for ordered trees

a a
b : b - job The kernel between two DAGs is computed as
— .
d follows:
d d
d d d

kpac(D, D") Z Z kiree (root(v), root(v"))

veVp v/ eV
a a
¢ b Vb, Vp:: sets of vertices of D and D’
c C
b — b 2 2 @ @ Kkiee: kernel between ordered trees
d d
d d
d d d d

69 /129

Machine Learning on Graphs with Kernels

Assignment Kernels

Assignment Kernels

@ Another design paradigm for developing
kernels

@ Only a few instances in the literature 4

@ They compute a matching between Graph 1
substructures of one object and
substructures of a second object such that Graph2 ®
the overall similarity of the two objects is e
maximized

v

@ Such a matching can reveal structural
correspondences between the two objects

71/129 Machine Learning on Graphs with Kernels

Pyramid Match Kernel

Embed all vertices in the d-dimensional vector space RY as follows
@ compute the eigendecomposition of the adjacency matrix
@ use the eigenvectors of the d largest in magnitude eigenvalues
Such embeddings capture global properties of graphs

Example: eigenvector corresponding to greatest eigenvalue contains eigenvector
centrality scores of vertices — global property

After embedding: each vertex is a point in the d-dimensional unit hypercube

Then, use pyramid match kernel, a kernel function over unordered feature sets:
- Each feature set is mapped to a multiresolution histogram

- The histogram pyramids are then compared using a weighted histogram
intersection computation

[Nikolentzos et al., AAAI'17]

72/129 Machine Learning on Graphs with Kernels

Node Embeddings

Node embeddings: represent nodes as points in
a vector space

adjacency matrix A= UAUT

_ I'th

o Generate embeddings using eigenvectors of Iq

row u; of U corresponds to embedding L *I
of vertex v; °

vvvvvv

@ Such embeddings capture global properties [/‘ —
of graphs (S

73/129 Machine Learning on Graphs with Kernels

Bag-of-vectors Representation

Graphs represented as bags-of-vectors:

@ A graph is represented as a set of vectors:
{ug, ..., uy}
@ Each vector u; € RY represents the embedding

of the i*" node in the d-dimensional space

@ This is a natural representation

< There is no canonical ordering for the nodes
of a graph

74 /129 Machine Learning on Graphs with Kernels

Pyramid Match Graph Kernel

The Pyramid Match Graph Kernel

@ partitions feature space into cells

e at level / — 2/ cells along each dimension

Number of nodes (i.e. embeddings) that match at /:

I(HE,, HE) Zmln HE (i), HE, (i)

where HL(i) is the number of nodes of G that lie in the i cell

75/129 Machine Learning on Graphs with Kernels

Example

x .
x .
x x
3
e o
x x
x
. x
x
o X
. .

2 Machine Learning on Graphs with Kernels

Example

level 0

x .
x .
x x
3
e o
x x
x
. x
x
o X
. .

2 Machine Learning on Graphs with Kernels

I(H H2) =9+ ...

level 0

x .
x .
x x
3
e o
x x
x
. x
x
o X
. .

Machine Learning on Graphs with Kernels

I(H H2) =9+ ...

level 0

.*: ®[D
xxo x.x®|

Machine Learning on Graphs with Kernels

I(HY, H2)=9+9=18

level 0
SR
) . x @ l

76 /129

Machine Learning on Graphs with Kernels

Example

level 1

x .
x .
x x
.
o o
x x
x
. x
x
o x
. .

2 Machine Learning on Graphs with Kernels

I(HE HE) = (5+4)+ ...

level 1
X L]
X L]
x x
.
[] L]
x «
x
L] X
x
L] X
[] []

76 /129 Machine Learning on Graphs with Kernels

I(HE HE) = (5+4)+ ...

level 1
el
RS

76 /129 Machine Learning on Graphs with Kernels

I(Hél,Héz) =05+4)+(5+4)=18

level 1
el
RS

76 /129 Machine Learning on Graphs with Kernels

Example

level 2

x .
x .
x x
.
o o
X x
x
. x
x
o x
. .

2 Machine Learning on Graphs with Kernels

I(Hz HZ)=(2+2+1+3)+...

level 2
3
ANl i

76 /129 Machine Learning on Graphs with Kernels

I(Hz HZ)=(2+2+1+3)+...

level 2
)
Sra—yT

76 /129 Machine Learning on Graphs with Kernels

I(HE, HE) = (2+2+1+43)+(2+2+1+2)=15

level 2

J={IL

1=l

76 /129

Machine Learning on Graphs with Kernels

Pyramid Match Graph Kernel

PM takes a weighted sum of the matches that occur at each level (levels 0 to L):

L-1
1
ka(Gr, G2) = I(HE, HE,) + D 57 (I(HG, He,) — I(HG ™ HE)
1=0

1 1
=15+ (18~ 15) + (18 ~ 18) = 165

@ Matches within lower levels weighted less

@ Only new matches are taken into account

Complexity: O(dnlL)

77/129 Machine Learning on Graphs with Kernels

Optimal Assignment Kernel

{X1,...,Xn} are substructures of G, e.g., nodes

{x{,...,x},} are substructures of G’, e.g., nodes
@ K is a non-negative kernel comparing substructures

@ 7 is a permutation of the integers {1,..., min(n, n')}

Then, the optimal assignment kernel is defined as follows:

n

max E w(Xi X)) i >n
s
i1

k(G,G') = ,

n

max Z #(Xx(j),X), otherwise
j=1

[Frohlich et al., ICML’05]

78 /129 Machine Learning on Graphs with Kernels

Optimal Assignment Kernel

{X1,...,Xn} are substructures of G, e.g., nodes

{x{,...,x},} are substructures of G’, e.g., nodes
@ K is a non-negative kernel comparing substructures

@ 7 is a permutation of the integers {1,..., min(n, n')}

Then, the optimal assignment kernel is defined as follows:

n

maxz w(Xi X)) i >n

s

max Z #(Xx(j),X), otherwise

@ However, not positive semidefinite in general

[Vert. arXiv:0801.4061]

78 /129 Machine Learning on Graphs with Kernels

Valid Optimal Assignment Kernels

Let X be a set, and [X]" denote the set of all n-element subsets of X

Let also X, X’ € [X]" for n € N, and B(X, X’) denote the set of all
bijections between X and X’

The optimal assignment kernel on [X]" is defined as

Kk (X, X") = k(x,x'

(X, X') Beg(%()(,xq Z ()
(x,x")eB

where k is a kernel between the elements of X and X’

The above function Ky (X', X’) is a valid kernel only if the base kernel k is
strong

Definition (Strong Kernel)

A function k : X x X — R is called strong kernel if
k(x,y) > min{k(x, z), k(z,y)} for all x,y,z € X.

Strong kernels are equivalent to kernels obtained from a hierarchy defined on set

X

[Kriege et al., NIPS’16]

79/129 Machine Learning on Graphs with Kernels

Valid Optimal Assignment Kernels

A hierarchy H is a tuple (T, w) where:

@ T is a rooted tree such that the leaves of T are the elements of X
@ V/(T) is the set of vertices of T

@ Each inner vertex v in T corresponds to a subset of X comprising all leaves
of the subtree rooted at v

@ w: V(T)— R is a weight function such that w(v) > w(p(v)) for all v in
T where p(v) is the parent of vertex v

80 /129 Machine Learning on Graphs with Kernels

Valid Optimal Assignment Kernels

o Let w: V(T) — Rxq be an additive weight function defined as
w(v) = w(v) — w(p(v)) and w(r) = w(r) for the root r

@ The strong kernel k induced by the hierarchy H can be defined using the
mapping ¢ : X — RIV(TI as follows:

$(v) = { w(u) if ue P(v),

0 otherwise

where P(v) denotes the vertices on the path from v to the root r

r v a b ¢
o) = (VL VE [l 0. 0)"
o(0) = (W1, v2, 0, W1, 0)T
o) = (W1, 0, o o [T
(a) Hierarchy (b) Feature vectors

81/129 Machine Learning on Graphs with Kernels

Valid Optimal Assignment Kernels

The kernel Kg can be computed using the histogram intersection kernel as follows:

K& (X, X") me Hx (i), Hx: (1))

which is known to be a valid kernel on R"

8
6
4
gl |
0
rvabdb c r v oa b c
(a) Assignment problem (b) Histograms

The optimal assignment yields a value of K& (X, Y) =", min (Hx(i), Hy(i)) =
min{5,5} + min{8,6} + min{3,1} + min{2,4} + min{1,2} =15

Weisfeiler-Lehman Optimal Assignment Kernel

@ Its base kernel reflects to what extent two vertices and have a similar
neighborhood

@ The label update process of the Weisfeiler-Lehman algorithm defines a
hierarchy on the set of all vertices of the input graphs

{a,b} 7{(:7 d} {7} {e}

(a) A graph whose vertices have been (b) Associated hierarchy
relabeled three times (from left to right)

83/129 Machine Learning on Graphs with Kernels

Kernels for Graphs with Continuous
Attributes

Kernels for Graphs with Continuous Attributes

Many real-world graphs contain continuous
real-valued node attributes:

@ in computer vision, attributes may represent

RGB values of colors
0.2,1.4,0.8]
[~0.4,0.3, —0.1]

@ in bioinformatics, they may correspond to
physical properties of protein secondary
structure elements

[0.6,—1.1,1.4]

Research in graph kernels has focused mainly on
unlabeled graphs and graphs with discrete node labels
< there are several highly scalable kernels for these
types of graphs

[0.5,0.2,—0.9]

[0.3,1.1,0.9]

However, the same is not true for graphs with

continuous attributes

There are mainly two categories of approaches for graphs with continuous node labels:
@ those that directly handle the continuous node labels

@ those that first discretize the node labels and then employ existing kernels for
graphs with discrete node labels

85/129 Machine Learning on Graphs with Kernels

GraphHopper Kernel

@ Compares paths through kernels on the nodes encountered while “hopping”
along the paths

@ A path 7 from v to v in G is defined as a sequence of vertices:
™= [V17V27V37"'7V/]
where vy = v, vy =wu and (v;,viy1) € Eforalli=1,...,/—1

@ The GraphHopper kernel is defined as a sum of path kernels k, over the
families P, P’ of shortest paths in G, G':

k(G,G)=>">" ky(m,7)
weP ' eP’

@ The path kernel ky(m,7’) is a sum of node kernels k, on vertices
simultaneously encountered while simultaneously hopping along paths 7 and
7’ of equal discrete length:

() — { SRl T G)).] = [
PR 0, otherwise.

[Feragen et al., NIPS’13]

86 /129 Machine Learning on Graphs with Kernels

GraphHopper Kernel

kp(m,7") =k, (@ . @)

+k.(O ,0)
G el +k‘n(o 70)
-@0®] 7=(@00)
(a) Input graphs and two paths (b) Kernel between the two paths

Kernel between nodes k, is:

@ delta kernel in the case of discrete node labels

@ linear or gaussian kernel in the case of node attributes

If colors correspond to discrete labels, then (7, 7') =1

87 /129 Machine Learning on Graphs with Kernels

GraphHopper Kernel

@ The k(G, G") kernel can be decomposed into a weighted sum of node kernels:

k(GG)—ZZ (v, vV')ka(v, V)

veVv/ev/

where w(v, v') counts the number of times v and v’ appear at the same hop, or
coordinate, i of shortest paths m, 7’ of equal discrete length |r| = |7’

@ We can decompose the weight w(v,v’) as

5 5
w(v,v') = ZZ {(m, @) m(i) = v, 7' (i) = v/ [n| = || = j}
55

=SS MMy

j=1 i=1

where MY is a § x & matrix whose entry M}; counts how many times v appears at
the it" coordinate of a shortest path in G of discrete length j, and ¢ is the
maximum diameter of the two graphs

88 /129 Machine Learning on Graphs with Kernels

GraphHopper Kernel

Example

AR LAY

Node v appears at the 3rd coordinate of 4 shortest paths of discrete length 4
< Therefore, M3, =4

The components of these MY matrices can be computed efficiently using recursive
message-passing algorithms

Machine Learning on Graphs with Kernels

89 /129

Propagation Kernel

It is another instance of the neighborhood aggregation framework

It leverages quantization to transform continuous node attributes to discrete labels

It consists of two phases which are performed for some iterations:
@ Phase 1: The kernel uses a hash function that maps the node attributes to
integer-valued bins — vertices with similar attributes end up in the same bin

@ Phase 2: The kernel uses a propagation scheme to update the node
attributes
< A common scheme updates node attributes as follows:

Pt+]_:TPt

T: transition matrix

P;: a matrix whose it

row contains the attribute of vertex v; at iteration t

[Neumann et al., Machine Learning, 102(2)]

90 /129 Machine Learning on Graphs with Kernels

Propagation Kernel

After placing the nodes into bins, it counts nodes that fall into the same bins
[1,0]

[1,0]
[0,1)

G G
@)

(@) @) @)
9 19 9 e 9 1o o L]

bin1 bin2 bin3 bin 4

@
@
@
ee
@e
ee
o

bin1 bin2 bin 3 bin1 bin2 bin 3

binl bin2 bin3 bind
(a) Input graphs (b) Updated attributes

oG 2,1,3 1,1,31)
#(G)=1(2,2,231,20)

Original node Updated node
attributes attributes

(c) Feature vector representations of graphs

91 /129 Machine Learning on Graphs with Kernels

Frameworks

Diagonal Dominance Problem

Diagonal dominance problem of kernels that compare specific substructures of graphs:

@ Very large feature space, hence, unlikely that two graphs will contain similar
substructures

@ However, substructures (i.e. features) often related to each other

@ Kernel value between pairs of graphs < kernel value between a graph and itself

For example, when the features correspond to large graphlets (e.g., kK > 5), two graphs
may be composed of many similar graphlets, but not any identical

g1 91
gi, &, g3 extracted from G
g1, 85, g extracted from G’

g1 nearly isomorphic to gj

g» nearly isomorphic to g3

g3 nearly isomorphic to g3

O
O
O
O

93 /129 Machine Learning on Graphs with Kernels

Diagonal Dominance Problem

Diagonal dominance problem of kernels that compare specific substructures of graphs:

@ Very large feature space, hence, unlikely that two graphs will contain similar
substructures

@ However, substructures (i.e. features) often related to each other

@ Kernel value between pairs of graphs < kernel value between a graph and itself

This leads to the diagonal dominance problem

20 40 60 80 100 120 140 160 180

The resulting kernel matrix is close to the identity matrix

93/129 Machine Learning on Graphs with Kernels

A Structural Smoothing Framework

To deal with diagonal dominance, it applies smoothing

First construct a Directed Acyclic Graph o O
(DAG): @) o o o
@ each vertex corresponds to a e Ga Gs G

substructure

@ for each substructure s of size k CZ)
determine all possible substructures of o

size k — 1 that s can be reduced into

Gs Gs G
@ these correspond to the parents of s
@ draw a weighted directed edge from
each parent to its children vertices a
G Gy

DAG provides a topological ordering of the

vertices

- all descendants of a given substructure Go G5 G G
at depth k — 1 are at depth k DAG for graphlets of size k < 3

[Yanardag and Vishwanathan, NIPS’15]

94 /129 Machine Learning on Graphs with Kernels

A Structural Smoothing Framework

The structural smoothing for a substructure s at level k is defined as:

Ply(s) = max(c; — d 0) dmd Z pls Wps
m 0EPs Zcecp Wpe
where
- ¢s denotes the number of times substructure s appears in the graph
- m =), ¢ denotes the total number of substructures present in the graph
- d > 0 is a discount factor
- mg = |{i : ¢ > d}| is the number of substructures whose counts are larger than d
- wj denotes the weight of the edge connecting vertex i to vertex j
- Ps denotes the parents of vertex s

- Cp the children of vertex p

Even if the graph does not contain a substructure s (¢; = 0), its value in the feature
vector can be greater than 0 (Pss(s) > 0)

95 /129 Machine Learning on Graphs with Kernels

20

40

180

i L L L L L
20 40 60 80 100 120 140 160 180

Kernel matrix before
smoothing

160 =

180 | g

L L L L
20 40 60 80 100 120 140

Kernel matrix after
smoothing

Machine Learning on Graphs with Kernels

L L
160 180

Deep Graph Kernels

To deal with diagonal dominance, the deep graph kernels framework computes the kernel
as follows:

k(G,G') = ¢(G)" M (G
M: a positive semidefinite matrix that encodes the relationships between substructures
Each component of ¢(G), #(G’) corresponds to a substructure (e. g., the complete
graphlet of size 5)

Matrix M is learned using techniques inspired from the field of natural language
processing:
@ An embedding for each substructure is generated using the CBOW or Skip-gram
model
@ Then M corresponds to the inner products of these embeddings

However, unlike words in documents, substructures of graphs do not have a linear
co-occurrence relationship

Such co-occurrence relationships are manually defined for 3 kernels:
(1) the Weisfeiler-Lehman subtree kernel

(2) the graphlet kernel

(3) the shortest path kernel

[Yanardag and Vishwanathan, KDD’15]

97 /129 Machine Learning on Graphs with Kernels

A Degeneracy Framework for Graph Comparison

Definition (k-core)

The k-core of a graph is defined as a maximal subgraph in which every vertex is
connected to at least k other vertices within that subgraph

A k-core decomposition of a graph consists of finding the set of all k-cores

el P —_®
/,’ ///’/ \‘\\\ \\\
‘e 8 e ——— “~ N
/ / Da NN N
;e O/ @ o g Lo\
P el ey ‘e | i The set of all k-cores forms a nested se-
| | e ® I | !
! | \ \ i | !
Voo e ,/®® / [| quence of subgraphs
AN O e @O) @ @]
\ \ @ . ° P o J /
A IR S~o 2-core - ® e //
\ “ A & e
\\ AN rd //
N \‘\ /// e
@ et T @
\‘\\!‘ ocore @ "

The degeneracy 6*(G) is defined as the maximum k for which graph G contains a
non-empty k-core subgraph

[Nikolentzos et al., IJCAI'18]
98/129

Machine Learning on Graphs with Kernels

Degeneracy Framework for Graph Comparison

Idea: use the nested sequence of subgraphs generated by k-core decomposition to
capture structure at multiple different scales

The core variant of the base kernel k is defined as:

kC(G, G/) = k(C07 C(;) + k(Cl’ C]I.) + s + k(C;S:m‘n7 Cé;nn)

where §% . is the minimum of the degeneracies of the two graphs, and
Co, Gi, .-+, Gsxand G, €, ..., Gy are the O-core, 1-core,. .., d;,. -core

subgraphs of G and G’, respectively
The degeneracy framework can:

@ increase the expressive power of existing algorithms

@ be applied to any algorithm that compares graphs

99 /129 Machine Learning on Graphs with Kernels

o
O
O
o
o
O
G G’

100 /129 Machine Learning on Graphs with Kernels

/

ke(G,G') = k(Go, Gf)

100 /129 Machine Learning on Graphs with Kernels

kC(G7 Gl) = k(COa Cé) + k(Cla Cll)

100 /129 Machine Learning on Graphs with Kernels

Example

G c

kC(G7 G/) = k(COa C(;) + k(C17 C]/.) + k(C2a C2I)

100 /129 Machine Learning on Graphs with Kernels

i

G o

kC(G7 G/) = k(C07 Cé) + k(Cla C]l.) + k(CZa C2/) + k(C37 C?i)

100 /129 Machine Learning on Graphs with Kernels

Successive Embeddings

Graph kernels compute implicitly the inner product between the representations of
input graphs in H

- Equivalent to computing the 17@ \ o M

linear kernel on feature space H

. e g
- Linear kernel limits O/O\
expressiveness of derived . . "o
. 73 G(G2)
representations /

Idea: Obtain complex kernels by stacking simpler kernels on top of one another

[Nikolentzos et al., CIKM’18]

Machine Learning on Graphs with Kernels

101 /129

Successive Embeddings

Embedding 1: Embed graphs in a Hilbert space #H; using a graph kernel k

Embedding 2: Embed emerging representations ¢(G), ¢(G’) into another Hilbert
space Hy using kernels for vector data:

@ Polynomial kernel: kp($(G), ¢(G')) = ({qS(G),qS(G’)})d, deN
@ Gaussian kernel: kg(p(G),d(G")) = exp(- W), >0

Problem: Usually ¢(G) and ¢(G’) not computed explicitly. How to apply
Embedding 27
— Use an implicit computation scheme

The two kernels for vector data can be computed as:
@ Polynomial kernel:

ke(6(G), 6(G")) = ((6(G). #(G")))

@ Gaussian kernel:) .
ka(0(6). 9(6")) = exp(— HECQRHELIHED) 5 0
where k is the employed graph kernel (i.e. the first kernel in the sequence)

102 /129 Machine Learning on Graphs with Kernels

‘= (k(G,6"), deN

Successive Embeddings Example

@ Figure below illustrates a sequence of two embeddings

@ Separation of the data points associated with the two classes progressively

increased

T
.
p
,
ﬁ /
Oo—0O——=0.
5"
[
103 /129

I
- RN Y
)
_ -7 ¢
\\\‘\ G2 ,V.
R U S g
e

Machine Learning on Graphs with Kernels

Applications of Graph Kernels

Applications

@ Bioinformatics [Borgwardt et al., Bioinformatics 21(suppl-1); Borgwardt et al., PSB'07;
Sato et al., BMC bioinformatics 9(1)]

@ Chemoinformatics [Swamidass et al., Bioinformatics 21(suppl-1); Ralaivola et al., Neural
Networks 18(8); Mahé et al., JCIM 45(4); Ceroni et al., Bioinformatics 23(16); Mahé and
Vert, Machine Learning 75(1)]

@ Computer Vision [Harchaoui and Bach, CVPR'07; Bach, ICML'08; Wang and Sahbi.
CVPR’13; Stumm et al., CVPR'16]

@ Cybersecurity [Anderson et al., JCV 7(4); Gascon et al., AlSec'13; Narayanan et al.,
IJCNN'16]

@ Natural Language Processing [Glavas and Snajder, ACL'13; Bleik et al., TCBB 10(5);
Nikolentzos et al., EMNLP'17]

@ Social Networks [Yanardag and Vishwanathan, KDD'15]

105 /129 Machine Learning on Graphs with Kernels

Protein Function Prediction

For each protein, create a graph that contains information about its
@ structure
@ sequence
@ chemical properties

protein secondary sequence structure
data structure elements
Kernel type Accuracy
H H H Vector kernel 76.86
Perform graph classification to predict the e o kemel 7680
H ; Graph kernel 77.30
fLI n Ct ion Of prOteI ns Graph kernel without structure 7233
Graph kernel with global info 84.04
DALI classifier 75.07

[Borgwardt et al., Bioinformatics 21(suppl_1)]

Machine Learning on Graphs with Kernels

Chemical Compound Classification

Represent each chemical compound as a graph

O NH,
=
NH
F
Perform graph classification to predict if a —

LinReg DT NN Progoll Progol2 Sebag Kramer kemels

chemical compound displays the desired behavior
. . pe . 89.3% 88.3% 89.4% 81.4% 87.8% 93.3% 957% 91.2%
against the specific biomolecular target or not

[Mahé et al., JCIM 45(4)]

Machine Learning on Graphs with Kernels

107 /129

Malware Detection

Given a computer program, create its control flow graph

call [ebp+0x8]
push 0x70 sub ush 4
push 0x010012F8 p D
call 0x01006170
push 0x010061C0
mov | eax, fs:[0x00000000]
push eax . call mov DZ5
mov fs:[], esp
mov eax, [esp+0x10] 1
mov [esp+0x10], ebp ’
lea ebp, [esp+0x10]
sub sp, eax lea
Method Accuracy (%)
Gaussian kernel 99.09
. . . . Spectral kemel 96.36
Perform graph classification to predict if there comincssena 100.00
. n-gram (n = 4, L = 1,000, SVM = 2-poly) 94.55
is malicious code inside the program or not pogm (1= L =2.500 SVM = Gaus) 9364
n-gram (n = 6, L = 2,500, SVM = 2-poly) 92.73
n-gram (n = 3, L = 1,000, SVM = 2-poly) 89.09
n-gram (n =2, L = 500,3-NN) 88.18

[Anderson et al., JCV 7(4)]

08 /129 Machine Learning on Graphs with Kernels

Graph-Of-Words

Each document is represented as a graph

G = (V, E) consisting of a set V of vertices and

a set E of edges between them

vertices — unique terms

edges — co-occurrences within a fixed-size
sliding window

no edge weight

no edge direction

As a discipline, computer science spans a range of topics
from theoretical studies of algorithms and the limits of
computation to the practical issues of implementing
computing systems in hardware and software.

\ ////ﬁﬁ\/ \

comput——___ !
scienc

Graph representation more flexible than n-grams. Takes into account

@ word inversion

@ subset matching

@ e.g., “article about news" vs. “news article"

[Rousseau and Vazirgiannis., CIKM’13]

Machine Learning on Graphs with Kernels

Custom Shortest Path Kernel

Transforms the original graphs into shortest-paths graphs
— Edges correspond to shortest paths of length at most d in original graph

Given the SP-transformed graphs C; = (V4, E1) and G, = (W2, E2) of Gy and G, the
shortest path kernel is defined as:

1)
Zvlevl,vz€V2 k”Ode(V17 V2) + ZeleEl,ezeEQ kwalk(e17 62)
norm

k(Gi, G2) =
where kpode is @ kernel for comparing two vertices, kfvla),k a kernel on edge walks of length
1 and norm a normalization factor. Specifically:
1 if () = L),
Knode (1, v2) = { 0 otherwise

ks,la),k(el, 62) = knode(uh U2) kedge(el, 6‘2) knode(Vh Vz)

E(el)é(eg) ifee€c EiNe € E2,
0 otherwise

kedge(eh 62) = {

[Nikolentzos et al., EMNLP’17]
110 /129 Machine Learning on Graphs with Kernels

di: “barclays bank cut its base lending rate”

d»: “base rate of barclays bank dropped"

bank

cut its dropped
barclays

base

bank

lendin;
barclays rate 8

Gl G2

Machine Learning on Graphs with Kernels

SP-transformation (d = 2)

bank

'- 1 dropped

barclays

111 /129 Machine Learning on Graphs with Kernels

ZV16V17V2€V2 knode(Vla V2) =4

bank

1 dropped
barclays

barclays

rate

111 /129 Machine Learning on Graphs with Kernels

(1) _ 1_3
EeleEl,e2eE2 kpanc(€1,€2) =143 =3

bank

'- 1 dropped

barclays

111 /129 Machine Learning on Graphs with Kernels

norm = 13.07
3
k(Gla G2) =]?7027

=0.42

bank

'- 1 dropped

barclays

111/129

Machine Learning on Graphs with Kernels

Text Categorization

Dataset WebKB News Subjectivity Amazon Polarity

Method Acc F1 Acc F1 Acc F1 Acc F1 Acc F1
n=1 90.26 89.23 | 81.10 77.64 | 89.92 89.92 | 91.88 91.88 | 76.27 76.26
Dot n=2 90.47 89.50 | 80.91 77.32 | 91.01 91.01 | 92.00 92.02 | 77.46 77.45
product n=3 90.26 89.17 | 80.72 77.10 | 90.90 90.90 | 91.81 91.85 | 77.41 77.40
n=4 89.40 88.13 | 80.31 76.51 | 90.39 90.39 | 91.31 91.33 | 77.19 77.18
n=1 92.48 91.88 | 81.17 77.66 | 90.03 90.02 | 94.00 94.00 | 76.70 76.69
Cosine n=2 93.05 92.75 | 81.49 77.97 | 90.94 90.94 | 94.13 94.13 | 77.56 77.56
n=3 92.98 92.59 | 80.97 77.38 | 90.99 90.99 | 94.19 94.18 | 77.65 77.65
n=4 92.48 92.08 | 80.76 77.09 | 90.76 90.75 | 94.13 94.13 | 77.53 77.53
n=1 90.62 89.83 | 81.55 78.15 | 90.94 90.93 | 92.25 92.26 | 77.49 77.48
Tanimoto n=2 90.40 89.45 | 80.75 77.00 | 90.61 90.60 | 91.81 91.85 | 77.35 77.35
n=3 92.41 91.80 | 79.80 75.75 | 90.21 90.20 | 93.44 93.47 | 76.48 76.48
n==4 91.76 90.84 | 78.99 74.83 | 89.53 89.52 | 93.00 93.00 | 75.86 75.86
DCNN ‘ 89.18 8799 | 79.91 76.15 | 90.26 90.26 | 91.81 91.81 | 73.26 73.26
CNN static,rand > 1 day 77.57 73.37 | 87.16 87.15 | 88.81 88.82 | 71.50 71.50
non-static,rand > 1 day 81.13 77.49 | 89.61 89.60 | 93.56 93.56 | 76.54 76.53
d=1 93.27 92.78 | 81.04 77.49 | 91.48 91.48 | 94.00 94.01 | 77.76 77.75
SPGK d=2 93.70 93.36 | 80.89 77.29 | 91.46 91.46 | 94.13 94.13 | 77.89 77.88
d=3 9291 9233 | 80.78 77.03 | 91.37 91.37 | 94.44 94.44 | 77.61 77.60
d=4 9291 92.23 | 80.97 77.30 | 91.18 91.18 | 94.63 94.63 | 77.80 77.80

Machine Learning on Graphs with Kernels

Image Classification

Represent each image as a graph based on its segmentation mosaic

Perform graph classification to categorize
images

wIW | M
C0il100 | 1.2% 0.8% 0.0% 0.0% 0.0%
Coreli4 | 10.36% | 8.52% | 7.24% | 6.12% | 5.38%

[Harchaoui and Bach, CVPR’07]

Machine Learning on Graphs with Kernels

Experimental Evaluation

@ Python library for graph kernels

@ Contains implementations of a large number
of graph kernels

o Compatible with scikit-learn

@ Project repository:
https://github.com/ysig/GraKeL

Docs » GrakeL. » Kerels (betuween graphs)

Kernels (between graphs)

mels submodlule.

& Grakel
1 Kemels (between graphs)

Kernel

+ Subgraph Matching Kerne

[Siglidis et al., arXiv:1806.02193]

Machine Learning on Graphs with Kernels

https://github.com/ysig/GraKeL

Evaluation

Standard datasets from graph classification containing:
@ unlabeled graphs
@ node-labeled graphs

@ node-attributed graphs

Classification using:
@ SVM — precompute kernel matrix

@ Hyperparameters of both SVM (i.e. C) and graph kernels optimized on training set
using cross-validation

Perform 10 times 10-fold cross validation and report:

@ Average accuracy over the 10 repetitions

@ Standard deviation over the 10 repetitions

116 /129 Machine Learning on Graphs with Kernels

Graph Classification (Nod

KERNELS

MUTAG NCI1 PTC-MR
VERTEX HISTOGRAM 71.87 (£ 1.83) 56.09 (£ 0.35) 58.09 (£ 0.62)
RaNDOM WALK 82.24 (£ 2.87) TIMEQUT 51.26 (£ 2
SHORTEST PATH 82.54 (£ 1.00) 72.25 (£ 0.28) 59.26 (£
WL SUBTREE 84.00 (= 1.25) 85.03 (£ 0.20) 63.28 (&
WL SHORTEST PATH 82.29 (£ 1.93) 61.43 (£ 0.32) 55.51 (£ 1.68)
WL Pyramip MATCH 88.60 (£ 0.95) 85.31 (£ 0.42) 64.52 (£ 1.36)

NEIGHBORHOOD HASH (£ 1.17) 81 (£ 0.37) 60.50 (£ 2.10)

NEIGHBORHOOD SUBGRAPH PAIRWISE DISTANCE (£ 1.55) 74.36 (£ 0.31) 60.04 (£ 1.15)
ORDERED DAGS DECOMPOSITION 01 (£ 2.04) 75.03 (£ 0.45) 59.08 (£ 1.85)
PyraMID MATCH 4.72 (£ 1.67) 1 (£ 0.49) 57.99 (£ 2.45)
GRAPHHOPPER 82.11 (£ 2.13) 71.36 (£ 0.13) 55.64 (£ 2.03)
SUBGRAPH MATCHING 84.04 (£ 1.55) TIMEOUT 57.91 (£ 1.73)
PROPAGATION 77.23 (£ 1.22) 82.12 (£ 0.22) 59.30 (£ 1.24)
MULTISCALE LAPLACIAN 86.11 (£ 1.60) ":’i 08 1.53) 79.40 (£ 0.47) (£ 1.71)
CORE WL 85.90 (£ 1.44) 52.37 (£ 1.29) 85.12 (£ 0.21) 63.0: (£ 1.67)
CORE SHORTEST PATH 85.13 (& 2.46) 41.55 (£ 1.66) 73.87 (£ 0.19) 58.21 (£ 1.87)
DATASETS .
KERNELS AVG.
D&D PROTEINS AIDS RANK
VERTEX HISTOGRAM 74.83 (£ 0.40) 70.93 (£ 0.28) 79.78 (£ 0.13) 13.7
RANDOM WALK OUT-0F-MEM 69.31 (£ 0.29) 79.52 (£ 0.58) 15.0
78.93 (£ 0.53) 75.92 (£ 0.35) 99.41 (£ 0.12) 6.7
78.88 (&£ 0.46) 75.45 (+ 0.33) 98.51 (& 0.05) 18
75.66 (£ 0.42) 71.88 (£ 0.22) 99.36 (i 0.02) 11.8
‘WL PYRAMID MATCH OUT-0F-MEM 75.63 (£ 0.49) 7 (£ 0.04) 2.1
NEIGHBORHOOD HASH 76.02 (£ 0.94) 75.55 (£ 1.00) 4 (£ 0.02) 5.0
NEIGHBORHOOD SUBGRAPH PAIRWISE DISTANCE 78.76 (£ 0.56) 73.17 (£ 0.76) ‘]8 04 (£ 0.20) 8.0
ORDERED DAGS DECOMPOSITION 75.82 (£ 0.54) 70.49 (£ 0.64) 90.75 (£ 0.30) 11.4
PyrRAMID MATCH 76.98 (£ 0.84) 71.90 (£ 0.79) 99.56 (£ 0.08) 8.2
GRAPHHOPPER TIMEOUT 74.19 (£ 0.42) 99.57 (£ 0.02) 9.6
SUBGRAPH MATCHING OUT-0F-MEM OUT-OF-MEM 91.96 (£ 0.18) 11.2
PROPAGATION 78.43 (£ 0.55) 72.71 (£ 0.62) 96.51 (£ 0.38) 8.4
MULTISCALE LAPLACIAN 78.28 (£ 0.99) 73.89 (£ 0.93) 98.48 (£ 0.12) 6.0
CORE WL 78.91 (£ 0.50) 75.46 (£ 0.38) 98.70 (£ 0.09) 4.1
CORE SHORTEST PATH 79.33 (£ 0.65) 76.31 (£ 0.40) 99.47 (i 0.05)

5.5
[Nikolentzos et al., arXiv:1904.12218]

Machine Learning on Graphs with Kernels

Running Time (Node-Labeled Graphs

DAT.
KERNELS MUTAG ENZYMES NCI PTC-MR
VERTEX HISTOGRAM 0.01s 0.04s 0.84s 0.02s
RANDOM WALK 1M 46.868 4H 24M 16.26s TIMEOUT 66 41.208
SHORTEST PATH 0.92s 11.03s 1M 9.69s 1.52s
WL SUBTREE 0.21s 3.81s : 0.558
WL SHORTEST PATH 7.02s 1M 27.07s 12.55s
WL PYRAMID MATCH 3M 42.07s 1 5M 37.268 11m 8.16s
NEIGHBORHOOD HASH 0.40s 11.17s 4s 1.31s
NEIGHBORHOOD SUBGRAPH PAIRWISE DISTANCE 4.05s 27.02s 6M 9.81s 7.66s
ORDERED DAGS DECOMPOSITION 1.54s 50.058 46M 2.13s 4.03s
PYRAMID MATCH 2.59s 37Mm 37.508 11.35s
GRAPHHOPPER 24.70s 15M 3 3H 45M 8.31s 1M 33.90s
SUBGRAPH MATCHING 1M 57.258 3H 25M 43 TIMEOUT 4m 19.80s
PROPAGATION 0.48s 10m 27. 1.81s
MULTISCALE LAPLACIAN 10M 3.158 56M 43. 5H 30M 56. 19M 22.43s
CORE WL 14m 30.568 17Mm 2.27s
CORE SHORTEST PATH 3M 16.54s 3.97s
DATASETS -
KERNELS AVG.
D&D PROTEINS AIDS RANK

VERTEX HISTOGRAM 0.24s 0.10s 0.258

RANDOM WALK OUT-0F-MEM 51m 10.118 1H 51Mm 56

SHORTEST PATH 55M 58.79s Im 18.91s 1

WL SUBTREE 5M 52.968 32.48s 40.49s

WL SHORTEST PATH TH 27M 21.908 8M 3.688 1M 33.468

WL PYRAMID MATCH OUT-0F-MEM 5H 37M 10.338 5H 55M 20

NEIGHBORHOOD H 6M 17.: 41.81s 33

NEIGHBORHOOD SUBGRAPH PAIRWISE DISTANCE 4H 36M 28.97s 9M 9.808 1m 12.318

ORDERED DAGS DECOMPOSITION 27M 59.18s 4Mm 7.818 2M 5.32s

PyRAMID MATCH 5M 48.51s 1M 26.828 2M 48.04s

GRAPHHOPPER TIMEOUT 30 43M 1.548 38M 51.78s

SUBGRAPH MATCHING OUT-0F-MEM OUT-0F-MEM 4H 26M 46.71s

PROPAGATION 9M 34.308 51.20s 1M 4.

MULTISCALE LAPLACIAN 3H 40M 30.72s 2H 20M 39.578 11 11m 58

CORE WL 17m s 1M 16.74s 54,

CORE SHORTEST PATH 5H 2M 39.718 3M 31.97s 40.11s

7.2
[Nikolentzos et al., arXiv:1904.12218]

Machine Learning on Graphs with Kernels

Graph Classification (Unlabeled Graphs)

DATASETS Ave.
KERNELS IMDB IMDB REDDIT REDDIT REDDIT COLLAB Rank
BINARY MULTI BINARY MULTI-5K MULTI-12K

VERTEX HISTOGRAM 16.54 (£ 0.80) 29.59 (£ 0.40) 17.32 (% 0.66) 17.92 (£ 0.42) 21.73 (£ 0.00) 52.00 (£ 0.00)
RANDOM WALK 63.87 (£ 1.06) 45.75 (£ 1.03) TIMEOUT TIMEOUT OUT-OF-MEM 68.00 (£ 0.07)
SHORTEST PATH 55.18 (+ 1.23) 39.37 (£ 0.84) 81.67 (£ 0.23) 47.90 (£ 0. TIMEOUT 58.80 (% 0.08)
65.19 (£ 0.97) 39.82 (£ 0.89) 76.80 (£ 0 (23.08 (+ 0.11) 70.63 (£ 0.25)
72.47 (£ 0.50) 50.76 (£ 0.30) 67.96 (£ 1.01) OUT-OF-MEM OUT-OF-MEM 78.12 (£ 0.17)
5.87 (£ 1.19) 39.63 (£ 0.68) TIMEOUT TIMEOUT TIMEQUT 58.80 (= 0.06)

NEIGHBORHOOD HAsH (£0.98) 5068 (£ 0.50) 81.65 (% 0.28) 19.36 (£ 0.18) 39.62 (+ 0.19) 79.99 (& 0.39)
NEIGHBORHOOD SUBGRAPH PAIRWISE DISTANCE 6881 (£ 0.71) 45.10 (& 0.63) TIMEOUT TIMEOUT TIMEOUT TIMEQUT
49.21 (% 1.33) 39.33 (£ 0.95) TIMEOUT TIMEOUT TIMEOUT TIMEOUT
51.35 (£ 1.54) 3840 (£ 0.60) 7454 (£ 0.27) 20.65 (£ 0.53) 23.04 (£ 0.18) 55.72 (& 0.31)
ERED DAGS DECOMPOSITION 6470 (£ 0.73) 46.80 (£ 0.51) 50.61 (+ 1.06) 42.99 (£ 0.09) 29.83 (£ 0.08) 52.00 (& 0.00)
PyRAMID MATCH 66.67 (£ 1.45) 15.25 (£ 0.79) 86.77 (£ 0.42) 18.22 (+ 0.29) 1115 (£ 0.17) 7457 (£ 0.34)
57.69 (£ 1.31) 40.04 (£ 0.91) TIMEOUT TIMEOUT TIMEOUT 60.21 (£ 0.10)
SUBGRAPH MATCHING TIMEOUT TIMEOUT OUT-OF-MEM OUT-OF-MEM OUT-0F-MEM TIMEQUT
PROPAGATION 5115 (£ 1.67) 33.15 (£ 1.08) 6341 (£ 0.77) 3432 (£ 0.61) 2407 (£ 0.11) 5867 (£ 0.15)
MULTISCALE LAPLACIAN 70.94 (£ 0.93) 47.92 (£ 0.87) 89.44 (£ 0.30) 35.01 (& 0.65) 0UT-OF-MEM 75.29 (£ 0.49)
CORE WL 73.31 (£ 1.06) 50.79 (£ 0.54) 72.82 (& 1.05) OUT-OF-MEM OUT-OF-MEM OUT-OF-HEN
CORE SHORTEST PATH 9.37 (4 0.68) 50.79 (£ 0.57) 90.76 (& 0.14) TIMEOUT 0UT-OF-MEM TIMEOUT

[Nikolentzos et al., arXiv:1904.12218]

119

129 Machine Learning on Graphs with Kernels

Running Time (Unlabeled Graphs)

DATASETS
KERN] INDB IMDB REDDIT REDDIT REDDIT COLLAB
BINARY MULTI BINARY MULTIL-5K MULTI-12K

VERTEX HISTOGRAM 0.07s 0.158 0.67s 2.20s 6 1128

RANDOM WALK 7™ 20,948 13M 40.758 TIMEOUT TIMEOUT TIMEOUT 134 38M 11.49s8

SHORTEST PATH 11.51s 7.925 1H 48M 11.19s 121 40M 19.50s TIMEOUT 11 9M 5.508

GRAPHLET 22M 45.89s 21M 44.30s 44M 45.425 44M 6.525 53M 14.225 28 58M 1.14s

WL SUBTREE 4.49s 6.16s 16M 2,655 OUT-OF-MEM OUT-OF-MEM 38M 42.24s

v M 1M 40.4658 TIMEOUT TIMEOUT 101 270 41.97s

26.07s 26 44M 44.665 9 11M 23.67s 35M 49.965

aM 2M 49.455 TIMEQUT TIMEOUT TIMEOUT

5H 10M 2 6H 33M 6.558 TIMEOUT TIMEOUT TIMEOUT

SVM-9 1M 0.57s 23m 14.31s 520 10.368 5M 57.318

ORDERED DAGS DECOMPOSITION 4.858 4m 48.925 8M 20,668 2H 1M 9.558

PYRAMID MATCH 1u 2 10m 9.245 510 45.10s 3H 50M 38.60s 36M 26.14s

GRAPHHOPPER 2 11.158 TIMEOUT TIMEOUT TIMEOUT 51 51M 32.27s

SUBGRAPH MATCHING TIMEOUT OUT-OF-MEM OUT-OF-MEM OUT-OF-MEM TIMEOUT
PROP, ON 7418 1M 23.425 5M 49.015 20m 41 4M 34.268 3.1
MULTISCALE LAPLACIAN 1H 22M 6.04s i 41 13.74s 81 210 18.765 17M 51.91s OUT-OF-MEM 9H 24M 15.228 10.0
CORE WL 36.74s 1 1828 45M 1.09s OUT-OF-MEM OUT-OF-MEM OUT-OF-MEM 8.0
CORE SHORT 3M 58.295 AM 29.558 10H 37M 3.94s TIMEOUT OUT-OF-MEM TIMEQUT 12.3

[Nikolentzos et al., arXiv:1904.12218]

120

129 Machine Learning on Graphs with Kernels

Graph Classification (Node-Attributed Graphs)

DATASETS e
KERNELS R
PRNELS ENZYMES PROTEINS_FULL SYNTHETICNEW SyNTHIE BZR RANK
SHORTEST PATH TINEOUT TINEOUT TINEQUT TINEOUT TINEOUT B
SUBGRAPH MATCHING TIMEOUT OUT-0F-MEM TIMEOUT TIMEOUT 80.52 (£ 0.43) 3.0
GRAPHHOPPER 66.25 (+ 1.24) 72.49 (£ 0.34) 76.43 (& 1.97) 7175 (£ 1.65) 8258 (& 1.05) 1.0
PROPAGATION 15.42 (4 1.00) 59.56 (& 0.01) 47.90 (4 3.26) 48.90 (+ 2.05) 78.76 (£ 0.02) 3.0
MULTISCALE LAPLACIAN 65.55 (& 0.93) 70.55 (£ 0.99) 47.90 (& 2.13) 69.42 (£ 1.98) $2.33 (& 1.29) 2.0

[Nikolentzos et al., arXiv:1904.12218]

Machine Learning on Graphs with Kernels

Running Time (Node-Attributed Graphs)

DATASETS .
KERNELS Ave.
ENZYMES PROTEINS_FULL SYNTHETICNEW SYNTHIE BZR RANK
SHORTEST PATH TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEQOUT
SUBGRAPH MATCHING TIMEQUT OUT-0F-MEM TIMEOUT TIMEOUT 8H 2M 3.79s 4.0
GRAPHHOPPER 16M 36.128 5H 16M 46.48s 13M 54.36s8 24m 20.00s 4M 24.79s 2.6
PROPAGATION 15.85s 1M 43.58s 13.44s 34.68s 10.40s 1.0
MULTISCALE LAPLACIAN 26.058 4H 29M 35.69s 2H 54M 31.228 15M 11.29s 49M 33.60s 2.4

[Nikolentzos et al., arXiv:1904.12218]

Machine Learning on Graphs with Kernels

Preprint available at: https://arxiv.org/pdf/1904.12218.pdf

123 /129 Machine Learning on Graphs with Kernels

https://arxiv.org/pdf/1904.12218.pdf

	Introduction
	Preliminaries
	Expressiveness vs Efficiency
	Early Days of Graph Kernels
	Neighborhood Aggregation Approaches
	More Recent Approaches
	Assignment Kernels
	Kernels for Graphs with Continuous Attributes
	Frameworks
	Applications
	Experimental Evaluation

