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Abstract: This paper examines percolation questions in a deterministic setting. In par-
ticular, | considerR, the set of elements @2 with greatest common divisor equal to

1, where two sites are connected if they are at distance 1. The main result of the paper
proves that the infinite component has an asymptotic density. An “almost everywhere”
sieve of J. Friedlander is used to obtain the result.

1. Introduction

One can often gain insight about a deterministic problem by comparing it to a probabilis-
tic model. For example, Hardy and Littlewood [30] made precise conjectures about the
existence of twin primes based on the assumption that the prime numbers are a generic
set, i.e., have “pseudo random” properties. Similarly, in [47] the theory of percolation
was used to make some precise conjectures about the existence of unbounded walks of
bounded step size along Gaussian primes, a question posed by Basil Gordon, see [24]
for a survey.

Percolation theory deals with the same question of unbounded walks of bounded step
size on a lattice, but in a probabilistic context, see [14,23,26]. For example, consider the
plane integer lattic§(m, n) : m,n € Z}, and afixed O< p < 1. Say that a lattice point
(orsite) isopenwith probability p andclosedwith probability 1— p. If these events occur
independently for each lattice point, what is the probability that there is an unbounded
walk using step sizé& or less? The main result of percolation theory discovered by
Broadbent and Hammersley in 1957 [10] is that this exhibiitase transitionin other
words, there is a & p. < 1 for which the probability of an unbounded walk is zero if
p < p.and oneifp > p. (this is called thesritical point). For this reason, percolation
theory has been of great interest in physics, as it is one of the simplest models to exhibit
phase transition.

In this paper, | will examine how questions of percolation theory can be posed in a
deterministic setting. Thudeterministic percolatiors the study of unbounded walks on
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a single subset of a graph, e.g., defined by number theoretic conditions. This might be
of interest in physics and probability theory as it studies percolation in a deterministic
setting and in number theory where it can be interpreted as studying the disorder inherent
in the natural numbers.

Instead of just providing a conjectural framework for percolation properties of these
sets as was done in [47], | would like to show what unconditional results can be obtained
so | will focus on

R ={(m,n) € z2: gcd(m, n) = 1},

where two sites are connected when they are at Euclidean distance 1. This example
is more tractable than Gaussian primes yet retains some similar features. Studying the
connectivity properties dR was posed as a problem in [15, p. 109].

The analysis ofR will use sieve methods. This seems quite natural, as sieve methods
can be interpreted as an application of probabilistic methods to number theory, for
example, the large sieve [6] shows that arithmetic progressions behave like independent
random variables. Moreover, as Doron Zeilberger has shown [50], sieve methods like
the ones used in this paper can be thought of as special cases of the Lace Expansion
which has been used successfully to study percolation problems [11,29].

The sieve method used here is due to Friedlander [20] and it proves very general
“almost everywhere” results. Thus/lif = U (y) is a function increasing to infinity, then
the Rosser sieve [36] shows that frerysufficiently largey, the interval[y, y + U]
always contains a number whose smallest prime facter i§%/2~¢ (Corollary 5.1
below). However, Friedlander’s sieve shows thatdanost every, the intervaly, y+U]

contains a number all of whose prime factors greUl/sfS (Proposition 5.1 below).

One can look at other examples of deterministic percolation, for example, the gener-
alization of R to

Rn={(a1,...,a,) € Z" : gcd(ay, ..., a,) =1},

where two points are connected when they are at Euclidean distance 1.MWhe3)
this is substantially simpler since all elemefs, ... , a,) for which (ay, ... ,a;_1,
aji1,...,a,) € Ry_1lieontheinfinite component. Thus the ca&gis harder since the
reduction toR 1 essentially corresponds to primes. Hopefully, the techniques developed
here will shed some light on the original question about Gaussian primes which can also
be thought of as an analogue Bf. Sieve techniques for Gaussian primes have been
developed by Coleman [12], Fouvry and lwaniec [19], and Friedlander and lwaniec [22].
Finally, an interesting problem might be to study deterministic percolation for Fuch-
sian groups, e.g., by using the recent work of Lalley [38].

2. Problems of Deterministic Percolation

Consider a graptf and a subse¥ of vertices. A vertex, ositewill be openif it belongs

to V andclosed,otherwise. Percolation studies the properties shared by “almost all”
subsets off which have a given density. One should therefore compare the properties
of V with those of a “generic” set of the same density (such questions are investigated
for random graphs in [39]). In order to do this one must first answer
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Problem 1. DoesY have a probability?

Since one is trying to give analogues of percolation, one needs an analogue of a proba-
bility for a deterministic set. In this paper | will ussymptotic densit§()) as defined

in the next section. As will be seen, calculating the asymptotic density of a finite event
can be nontrivial, even in the simplest cases.

Problem 2. DoesV have an infinite connected component?

One might expect there to be an unbounded componéif > p.(G), wherep.(G)
is the critical percolation probability @, and not otherwise.

Problem 3. How many unbounded components dbdsave?

For site and bond percolationZt, it has been shown that, with probability one, thereis a
unique unbounded component for- p. [1,26]. For other models [38], with probability
one, there can be zero, one, or infinitely many infinite components, dependjng on

Problem 4. Do the unbounded componentsiohave densities?

Percolation theory also predicts that unbounded components have, with probability one,
a density, denoted §/(p).

Problem 5.In general, letf(p) be a function defined, with probability one, in the
random model. Can the corresponding quantity be definetfdf so, how is it related
to f(6(V))?

Percolation theory considers other functions related to the cluster distribution. For exam-
ple, x (p), the average size of a connected componght p), the average size of finite
components whep > p.), andx (p), the cluster size per vertex. In the Ising modgl,

x (or x7), andk represent magnetization, susceptibility, and free energy, respectively.

3. Percolation onR

The subject of this section is deterministic percolatioriRoNote thatRk can be thought

of as the points oZ2 which arevisible from the origin. One can thus restate the per-
colation properties ofR as “Lecture Hall Percolation” (compare with [9]): Consider

a classroom with a regular array of tables so students sit only where they can see the
teacher. The teacher starts passing out exam booklets to the closest student and each
student passes on the booklets to his closest neighbors. What percentage of the class will
receive an exam?

To get a feeling for the problem, consider Figs. 1 through 4 which depict sites of
Z2, where a disk or radius 1/2 surrounds each open site, so connected sets of disks
correspond to connected components.

In Fig. 1, 3, and 4, sites are considered open if they belorfg.tBigure 1 gives all
sites(m, n) with —50 < m, n < 50. Figure 2 represent a 160100 square where sites
are randomly open with probability/&2. In Fig. 3, the sites weré:, b) + (m, n), where
(a, b) = (86603135493102586521and 0< m, n, < 100. A similar computation was
done in Fig. 4, where, b were randomly chosen 100 digit numbers

818479887666178685800484385810052015576642831879680779054188168941665

435753305557573984579759017106258627195794198788220463515375759096
523698556698348004291249422348890633805215110415985087652598121
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Fig. 1. Relatively prime pairs near the origin

The reader is invited to explain the obvious differences between the random and
deterministic models, e.g., show that independence is falsg for

An interesting feature of the experimental data7is that local properties do not
seemto change whenincreasing the scale. Thus,al@0snapshot appears roughly the
same whether at distance from the origif@ér 10'°°. One can explain this phenomenon
as follows: Long unbroken lines correspond to numbers with no small prime factors.
Very roughly, a number with no prime factoks k£ will produce a line with breaks at
average spacing which is the expected spacing between numbers with no prime factors
< ¢*. For example, numbers with no prime factersog** X will most likely produce
unbroken lines of lengtk- log ™ X, but the Prime Number Theorem suggests that,
on average, consecutive primes are distancel@gpart, so these intervals will most
likely contain a prime number. Since lines corresponding to primes lie on the infinite
component, these lines will most likely belong to the infinite component. Moreover, the
number of numbers with no prime factosslog!™* X is aboutX/ log log X, so iterating
this process seems to indicate that there is a scale invatkareee X . The line segments
produced by this process seem to form a regular grid and, consistent with the philosophy
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Fig. 2. Random sites open with probability 62

of de Gennes [14, 23], one observes that the infinite component is a large interconnected
mesh with holes. These observations are used in the proof of Theorem 3.4 below and
will be the key to the proof that the infinite component has an asymptotic density. Having
gained some feeling for the empirical evidence, one now tries to address the problems
of deterministic percolation.

Problem 1. Asymptotic densityn the case oRR, the answer to Problem 1 is known: The
asymptotic density oR is 1/¢(2), which is the well known result that the “probability”
that two random integers are relatively prime js8. In order to prove this, one needs
to define density

Definition. Theasymptotic densityof anevent P(z) occurring inR is

[{z € RN B(R) : P(z) holds|
|B(R)| ’

8(P)= lim §(P,R), wheres(P,R) =
R—o00
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Fig. 3. Relatively prime pairs nean0l0, 1010

whenever this limitexists. HeB(R) = Bo(R) = {z € Z2: |z|| < R},and||(m, n)| =
max(|m/|, |n|) gives asquare summation.

Remark.One can also usarcular summation, i.e., the usual Euclidean norfn and
B, (R) is a disk of radiusk. The subtle differences between such choices is well known,
e.g., in the theory of multiple trigonometric series [2,7] and will be discussed below.

The density ofR is easily computed by the classical estimate [44],

24
Y 1=8) ¢(d)==5R*+ER). E(R) =O(RlogR).
T
Im|.In|<R d=<R
gcd(m,n)=1

The error term cannot be improved much further as Montgomery has showr(iRat=
Q4 (R./loglogR). However, as noted above, the situation is much different if one uses
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Fig. 4. Relatively prime pairs negn000, 10100

circular summation: One is then estimating

SRYy= > 1=7R?+A(R),

m?+n?<R?

ged(m,n)=1
and it is easily shown thak(R) = O(R) using a nontrivial bound on the error term in
the Gauss circle problem (the prime number theorem also implies that the er¢®y)s
The error termA(R) has been studied by Moroz [41] and by Huxley and Nowak [35].
The latter showed, using results of Baker [3] that, assuming the Riemann Hypothesis,
A(R) = O(R¥*+€). It seems that the actual error@y RY/?*¢) and in analogy with the
Gauss circle problem[33, 5], one can ask wheth@R) / RY/? has alimiting (logarithmic)
distribution (this would require very strong assumptions as in [42])

Continuing with the analysis ok, it is also true that any finite configuration 7
has a density. In other words, Rtbe a finite subset &2 which contains the origin and
defines (2) to be the asymptotic density 6f in the sense tha®(z) is true if and only
if z+Q CR.



50 I. Vardi

Theorem 3.1.Let 2 be a finite subset &2, thens (2) exists.

This result is more subtle than expected and a direct approach to cofittails
(I would like to thank G. Tenenbaum for explaining this point to me). For example, let
Q ={(0,0), (1, 1), (2, 2)}, then one is counting

S(Q) = Z 1.

|(m,n)|<R
ged(m+j.n+j)=1, j=0,1,2

The direct approach uses the identity

S P
whereu(d) is the Mobius function and this gives rise to terms of the form
R 2
Y wd)p(d2)p(da) ( addt 0<1)) :

dy,d2,d3<R

The term corresponding t0 (1) will be of order R® and no known estimates will be
able to reduce this to(R?). However, one can still hope that such a bound exists and
this leads to

Conjecture 1.If Q is a finite set containing the origin, then

s =[] (—pn mlL mOdp').

n
p prime P

This is an analogue of the Hardy—Littlewood conjectures for priateplets [30].
The conjecture states that the global density should be a product of the local densities
for each prime. A similar result was proved by Hafner, Sarnak, and McCurley [27] in
which the density of relatively prime values of polynomials is computed.

Problems 2. Existence of an infinite compondakistence is trivial since the line
{m,) : m =1,2,3,...}lies in R. ComparingR to the random model, one sees
that an unbounded component should exist sinte?6> .5927, the conjectured ap-
proximation top.(Z2) [51] (the best rigorous bounds are 8586 < p.(2) < .679492
of [4] and [49], respectively).

Problem 3. Number of infinite component$his has an elementary answer consistent
with the probabilistic model:

Proposition 3.1.R has a unigue infinite component.

Proof. Call C1 the infinite component containing the lifign, 1) : 1 < m < oo}. Then
for each primep, the vertical line{(p,n) : 1 <n < p —1}isin Cj. Thus, a large
connected component in the regifim, n) : m > n} will eventually have to cross one
of these line, and therefore belongde. By symmetry, the same holds true for the other
7lines{+1, £k}, {tk, £1}. Finally, these lines are all joined together, eithetat, +-1)

or by passing througt1, 0) and(0, £1), where, by definition, god,0) = 1. O
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Problem 4. The asymptotic density of the infinite compon&his is the main question
of this paper and | prove

Theorem 3.2.The infinite component @& has an asymptotic density.

Letd = 6(R) be the asymptotic density of the infinite component, fles §(Cwo),
whereC4(z) is true if and only ifz lies on the infinite component, which, by abuse of
notation, will also be denoted hy... The value o) can examined experimentally and
preliminary computations seem to indicate thap(R2) ~ .96+ .01, i.e., about 96%
of open sites lie on the unbounded component. In fact, | will prove

Theorem 3.3.The asymptotic density of the infinite componeriRa$ not zero.

Both these theorems are quite subtle and follow from

Theorem 3.4.Let f(R) be any function increasing to infinity then, except for a set of
zero asymptotic density, eveiy, n) € B(R) is surrounded by a rectangle of perimeter
< f(R) all of whose edges are containeddh,.

As noted above, this result is consistent with de Gennes’ philosophy that the infinite
component consists of a mesh with small holes [14,23]. Theorem 3.4 suggests that a
stronger resultis true, namely if one defines (ectn) to be the perimeter of the smallest
rectangle containingn, n) all of whose edges are i, then reci{m, n) should have
a limiting distribution.

An examination of the proof of Theorem 3.2 (Sect. 8) reveals that it works it
in Theorem 3.4 replaced bgog R)Y/?2~¢, so Theorem 3.2 follows from the weaker
result of Lemma 7.3 below. It should be noted that one can similarly show that the
infinite component ofk,, has an asymptotic density fer> 3, and it is trivially nonzero
since it is> 6/72 in these cases.

One can easily give an upper boufid< 6/72. Thus, considey (z) to be true if
z = (4, 15) (mod 30, thenz is isolated ify (z) andz € R are both true. Since

Y= Y ow@ Yy 140,

|(m,n)I<R gcd(d,30)=1 m=4/d (mod 30
y(z), (m,n)=1 d<R n=15/d (mod 30
lm,m)II<R/d
one gets
1 1 6 1
5(7/)2_1_[(1——2>=—21_[ 71
3% o p w2 sp?—1
SO

6 1 6 - 6
0<——45 =|(1-—) — =.9930b —.
~ 2 ) < 144) 72 w2

More generally, define aanimal« to be a connected set containing the origin axg)
istrue ifz +w € R for everyw € o, butz + w ¢ R if o € da (a site is indu if

it is connected tax but not in«). It should be noted that this definition of animal is
not translation invariant, see [8] for general results on animals. The inclusion-exclusion
principle implies that

3@ =) (1" Us),

sCoa
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where eacld (¢ U s) on the right represents an ordinary density of a configuration. It
follows that the density of animals exists and moreover, Lemma 8.4 below shows that

6 = % —Zs(a).

One cantherefore try to estimatby computing («) in small cases. As noted above, this
is does not seem possible using current methods. However, if one accepts Conjecture 1,
then one has

a1 = $1(2) — 452(2) + 8¢3(2) — ¢4 (2) — ¢5(2) = .0110235396. . , ,
62 16
a2 = 452(2) — 32%3(2) + gg}x (2) + 36¢5(2) — ECG(Z) =.0013019993.. ,

wherew1 anda; are the densities of elements/ihbelonging to animals of size 1 and
2 respectively, and

() =[] (1—%), =] (1—ﬁ,).

S
p prime p prime p
pi#Em

Conjecture 1 therefore implies
57 16 6
0 < 24r3(2) — 3 {4 (2) —35¢5(2) + 3 ¢6(2) ~ .979725301090%.
b4

Note that the functions,, (s) do not have an analytic continuatiomif > 1 since a result

of Estermann [16] states that for a polynomjalx), the Euler product (s, f(x)) =

]_[p f(p~*) has an analytic continuation to the complex plane onif) is a product

of cyclotomic polynomials. However, one can easily find these numerically using the
formula

cofen =TT ram)[] [c(zw [1 (1—
=1

psm p<m

l %Zdlf ad,u(ﬁ/d)
=
where logf (x) = Y o, axxk, see [18,46].

Problem 5. Functions of percolationfhe evaluation o indicates that other functions
might also have deterministic analogues. One therefore defines

Number of connected componentsBidR)

’

«®=

IB(R)|
TRy = li C@l,
xR = lim o |§R| @)l
2¢Coo

if these limits exist, wher€ (z) represents the connected component contamniSince
the sum fok (R) has better convergence properties théR), the methods used to prove
Theorem 3.2 also show that this exists. However, the existengé (R) is left as an
open problem.
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A problem related to percolation is computing the asymptotics of the laf@est
free square. This question is a generalization the Cramer conjecture [13] which states
that the largest prime gag R should tend tolog R)? (though this is now believed
to inaccurately model the primes [25]). One can compare results for the random and
deterministic models.

Proposition 3.2.Let F,(R) be the area of the largest closed square inski®), where
sites are open with probability, then, with probability 1,

Fp(R) =2
R—oo logR  log(1—p)’

Proposition 3.3.Let F(R) be the area of the large®-free square inB(R), then

log R N F(R) > 1
(loglogR)2 ™ logR ~ loglogR’

4. Finite Configurations have a Density

This section is devoted to the proof of Theorem 3.1. | will prove this by showing that
the asymptotic density of a configuration is the limit of its density modulo a product
of initial sets of primes. The idea is tha€ is approximated by 2 mod Hp<X p and,

using an idea from ordinary percolation [26], one can think of some events as being
monotonic.

Definition. Two integersn, n are relatively prime modula if gcd(m, n, k) = 1. Fur-
thermore, let
B(R) : @
5,(S2. R) = [{(m,n) € B(R) h(ma”)”’
B(R)

where2;, (m, n) means thaf2 (m, n) holds as well agm, n, h) = 1.

Lemma 4.1.5,(R) = limz_  8,(2, R) exists (and will be called the density Of
moduloh).

Proof. This follows from the fact that this relative primality is periodic modéland
that B(h) tiles the plane. O

The next step is to consider a product of an initial set of priles) = HpSX pand
leth = P(X). Thus the pairs relatively prime modul(X) will be an approximation
to R. The main result thus follows from

Lemma4.2.1f Y > X and X — oo, thendpy) (22, P(Y)) = Spx)(RQ, P(X)) +
o2/ X).

Lemma 4.3.1f both X — coandR/P(X) — oo, then

8(2, R) =épu)(R2, P(X)) + O(IQ|/X + RP(X)/|B(R)|).
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If these results are true, then one can take an increasing sequeXigs stich that
> 1/X; < oo, so that Lemma 4.2 shows th&t(xj)(sz, P (X)) approaches a limit.
Lemma 4.3 then implies that this limit equals the limitdgf2, R) asR — oo. This
proves Theorem 3.1.

Proof of Lemma 4.d.etY > X, thenP(X)|P(Y) andB(P (X)) exactly tilesB(P (Y)).
Now consider; € B(P(Y)) for which Qpy)(z) is true. Then2px)(z modP (X)) is
true except if the distance af modB(P (X)) from the boundary oB(P (X)) is less
than||.

Conversely, i€2p(y)(z) isfalse, them2 px)(z mod B(P(X))) could be true ifl|z+«,
whered is divisible only by primes- X. It follows that

Y 1= 2O S o (1 iBR X))

~|B(P(X))
z€B(P(Y)) zeB(P(X))
Qpy)(2) Qpx)(2)
1
+0 (|B<P(Y)>| LDy d—z) :
d>X

Dividing this by |B(P(Y))| gives the result.0

Proof of Lemma4.3.etR > P(X),whereR/P(X)islarge. Let € B(R),thenifQ(z)
is true, ther2p(x)(z mod P (X)) is true unlesg mod P (X) is close to the boundary of
B(P(X)).

Conversely, if2(z) is false, ther2px)(z modB(P(X))) could be true id|z + «,
whered is divisible only by primes> X. One gets a similar estimate as in the above,
except that the tiling oB(R) by B(P (X)) is no longer exact and there is an extra factor
of size O(R |B(P(X)))|. Thus

|B(R)]

1=TBrEo 10 + (12| VIB(P(X
ZE%:R) |B(P(X))| zeB%:(X)) +(| | | ( ( ))|)
@@ Qpx)(2)

1
+0 <|B(R)| QY d_Z) + O(R P(X)).

d>X

The result follows upon dividing byB(R)|. O

5. Sieve Methods

The sieve methods used here are due to Friedlander [20] who used them to show that
for any fixedE > 5, almost every intervdly, y + log? y] contains a number with at

most 4 prime factors. The term “almost every” means that the measure<o for

which this fails to hold i (X). Such results were first obtained by A. Selberg [43] who
showed that, assuming the Riemann Hypothesis, for any fungtioph — oo, almost

every intervaly, y+ f(y) log? y] contains a prime. Heath-Brown [32] later showed that

the further assumption of Montgomery’s pair correlation conjectured implied the similar
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resultwith logy replacing log y, and this is in some sense optimal. Unconditional results
were proved by various authors and the result used here is due to N. Watt [48] and shows
that almost every interval of length/1#t¢ contains a prime. An unconditional result

of Heath-Brown and Iwaniec [34] states that every interval of leng#?° contains a

prime (this has subsequently been improved, see [48]).

In [21], Friedlander improved his methods and showed that almost every interval
v,y + f(y)logy] contains a number with at most 21 prime factors. This is a much
more accurate result, as the optimal interval lengtfi(is) log y/(log log y)?2.

There are other techniques to prove such results and Harman [31] has shown that
almost every intervdly, y +log’ y] contained a number witkxactlytwo prime factors.

Unlike Friedlander’s papers, this does not seem to yield techniques that are directly
applicable to the problems of this paper.

I will closely follow Friedlander’s paper which starts with a modified form of Rosser’s
sieve [36] (see also [28, Chapter 8]). As usual [28] consider an intdraald letS (A, Z)
be the set of an element gf which are not divisible by any primg < Z. In this case
A will be the intervally, y + U].

Theorem 5.1 friedlandel). Let2 < Z < D. There exists a functiorf (u) which is
positive foru > 2, and a sequenck; of real numbers, this sequence dependingion
and Z, and satisfyingr4| < 1, such that

U log D —1/3 B
S(A,Z>>—Iogz{f<|0g2>+o<log D>} IRy(D)L, (2)
where
U 1
Ry(D) = ) hary(@). ry(d)=x/f(§)—w<yz ) Yy =11 - 3.
d<D

The following is the best “everywhere” result available using the Rosser sieve.

Corollary 5.1. For anye > 0, there exists a constart such that for all sufficiently
large k and X, every intervally, y + U] contains at leas¥ U/logU numbers all of
whose prime divisors are greater than/?—¢,

This result follows by lettind/ = D% = z2+3 jn Theorem 5.1, wheré > 0 and
the trivial bound R, (D)| < 2D is used. Theorem 5.1 formulates the error t&nD) in
analytic form which allows one to average the erroy &aries over an intervélX /2, X].

Theorem 5.2 Eriedlande)). Let4 < D? < V/2 < X/(2logD), whereV = y/U, then
1 X
—/ IRy (D)|dy < UY?(log D)¥? + (log D)?. (3)
X Jx/2

Remark.One can improve this result slightly by using Friedlander’'s second paper [21].
This would result in replacing theY/?(log D)*/? term in (3) withU (log Z)~1/2, under

the conditionsD? (log D)’ < V < X andZ1! < D. The exponent in Proposition 5.1
below would be improved from/b to 1/3 (the true exponent seems to be 1).

The proof of Theorem 5.2 follows exactly as in the paper of Friedlander [20] except
that the logD term is everywhere substituted for l&g written as. in [20]. An exam-
ination of Friedlander’s proof reveals that this substitution is valid at each step of his
argument. Friedlander used this result to prove
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Theorem 5.3 friedlandel). For any A > 5, there is a constant such that almost
every intervally, y + (logy)#] contains at least (logy)4~1 numbersx such that
P_(x) > x¥/4¢ where P_(x) is the smallest prime factor of (sox has at most 4
prime factors).

This result will be generalized to arbitrary interval lengths of small size.

Proposition 5.1.Let g(R) be an unbounded increasing function such tgéR) <
(log R)®. Given any fixed: > 0, then for ally < R, except for a set of measure
O(R [g(R)]7¢/?), the interval[y, y + g(R)], contains anx with

P_(x) > expg(R)IV°>7®).

Proof. One takes a larg€ and has to show that almost all< T have amnx € [y, y +
g(R)]with P_(x) > exp([g(R)]¥>#). Using the above notation, one writes= g(R)

and in order to get the result of Proposition 5.1, one must chﬁoseeUl/s_g.Also, in
order to havef ((log D)/(log Z)) > 0, one taked) = Z2t¢,

SinceU — oo, assume that > 7/U and divide the intervdlT /U, T] into disjoint
subintervals of the formiX, 2X]. TakingV = X/U and applying Theorem 5.1 gives a
lower bound

S(A, Z) > U5+ [f(z +&) + 0((log D)’l/3)} — [Ry(D)|,

so the main term has ordér*/>¢. Now consideiG C (X, 2X] given as the set of's
for which |R,(D)| > U%>~¢. It follows that

2X
/ IR, (D)ldy > |G| UY5*.
X

SinceU < (log X)®, one hasZ < ¢(°9%'™ and so

p? <ot X _ X V.
- ~ 2(logXx)> —2U 2

for all sufficiently largeX. Also, sinceD = exp((2 + ¢)UY>7¢), one hasU =
Ci(log X)>+¢' D for some constant§y, ¢/, so

Vv X X X

== <cC ,
2 =20 = “Yog D)5 = 2logD

for all sufficiently largeX. The conditions of Theorem 5.2 are therefore satisfied, and
applying it gives

2X
/ IRy (D)|dy < X(UY?(Iog D)*? + (log D)?) « X U532,
X
It follows that

|G| < X U™¢/? = o(R),

i.e., the proportion of exceptionals goes to zero. Thus almost alle (X/2, X] have
|Ry(D)| < U%>~¢ and this is dominated by the main teti/>* of (3), s0S(A, Z) is
nonzero for almost all such Taking the union of the intervals gives the resuit.
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6. R-Free Squares

Before embarking on the rather daunting task of proving Theorem 3.4, | will do a
“warmup” consisting of proving Propositions 3.2 and 3.3.

Proof of Proposition 3.2. (a) limsupF,(R)/logR < —2/log(1 — p): Letc >
—2/log(1— p), and at each siten, n) in B(R), consider a square of aretog || (m, n) ||
and with lower left hand corner &t:, n). The probability that all sites in the square are
closed is(1 — p)c'09ltn.ml — || (m, n)||~2¢, wheree > 0. Summing over all sites in

Z2 gives
> :
| (m, n)||2+e”

(m,n)ez?

|Gm,n)||>2
which converges. The Borel-CantelliLemma [17] shows that the probability of infinitely
many such squares being closed is zero.
(b) liminf F,(R)/logR > —2/log(1 — p): Letc < —2/log(1 — p) and for each site
(m, n) with ||(m, n)|| > 2, consider a square of aredog ||(m, n)| with bottom left
hand corner at(m, n) (log||(m, n)|))2]. As in part (a), it follows that each square has a
probability>> ||(m, n)||~2¢ of being closed. Moreover, all these events are independent
so the result follows from the Borel Cantelli Lemma and the divergence of

3 (log [|(m, n) )2
et (G n)||2+e
0,1 >2

Proof of Proposition 3.3(a) Lower bound: Consider an integerand the firsk? primes
q1, - - - , qi2. By the Chinese Remainder Theorem, the following congruences have so-

. 2
lutionsm, n < I—[le qi,

k k
m=—i (mod 1_[ 5]ik+j) , n=—j (mod HCIjk+i) ,

j=1 j=1

sogcdm+i, n+j) > 0,forl< i, j < k. The prime number theorem givie&1+e)%*
l(m, )|l > K21~k which yields the estimaté? > (1 — ¢”) 3 log R/ loglog R (one
can improve the A2 term torr?2/12).

(b) Upper bound: Assume thatthere isaree squar¢(m+i, n+j) : 1 <i, j < k}.By
Corollary5.1,therearey, . .. , x; € [m+1, m~+k]forwhich P_(x;) > k¥/2=¢ and such
that? > k/logk. Write x; = ]_[r/.":1 qfl'ﬁ-". One notes that if is a prime, then the number
of integers in a sef which are relatively prime tq is > min{|S|(1 — 1/¢). |S| — 1}.
The asymptotic relation

1
Z Z~—log1l/2—¢) <1
k1/27s<q5k
g prime

thus implies that the number of integers[in + 1, m + k] relatively prime tox; is
> (1+log(1/2—e) k—{j <ri: qij = k}|, and so each; > (1+4log(1/2— 2¢)) k.
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One further notes that gea;, x;) < k fori # j, so thaty; andx; can share at most 2
distinct prime factors. This implies that the number of distipgs is > k?/logk. The
prime number theorem gives

¢

2_,1/2—¢
[Tos> ] g=ePe o,
i=1

y<q<D k2
q prime

for some constanD, and so log; > klogk for all i. This therefore gives lo§ >
klogk and the result follows since ldgis of order loglogr. O

7. The Structure of the Infinite Component

In this section, | prove Theorem 3.4. One begins identifying some subsets of the infinite
component.

Lemma 7.1.The following sets are if:

@ {(m,)): m>0}. (2 {(p,n): p>n}, pprime
3 {m.q): g <m < (q/2°7*, g pm}, gprime

Proof. The first two results were proved above. The third follows from the unconditional
result of Heath-Brown and Iwaniec [34] which states that every interval of lenigtR°
contains a prime (this has subsequently been improved, see [48]). Thugpif then
sinceg > 2m1%20 one of the intervalfn +m%20) or [m —m1%29, m] has none of its
elements divisible by and the corresponding line segment lies completeR.iBy the
result of Heath-Brown and Iwaniec, this line segment will cross a{lipen)}, where

p is prime, and by (2), this is i€, SO(m, g) isalso inCs,. O

One proceeds by proving an initial version of Theorem 3.4.

Lemma 7.2.All but O(R?/logR) pairs of B(R) are surrounded by a rectangle of
perimeterO ((log R)") all of whose edges are containeddh,.

Proof. Consider the set

So={(m,n) € B(R): 3n’, P_(n') > RY>, (logR)" +n > n’ > n, minimal,

(d,n") =1if |d —m| < RY*3, 3p € [m — RY3, m + RY3)}.
By Watt's result that almost every interval of length{14t¢ contains a prime,
Eo1 = {(m,n) € B(R) : [m — RY*3, m + RY*3] has no primes

has density zero. In fact, his result shows thgg 1| <« R?/(log R)?, since substitut-
ing E = 3 in Theorem 1 of [48] already gives this estimate for intervals of length
R1/14(|Og R)22.

Next, if

Eo2={(m,n) € B(R): P_(n') < RY®, forall (logR)" +n > n' > n},
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then|E1 | < R?/logR. This bound follows by an argument similar to the proof of
Proposition 5.1: PartitiofR/2, R] into intervals of the forn{X, 2X] and in each of
these intervals, let/ = (logX)’, D = V1/2/2, and for a fixed 110 > ¢ > 0, let

Z = DY?7¢_ The main term in Eq. (2) of Theorem 5.1 is thgn (log X)® while
Theorem 5.2 gives

1 2X
—/ |Ry(D)|dy < (log X)®.
X Jx

ThereforeG defined as the set of € (X, 2X] for which |R,(D)| > (log X)® satisfies
|G| « X/logX.
Finally, one considers
Eo3={(m,n) € B(R): P_(n') > RY®, (logR)" +n > n’ > n, minimal,
3d |d —m| < RY23, (d,n) > 1).

Butif P_(n') > R/®, then

R
|Eo3l < R(ogR)’ > 1< R¥Y¥ogR)'R " =

P_(n")>RY5 pln’
|d—m|<RY13, (d.n)>1

2

R2HY/13-1/5 (104 R)7
< (logR)" « log R

SinceB(R) — So C Eo,1 U Eg2 U Eg 3, it follows that| B(R) — Sp| « R?/log R, and
S0 8o represents almost all points 8 R).

An examination of the definition ofg shows that for everym, n) € Sg there is
an unbroken horizontal line segmehg 1(m, n) C Co of length RY13, centered at
(m, n) and which passes above, n) within distanceO ((log R)?), and which crosses
a vertical line{(p, n)}, wherep is prime. By Lemma 7.1 (2), this vertical line is @y,
so it follows thatLg 1(m, n) is also iNCw.

Replacing the condition’” > n with n’ < n yields the similar result with a line
segmentlg 2(m, n), passing belowm, n). To construct the corresponding vertical line
segments.o 3(m, n), Lo 4(m, n), one must include the condition that n > R1%20in
order to apply part 3 of Lemma 7.1. The result then follows.

The next iteration already contains most of the ideas of the general procedure and is
included in order to give a self-contained proof of Theorem 3.3.

Lemma 7.3.All but O(R?/(loglogR)3) pairs of B(R) are surrounded by a rectangle
of perimeterO ((log log R)3%) all of whose edges are containeddi. .

Proof. Consider the set
S1 = {(m,n) € B(R): 3m’ P_(m') > (log R)*?,
(loglogR)*® + m > m’ > m, minimal,
(m',d) =1, |d —n| < (logR)*°.}.
Now let

E11={(m,n) € B(R): P_(m') < (logR)*, forall (loglogR)*® +m > m’ > m}.
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By Proposition 5.1, for almost all, [y, y + (log log R)3%] contains an integer with
P_(x) > exp((log log R)381/5-#)) "and this is> (log R)*? for all sufficiently largeR.
The error term of Proposition 5.1 gives

R2 R?

E —
111l < GiogTog R)%E72 ~ (loglog k)3’

by lettinge = 1/6. Next, one considers

E12={(m,n) € B(R): P_(m') > (log R)*?,
(loglogR)*® +m > m’ > m, minimal,

3d |d — n| < (logR)*°, (m',d) > 1}.

As before, one gets

|E12| < R(loglogR)3® > 1
P_(m")>(log R)*2
|d—n|<(log R)*0, (m’,d)>1
R? (loglogR)3’

R
< R (loglogH*(0g R _ —~ « —a- 0

plm’
R2

<iogR’

for all sufficiently largeR. This last estimate used the fact thaPif im’) > (log R)*?
andm’ < R, thenm’ can have at mos®P (log R/ log log R) prime factors.

It follows that S; consists of almost all elements Bf R). The definition ofS; then
shows that for almost allm, n) € B(R), there is a line segmert; 1(m,n) C R of
length at leastlog R)*°, centered atm, n) and which passes bgn, n) at distance
O((loglog R)3%).

One now observes thap N S1 also comprises almost all elements BfR). The
definition of Sp implies that for almost allm, n), the line segmenty 1(m, n) intersects
a rectangle of perimete® ((log R)’) whose edges lie ilfs, (note that these extend
in Co to lengthRY13), so L1 1(m, n) will also be contained inCy,. Clearly, one can
similarly show that for almost alln, ), there are line segments ; C R, j = 2, 3,4,
of length(log R)*° and which pass withilog log R)36 of (m, n) on all four sides, and
by the same argumetit; ; C Coo, j =2,3,4. O

An examination of the proof of Lemma 7.3 reveals that the obstacle in continuing
this process is the ter@plm, 1/p, which must be»(1). The trivial estimate

1 w(m)
— 4
Zp.m » < P @

was used and this will only allow one more iteration, if one first removes &k which
w(n) > 2loglogR (as is well known, this set has zero density [44]). In fact, in this
context, itis easy to improve substantially on (4), as was noted to me by G. Tenenbaum.
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Lemma 7.4.Let f(R) be any function increasing to infinity, then except for a se#t of

of sizeO(R/./ f(R)log f(R)), one has the bound
1 1

e Car——————N
,,lzm P JF®log f(R)

p=f(R)

Proof. One uses the simple estimate

DN R__R
m<R plm p p>f(R) p f(R) lOQ f(R)
p=f(R)

This result reflects the fact that

_ im 1/p has alimiting density, as follows easily from
the Erdds—Wintner Theorem [44ﬁ.u

This result allows one to iterate the above argument. Recall thatmes) is the
perimeter of the smallest rectangle surroundingn) which has all its edges 0.

Lemma 7.5.Letlog, z = logz andlog, ., ; z = log(log, z), and letexp, z be the inverse
oflog, z, then forR > exp,,»(10%),

1
|(m,n) € B(R) : rect(m,n) < (log,,1 R)*®}| = |B(R)| [1— 0 <W>] ,
(5)
where theO () term is independent &f

Proof. One proves this by induction dn The initial stepk = 1 is exactly Lemma 7.3.
Now assume that (5) holds fér then | will show that it holds fok + 1.
Thus assume that one has constructed for almogtalt), line segmentg; ; (m, n),

Jj = 1,2,3,4, as above, but of lengttiog, R)*°, which pass within(log,, ; R)%®, are
centered atm, n) and lie completely irCo.. In particular, one assumes that the set

St = {(m,n) € B(R) :3n’ P_(n) > (log, R)*%,
(10g;1 R)*® + 1 > n' > n, minimal,
d,n')y =1, |d —m| < (log; R)*°, (m,n") € Coo}s
is such thatB(R) — Sk| < R?/(log,, 1 R)3. One then considers
Sk+1 = {(m,n) € B(R) : Im’ P_(m) > (log;,1 R,
(10g,, R)*® +m > m' > m, minimal,
(m'.d) =1, |d —n| < (log; 1 R)*%}.
Now let
Egy11={(m,n) € B(R): P_(m') < (log; 1 R)*®,
for all (logy » R +m>m' > m).
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By Proposition 5.1, forany > 0, exceptfoi0 (R/(log, , , R)*%/?) values ofy, the inter-
val[y, y + (log,, » R)¢] contains an integer with P_(x) > exp((10g;., , R)361/5-)),

Lettinge = 1/6, this says that except fa@b (R/(log,_ » R)3) values ofy, the interval
[y, y + (log,» R)3%] contains an integer with P_(x) > exp((log;,, R)1T%/1%). This
last quantity is eventually (log,, 1 R)1%, in particular, when log,, R > 100t%2,i.e.,
whenR > exp.,(10'). Thus, one concludes that

2

+

|Ery11] <

Next, one considers
Epy12 = {(m.n) € B(R) : P_(m') > (log; ;1 R)'®,
(10g4p R)¥® +m > m' > m, minimal,
3d, |d —n| < (Ioggy1 R, (m',d) > 1}.
As before, one gets

|Ext1.2l < R(log o R)% > 1

P_(m")>(logg 1 R)1
|d—n|<(log1 R, (m’,d)>1

1
< R (log,» R)36(|09k+1 R)* Z Z ;

m=<R plm
P (m)>(log 11 RY100

Now let

1 1
Exp13={m,n) e BR): Y

_ >
o p ~ (log;1 R)*°/log,,, R

p>(log; 41 R)10°

for all (logy,» R+ m>m' > m).
Applying Lemma 7.4 gives

R? (logy, R)®®

(logy 1 R)%°/log,,» R’

R2(logy , R)*(log, 1 R)*° < R?
(log 1 R /10g; ;1 R loge 41 R’

whenever(log, 1 R)® > (log,, R)%®, for example, wherR > exp,,»(16). It follows
that Sy1 consists of almost all elements @&f(R), where the exceptional set i&
R?/(logy ;5 R)®.

The definition ofS;11 also shows that for almost altz, n) € B(R), there is a line
segment;11(m, n) C R oflength atleastlog, , ; R)*%, centered atm, n) and which
passes bym, n) at distanceD ((log;, , R)3®).

|Ert1,3] <

SO

|Ext1,2 — Ery13l <€
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One now observes th&t N S; 1 also comprises almost all elementskifR) except
for an exceptional set of size

R2 R2 R2
< + =1+ Ap) ——,
(logyy1 R)?  (logy,, R)® ( ¢ (log,11 R)®

for sufficiently largeRr, where

k k
1
[Ta+4p)< J]_[=1 [1+ 0 (W)%—'R)?’ﬂ — 0.

j=1

The definition ofS11 implies that for almost alim, n), the line segment ;1 1(m, n)
of length (log; 4 R)* will intersect the perimeter of the rectangle of perimeter
(log,.1 R)3® constructed in the previous iteration (note that its sides extend to line
segments irCo, of length (log, R)*%). Since the sides of this rectangle lie dh, it
follows thatL1 1(m, n) will also be contained i€ »,. Thus, the line segments defined
in Sg+1 also lie iNCy.

Clearly, one can similarly show that for almost éit, n), there are line segments
Liy1,j C R, j = 2,3,4,oflength(log, , ; R)*° and which pass withidog, , , R)3° of
(m,n) on all four sides, and;41,; C Co, j =2,3,4. O

Proof of Theorem 3.4Assume that there is a functigf{ R) increasing to infinity, and a
fixed A > 0 such that for at IeasltRl.2 pairs(m, n) one has redim, n) > f(R;), where
R; is a sequence increasing to infinity.

One defines logz to be the minimum number of iterations of log required tab2,
ie., Iogog*zz < 2. Letk =log, R —log, f(R) — 2, then log R < log f(R) for all
sufficiently larger.

One can now apply Lemma 7.5 since the bound

exp;2(10") = expyq. R,,ng_(R)+4(1015) < logR = o(R)

holds. Furthermore, one has

’

(log, 1 R " log, f(R)

sincelog R > logz f(R) andf (R) — oo. Substituting this in (5) shows that for almost
all m, n) € B(R) one hasreatm, n) < f(R), which contradicts the above assumption.
The result follows. O

Proof of Theorem 3.3Assuming Theorem 3.2, then this follows directly from Theo-
rem 3.4. For if the result were not true, then there would be a fungt{@) increasing to
infinity such that (R) < 1/f (R) for all sufficiently largeR. However, Theorem 3.4 im-
plies that for sufficiently larg®, almost all points oB(R) are surrounded by a rectangle
of perimeter,/ f (R) all of whose edges lie iffs. This implies that (R) > 1//f(R)
which is a contradiction.o
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8. The Infinite Ccomponent has a Density
Asin Sect. 4, the idea is to compare the density of the infinite component in a big square
|B(R) N Cool
|B(R)|
with this density modulo a product of primes. Thus, let

O(R) =

[{(m,n) € B(R) : (m,n) € infinite component modulb}|
|B(R)] ‘
The following gives a local characterization of the infinite component moklulo

o = lim
R—o0

Lemma 8.1.z is in the infinite component modukaf and only ifz mod#h is connected
modulo# to all sides ofB (k).

Proof. In fact, this holds for the fundamental doma#t(h) = {0 < m,n < h} of

Z2 modh (so B(h) consists of 4 copies oB*(h)). To see this, note thak* (k) has
reflection symmetries generated by, n) — (n,m) and (m, n) — (m, —n) modh
which preserve relatively prime pairs maddThusB* (k) consists of 8 triangles each of
which is a reflection of its adjacent neighbor, see Fig. 5. It is cleattisain the infinite
component if and only if it ig:-connected to all three sides of the triangle on which it
lies and this is clearly equivalent to beihgconnected to all four sides @&* (k). O

Lemma 8.2.1f X < Y thenfpx) > Op(y).

Proof. If z € B(P(Y)) is in the infinite component modulB(Y) thenz modP(Y) is
P(Y) connected to three boundariesBifP (Y)). Since reducing modul8 (X) does not
remove any connections, it follows thamod P (X) is P (X) connected to the boundary
of B(P(X)). O

Fig. 5. Reflection symmetries modulo
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One concludes thaltpx) is decreasing and therefore the liMit= lim x_, o 0px)
exists.

Lemma 8.3.1f both X — oo andR/P(X) — oo, thend(R) < Op(x) + o(1).

Proof. This follows exactly as in the above also following the proof of Lemma 4.3.
Note that the boundary error in tiling(R) with B(P(X)) is O(P(X)/R) = o(1) by
assumption. O

One therefore ha®(R) < 6, + o(1) and the main result follows from

Lemma 8.4.limg_. o O(R) = 0.

Proof. If 6, = 0, then Lemma 8.3 shows that= 0 as well and there is nothing to
prove. On the other hand, i, > 0 consider a largk and by Lemma 8.2, find a
large X such tha®p x) is very close td@,, with P(X) < R andR/P(X) large. Since
the prime number theorem says thatX) = ¢Xt°® one can choos& such that
RY?2/4 < P(X) < RY/2. Itfollows thatX is of order logRr, i.e., there are two constants
A, B,suchthatAlogR < X < BlogR.

Now going fromR moduloP (X) to R in B(R) removes at mo$B(R)| >, 1/d?
< |B(R)|/ X elements. So, by the above estimate, one is remaQi(R?/ log R) sites.
By Lemma 7.3, given B< ¢ < 1/2, one can surround almost all sites with'g rectan-
gle of perimeter< (log R)Y/2~¢. Thus apart from a set of zero density, each individual
removal can disconnect at magg R)1~% sites from the connected component (note
that none of the elements on the rectangles specified by Lemma 7.3 are removed, since
these belong t@', of R). It follows that at mosD (R?(log R)1~%/ log R) sites are dis-
connected, a vanishingly small percentage of the infinite connected component modulo
P(X). This implies that (R) is asymptotically close t6px). O

Acknowledgementl would like to thank Cécile Dartyge for checking the method of Sect. 7 and Gérald
Tenenbaum for helpful comments and a crucial observation (Lemma 7.4).
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