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Abstract: This paper examines percolation questions in a deterministic setting. In par-
ticular, I considerR, the set of elements ofZ2 with greatest common divisor equal to
1, where two sites are connected if they are at distance 1. The main result of the paper
proves that the infinite component has an asymptotic density. An “almost everywhere”
sieve of J. Friedlander is used to obtain the result.

1. Introduction

One can often gain insight about a deterministic problem by comparing it to a probabilis-
tic model. For example, Hardy and Littlewood [30] made precise conjectures about the
existence of twin primes based on the assumption that the prime numbers are a generic
set, i.e., have “pseudo random” properties. Similarly, in [47] the theory of percolation
was used to make some precise conjectures about the existence of unbounded walks of
bounded step size along Gaussian primes, a question posed by Basil Gordon, see [24]
for a survey.

Percolation theory deals with the same question of unbounded walks of bounded step
size on a lattice, but in a probabilistic context, see [14,23,26]. For example, consider the
plane integer lattice{(m, n) : m, n ∈ Z}, and a fixed 0≤ p ≤ 1. Say that a lattice point
(orsite) isopenwith probabilityp andclosedwith probability 1−p. If these events occur
independently for each lattice point, what is the probability that there is an unbounded
walk using step sizek or less? The main result of percolation theory discovered by
Broadbent and Hammersley in 1957 [10] is that this exhibitsphase transition,in other
words, there is a 0< pc < 1 for which the probability of an unbounded walk is zero if
p < pc and one ifp > pc (this is called thecritical point). For this reason, percolation
theory has been of great interest in physics, as it is one of the simplest models to exhibit
phase transition.

In this paper, I will examine how questions of percolation theory can be posed in a
deterministic setting. Thusdeterministic percolationis the study of unbounded walks on
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a single subset of a graph, e.g., defined by number theoretic conditions. This might be
of interest in physics and probability theory as it studies percolation in a deterministic
setting and in number theory where it can be interpreted as studying the disorder inherent
in the natural numbers.

Instead of just providing a conjectural framework for percolation properties of these
sets as was done in [47], I would like to show what unconditional results can be obtained
so I will focus on

R = {(m, n) ∈ Z2 : gcd(m, n) = 1},
where two sites are connected when they are at Euclidean distance 1. This example
is more tractable than Gaussian primes yet retains some similar features. Studying the
connectivity properties ofR was posed as a problem in [15, p. 109].

The analysis ofR will use sieve methods. This seems quite natural, as sieve methods
can be interpreted as an application of probabilistic methods to number theory, for
example, the large sieve [6] shows that arithmetic progressions behave like independent
random variables. Moreover, as Doron Zeilberger has shown [50], sieve methods like
the ones used in this paper can be thought of as special cases of the Lace Expansion
which has been used successfully to study percolation problems [11,29].

The sieve method used here is due to Friedlander [20] and it proves very general
“almost everywhere” results. Thus, ifU = U(y) is a function increasing to infinity, then
the Rosser sieve [36] shows that foreverysufficiently largey, the interval[y, y + U ]
always contains a number whose smallest prime factor is≥ U1/2−ε (Corollary 5.1
below). However, Friedlander’s sieve shows that foralmost everyy, the interval[y, y+U ]
contains a number all of whose prime factors are≥ eU

1/5−ε
(Proposition 5.1 below).

One can look at other examples of deterministic percolation, for example, the gener-
alization ofR to

Rn = {(a1, . . . , an) ∈ Zn : gcd(a1, . . . , an) = 1},

where two points are connected when they are at Euclidean distance 1. Whenn ≥ 3,
this is substantially simpler since all elements(a1, . . . , an) for which (a1, . . . , aj−1,
aj+1, . . . , an) ∈ Rn−1 lie on the infinite component.Thus the caseR2 is harder since the
reduction toR1 essentially corresponds to primes. Hopefully, the techniques developed
here will shed some light on the original question about Gaussian primes which can also
be thought of as an analogue ofR1. Sieve techniques for Gaussian primes have been
developed by Coleman [12], Fouvry and Iwaniec [19], and Friedlander and Iwaniec [22].

Finally, an interesting problem might be to study deterministic percolation for Fuch-
sian groups, e.g., by using the recent work of Lalley [38].

2. Problems of Deterministic Percolation

Consider a graphG and a subsetV of vertices. A vertex, orsitewill be openif it belongs
to V andclosed,otherwise. Percolation studies the properties shared by “almost all”
subsets ofG which have a given densityp. One should therefore compare the properties
of V with those of a “generic” set of the same density (such questions are investigated
for random graphs in [39]). In order to do this one must first answer
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Problem 1. DoesV have a probability?

Since one is trying to give analogues of percolation, one needs an analogue of a proba-
bility for a deterministic set. In this paper I will useasymptotic densityδ(V) as defined
in the next section. As will be seen, calculating the asymptotic density of a finite event
can be nontrivial, even in the simplest cases.

Problem 2. DoesV have an infinite connected component?

One might expect there to be an unbounded component ifδ(V) > pc(G), wherepc(G)
is the critical percolation probability ofG, and not otherwise.

Problem 3. How many unbounded components doesV have?

For site and bond percolation inZn, it has been shown that, with probability one, there is a
unique unbounded component forp > pc [1,26]. For other models [38], with probability
one, there can be zero, one, or infinitely many infinite components, depending onp.

Problem 4. Do the unbounded components ofV have densities?

Percolation theory also predicts that unbounded components have, with probability one,
a density, denoted byθ(p).

Problem 5. In general, letf (p) be a function defined, with probability one, in the
random model. Can the corresponding quantity be defined forV? If so, how is it related
to f (δ(V))?
Percolation theory considers other functions related to the cluster distribution. For exam-
ple,χ(p), the average size of a connected component (χf (p), the average size of finite
components whenp > pc), andκ(p), the cluster size per vertex. In the Ising model,θ ,
χ (or χf ), andκ represent magnetization, susceptibility, and free energy, respectively.

3. Percolation onR
The subject of this section is deterministic percolation forR. Note thatR can be thought
of as the points ofZ2 which arevisible from the origin. One can thus restate the per-
colation properties ofR as “Lecture Hall Percolation” (compare with [9]): Consider
a classroom with a regular array of tables so students sit only where they can see the
teacher. The teacher starts passing out exam booklets to the closest student and each
student passes on the booklets to his closest neighbors. What percentage of the class will
receive an exam?

To get a feeling for the problem, consider Figs. 1 through 4 which depict sites of
Z2, where a disk or radius 1/2 surrounds each open site, so connected sets of disks
correspond to connected components.

In Fig. 1, 3, and 4, sites are considered open if they belong toR. Figure 1 gives all
sites(m, n) with −50 ≤ m, n ≤ 50. Figure 2 represent a 100× 100 square where sites
are randomly open with probability 6/π2. In Fig. 3, the sites were(a, b)+(m, n), where
(a, b) = (8660313549,3102586521) and 0≤ m, n,≤ 100. A similar computation was
done in Fig. 4, wherea, b were randomly chosen 100 digit numbers

818479887666178685800484385810052015576642831879680779054188168941665

4357533055575739845797590171065,5258627195794198788220463515375759096

523698556698348004291249422348890633805215110415985087652598121.
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Fig. 1.Relatively prime pairs near the origin

The reader is invited to explain the obvious differences between the random and
deterministic models, e.g., show that independence is false forR.

An interesting feature of the experimental data forR is that local properties do not
seem to change when increasing the scale.Thus, a 100×100 snapshot appears roughly the
same whether at distance from the origin 1010 or 10100. One can explain this phenomenon
as follows: Long unbroken lines correspond to numbers with no small prime factors.
Very roughly, a number with no prime factors< k will produce a line with breaks at
average spacingk, which is the expected spacing between numbers with no prime factors
< ek. For example, numbers with no prime factors< log1+ε X will most likely produce
unbroken lines of length≥ log1+ε X, but the Prime Number Theorem suggests that,
on average, consecutive primes are distance logX apart, so these intervals will most
likely contain a prime number. Since lines corresponding to primes lie on the infinite
component, these lines will most likely belong to the infinite component. Moreover, the
number of numbers with no prime factors> log1+ε X is aboutX/ log logX, so iterating
this process seems to indicate that there is a scale invarianceX 7→ eX. The line segments
produced by this process seem to form a regular grid and, consistent with the philosophy
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Fig. 2.Random sites open with probability 6/π2

of de Gennes [14,23], one observes that the infinite component is a large interconnected
mesh with holes. These observations are used in the proof of Theorem 3.4 below and
will be the key to the proof that the infinite component has an asymptotic density. Having
gained some feeling for the empirical evidence, one now tries to address the problems
of deterministic percolation.

Problem 1. Asymptotic density.In the case ofR, the answer to Problem 1 is known: The
asymptotic density ofR is 1/ζ(2), which is the well known result that the “probability”
that two random integers are relatively prime is 6/π2. In order to prove this, one needs
to define density

Definition. Theasymptotic densityof aneventP(z) occurring inR is

δ(P ) = lim
R→∞ δ(P,R), whereδ(P,R) = |{z ∈ R ∩ B(R) : P(z) holds}|

|B(R)| ,
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Fig. 3.Relatively prime pairs near(1010,1010)

whenever this limit exists. HereB(R) = B2(R) = {z ∈ Z2 : ‖z‖ < R}, and‖(m, n)‖ =
max(|m|, |n|) gives asquare summation.

Remark.One can also usecircular summation, i.e., the usual Euclidean norm|z| and
B◦(R) is a disk of radiusR. The subtle differences between such choices is well known,
e.g., in the theory of multiple trigonometric series [2,7] and will be discussed below.

The density ofR is easily computed by the classical estimate [44],

∑
|m|,|n|≤R

gcd(m,n)=1

1 = 8
∑
d≤R

ϕ(d) = 24

π2R
2 + E(R), E(R) = O(R logR).

The error term cannot be improved much further as Montgomery has shown thatE(R) =
�±(R

√
log logR). However, as noted above, the situation is much different if one uses
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Fig. 4.Relatively prime pairs near(10100,10100)

circular summation: One is then estimating

S(R) =
∑

m2+n2≤R2

gcd(m,n)=1

1 = πR2 +1(R),

and it is easily shown that1(R) = O(R) using a nontrivial bound on the error term in
the Gauss circle problem (the prime number theorem also implies that the error iso(R)).
The error term1(R) has been studied by Moroz [41] and by Huxley and Nowak [35].
The latter showed, using results of Baker [3] that, assuming the Riemann Hypothesis,
1(R) = O(R3/4+ε). It seems that the actual error isO(R1/2+ε) and in analogy with the
Gauss circle problem [33,5], one can ask whether1(R)/R1/2 has a limiting (logarithmic)
distribution (this would require very strong assumptions as in [42])

Continuing with the analysis ofR, it is also true that any finite configuration inR
has a density. In other words, let� be a finite subset ofZ2 which contains the origin and
defineδ(�) to be the asymptotic density of� in the sense that�(z) is true if and only
if z+� ⊂ R.
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Theorem 3.1.Let� be a finite subset ofZ2, thenδ(�) exists.

This result is more subtle than expected and a direct approach to computeδ(�) fails
(I would like to thank G. Tenenbaum for explaining this point to me). For example, let
� = {(0,0), (1,1), (2,2)}, then one is counting

S(�) =
∑

‖(m,n)‖≤R
gcd(m+j,n+j)=1, j=0,1,2

1.

The direct approach uses the identity

∑
d|n

µ(d) =
{

1, if n = 1,
0 if n > 1,

(1)

whereµ(d) is the Möbius function and this gives rise to terms of the form

∑
d1,d2,d3≤R

µ(d1)µ(d2)µ(d3)

(
R

d1d2d3
+O(1)

)2

.

The term corresponding toO(1)3 will be of orderR3 and no known estimates will be
able to reduce this too(R2). However, one can still hope that such a bound exists and
this leads to

Conjecture 1. If � is a finite set containing the origin, then

δ(�) =
∏

p prime

(
pn − |� modp|

pn

)
.

This is an analogue of the Hardy–Littlewood conjectures for primek-tuplets [30].
The conjecture states that the global density should be a product of the local densities
for each prime. A similar result was proved by Hafner, Sarnak, and McCurley [27] in
which the density of relatively prime values of polynomials is computed.

Problems 2. Existence of an infinite component.Existence is trivial since the line
{(m,1) : m = 1,2,3, . . . } lies in R. ComparingR to the random model, one sees
that an unbounded component should exist since 6/π2 > .5927, the conjectured ap-
proximation topc(Z2) [51] (the best rigorous bounds are are.556< pc(2) < .679492
of [4] and [49], respectively).

Problem 3. Number of infinite components..This has an elementary answer consistent
with the probabilistic model:

Proposition 3.1.R has a unique infinite component.

Proof. CallC1 the infinite component containing the line{(m,1) : 1 ≤ m < ∞}. Then
for each primep, the vertical line{(p, n) : 1 ≤ n ≤ p − 1} is in C1. Thus, a large
connected component in the region{(m, n) : m > n} will eventually have to cross one
of these line, and therefore belong toC1. By symmetry, the same holds true for the other
7 lines{±1,±k}, {±k,±1}. Finally, these lines are all joined together, either at(±1,±1)
or by passing through(±1,0) and(0,±1), where, by definition, gcd(1,0) = 1. ut



Deterministic Percolation 51

Problem 4. The asymptotic density of the infinite component.This is the main question
of this paper and I prove

Theorem 3.2.The infinite component ofR has an asymptotic density.

Let θ = θ(R) be the asymptotic density of the infinite component, i.e.,θ = δ(C∞),
whereC∞(z) is true if and only ifz lies on the infinite component, which, by abuse of
notation, will also be denoted byC∞. The value ofθ can examined experimentally and
preliminary computations seem to indicate thatθ/p(R2) ≈ .96± .01, i.e., about 96%
of open sites lie on the unbounded component. In fact, I will prove

Theorem 3.3.The asymptotic density of the infinite component ofR is not zero.

Both these theorems are quite subtle and follow from

Theorem 3.4.Let f (R) be any function increasing to infinity then, except for a set of
zero asymptotic density, every(m, n) ∈ B(R) is surrounded by a rectangle of perimeter
< f (R) all of whose edges are contained inC∞.

As noted above, this result is consistent with de Gennes’ philosophy that the infinite
component consists of a mesh with small holes [14,23]. Theorem 3.4 suggests that a
stronger result is true, namely if one defines rect(m, n) to be the perimeter of the smallest
rectangle containing(m, n) all of whose edges are inC∞, then rect(m, n) should have
a limiting distribution.

An examination of the proof of Theorem 3.2 (Sect. 8) reveals that it works withf (R)

in Theorem 3.4 replaced by(logR)1/2−ε, so Theorem 3.2 follows from the weaker
result of Lemma 7.3 below. It should be noted that one can similarly show that the
infinite component ofRn has an asymptotic density forn ≥ 3, and it is trivially nonzero
since it is≥ 6/π2 in these cases.

One can easily give an upper boundθ < 6/π2. Thus, considerγ (z) to be true if
z ≡ (4,15) (mod 30), thenz is isolated ifγ (z) andz ∈ R are both true. Since∑

‖(m,n)‖≤R
γ (z), (m,n)=1

=
∑

gcd(d,30)=1
d≤R

µ(d)
∑

m≡4/d (mod 30)
n≡15/d (mod 30)

‖(m,n)‖≤R/d

1 +O(R),

one gets

δ(γ ) = 1

302

∏
p>5

(
1 − 1

p2

)
= 6

π2

∏
p≤5

1

p2 − 1
,

so

θ ≤ 6

π2 − 4δ(γ ) =
(

1 − 1

144

)
6

π2 = .9930̄5
6

π2 .

More generally, define ananimalα to be a connected set containing the origin andα(z)

is true if z + ω ∈ R for everyω ∈ α, but z + ω 6∈ R if ω ∈ ∂α (a site is in∂α if
it is connected toα but not inα). It should be noted that this definition of animal is
not translation invariant, see [8] for general results on animals. The inclusion-exclusion
principle implies that

δ(α) =
∑
s⊂∂α

(−1)nδ(α ∪ s),
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where eachδ(α ∪ s) on the right represents an ordinary density of a configuration. It
follows that the density of animals exists and moreover, Lemma 8.4 below shows that

θ = 6

π2 −
∑
α

δ(α).

One can therefore try to estimateθ by computingδ(α) in small cases.As noted above, this
is does not seem possible using current methods. However, if one accepts Conjecture 1,
then one has

α1 = ζ1(2)− 4ζ2(2)+ 8ζ3(2)− ζ×
4 (2)− ζ5(2) = .0110235396. . . , ,

α2 = 4ζ2(2)− 32ζ3(2)+ 62

5
ζ×

4 (2)+ 36ζ5(2)− 16

3
ζ6(2) = .0013019993. . . ,

whereα1 andα2 are the densities of elements inR belonging to animals of size 1 and
2 respectively, and

ζm(s) =
∏

p prime

(
1 − m

ps

)
, ζ×

m (s) =
∏

p prime
ps 6=m

(
1 − m

ps

)
.

Conjecture 1 therefore implies

θ < 24ζ3(2)− 57

5
ζ×

4 (2)− 35ζ5(2)+ 16

3
ζ6(2) ≈ .9797253010901

6

π2 .

Note that the functionsζm(s) do not have an analytic continuation ifm > 1 since a result
of Estermann [16] states that for a polynomialf (x), the Euler productζ(s, f (x)) =∏
p f (p

−s) has an analytic continuation to the complex plane only iff (x) is a product
of cyclotomic polynomials. However, one can easily find these numerically using the
formula

ζ(s, f (x)) =
∏
p≤m

f (1/ps)
∞∏
`=1

[
ζ(`s)

∏
p≤m

(
1 − 1

p`s

)] 1
`

∑
d|` adµ(`/d)

,

where logf (x) = ∑∞
k=1 akx

k, see [18,46].

Problem 5. Functions of percolation.The evaluation ofθ indicates that other functions
might also have deterministic analogues. One therefore defines

κ(R) = lim
R→∞

Number of connected components inB(R)

|B(R)| ,

χf (R) = lim
R→∞

1

|B(R)|
∑

‖z‖≤R
z 6∈C∞

|C(z)|,

if these limits exist, whereC(z) represents the connected component containingz. Since
the sum forκ(R)has better convergence properties thanθ(R), the methods used to prove
Theorem 3.2 also show that this exists. However, the existence ofχf (R) is left as an
open problem.
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A problem related to percolation is computing the asymptotics of the largestR-
free square. This question is a generalization the Cramer conjecture [13] which states
that the largest prime gap≤ R should tend to(logR)2 (though this is now believed
to inaccurately model the primes [25]). One can compare results for the random and
deterministic models.

Proposition 3.2.LetFp(R) be the area of the largest closed square insideB(R), where
sites are open with probabilityp, then, with probability 1,

lim
R→∞

Fp(R)

logR
= −2

log(1 − p)
.

Proposition 3.3.LetF(R) be the area of the largestR-free square inB(R), then

logR

(log logR)2
� F(R)

logR
� 1

log logR
.

4. Finite Configurations have a Density

This section is devoted to the proof of Theorem 3.1. I will prove this by showing that
the asymptotic density of a configuration is the limit of its density modulo a product
of initial sets of primes. The idea is thatZ2 is approximated byZ2 mod

∏
p≤X p and,

using an idea from ordinary percolation [26], one can think of some events as being
monotonic.

Definition. Two integersm, n are relatively prime moduloh if gcd(m, n, h) = 1. Fur-
thermore, let

δh(�,R) = |{(m, n) ∈ B(R) : �h(m, n)}|
B(R)

,

where�h(m, n) means that�(m, n) holds as well as(m, n, h) = 1.

Lemma 4.1.δh(�) = limR→∞ δh(�,R) exists (and will be called the density of�
moduloh).

Proof. This follows from the fact that this relative primality is periodic moduloh and
thatB(h) tiles the plane. ut

The next step is to consider a product of an initial set of primesP(X) = ∏
p≤X p and

let h = P(X). Thus the pairs relatively prime moduloP(X) will be an approximation
to R. The main result thus follows from

Lemma 4.2.If Y > X andX → ∞, then δP (Y )(�, P (Y )) = δP (X)(�, P (X)) +
O(|�|/X).
Lemma 4.3.If bothX → ∞ andR/P (X) → ∞, then

δ(�,R) = δP (X)(�, P (X))+O(|�|/X + RP(X)/|B(R)|).
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If these results are true, then one can take an increasing sequence ofXj ’s such that∑
1/Xj < ∞, so that Lemma 4.2 shows thatδP (Xj )(�, P (Xj )) approaches a limit.

Lemma 4.3 then implies that this limit equals the limit ofδ(�,R) asR → ∞. This
proves Theorem 3.1.

Proof of Lemma 4.2.LetY > X, thenP(X)|P(Y ) andB(P (X)) exactly tilesB(P (Y )).
Now considerz ∈ B(P (Y )) for which�P(Y)(z) is true. Then�P(X)(z modP(X)) is
true except if the distance ofz modB(P (X)) from the boundary ofB(P (X)) is less
than|�|.

Conversely, if�P(Y)(z) is false, then�P(X)(z modB(P (X))) could be true ifd|z+α,
whered is divisible only by primes> X. It follows that

∑
z∈B(P (Y ))
�P(Y )(z)

1 = |B(P (Y ))|
|B(P (X))|


 ∑
z∈B(P (X))
�P(X)(z)

1 +O
(
|�|√|B(P (X))|

)



+O

(
|B(P (Y ))| |�|

∑
d>X

1

d2

)
.

Dividing this by|B(P (Y ))| gives the result.ut

Proof of Lemma 4.3.LetR > P(X), whereR/P (X) is large. Letz ∈ B(R), then if�(z)
is true, then�P(X)(z modP(X)) is true unlessz modP(X) is close to the boundary of
B(P (X)).

Conversely, if�(z) is false, then�P(X)(z modB(P (X))) could be true ifd|z + α,
whered is divisible only by primes> X. One gets a similar estimate as in the above,
except that the tiling ofB(R) byB(P (X)) is no longer exact and there is an extra factor
of sizeO(R |B(P (X)))|. Thus

∑
z∈B(R)
�(z)

1 = |B(R)|
|B(P (X))|


 ∑
z∈B(P (X))
�P(X)(z)

1O +
(
|�|√|B(P (X))|

)

+O

(
|B(R)| |�|

∑
d>X

1

d2

)
+O(R P(X)).

The result follows upon dividing by|B(R)|. ut

5. Sieve Methods

The sieve methods used here are due to Friedlander [20] who used them to show that
for any fixedE > 5, almost every interval[y, y + logE y] contains a number with at
most 4 prime factors. The term “almost every” means that the measure ofy ≤ X for
which this fails to hold iso(X). Such results were first obtained by A. Selberg [43] who
showed that, assuming the Riemann Hypothesis, for any functionf (n) → ∞, almost
every interval[y, y+f (y) log2 y] contains a prime. Heath-Brown [32] later showed that
the further assumption of Montgomery’s pair correlation conjectured implied the similar



Deterministic Percolation 55

result with logy replacing log2 y, and this is in some sense optimal. Unconditional results
were proved by various authors and the result used here is due to N. Watt [48] and shows
that almost every interval of lengthy1/14+ε contains a prime. An unconditional result
of Heath-Brown and Iwaniec [34] states that every interval of lengthy11/20 contains a
prime (this has subsequently been improved, see [48]).

In [21], Friedlander improved his methods and showed that almost every interval
[y, y + f (y) logy] contains a number with at most 21 prime factors. This is a much
more accurate result, as the optimal interval length isf (y) logy/(log logy)21.

There are other techniques to prove such results and Harman [31] has shown that
almost every interval[y, y+ log7 y] contained a number withexactlytwo prime factors.
Unlike Friedlander’s papers, this does not seem to yield techniques that are directly
applicable to the problems of this paper.

I will closely follow Friedlander’s paper which starts with a modified form of Rosser’s
sieve [36] (see also [28, Chapter 8]).As usual [28] consider an intervalA and letS(A, Z)
be the set of an element ofA which are not divisible by any primep < Z. In this case
A will be the interval[y, y + U ].
Theorem 5.1 (Friedlander). Let 2 ≤ Z ≤ D. There exists a functionf (u) which is
positive foru > 2, and a sequenceλd of real numbers, this sequence depending onD

andZ, and satisfying|λd | ≤ 1, such that

S(A, Z) > U

logZ

{
f

(
logD

logZ

)
+O(log−1/3D)

}
− |Ry(D)|, (2)

where

Ry(D) =
∑
d<D

λdry(d), ry(d) = ψ
(y
d

)
− ψ

(
y + U

d

)
, ψ(t) = t − btc − 1

2
.

The following is the best “everywhere” result available using the Rosser sieve.

Corollary 5.1. For any ε > 0, there exists a constantE such that for all sufficiently
large k andX, every interval[y, y + U ] contains at leastE U/ logU numbers all of
whose prime divisors are greater thanU1/2−ε,

This result follows by lettingU = D1+δ = Z2+3δ in Theorem 5.1, whereδ > 0 and
the trivial bound|Ry(D)| ≤ 2D is used. Theorem 5.1 formulates the error termRy(D) in
analytic form which allows one to average the error asy varies over an interval[X/2, X].
Theorem 5.2 (Friedlander). Let4 ≤ D2 ≤ V/2 ≤ X/(2 logD), whereV = y/U , then

1

X

∫ X

X/2
|Ry(D)|dy � U1/2(logD)3/2 + (logD)2. (3)

Remark.One can improve this result slightly by using Friedlander’s second paper [21].
This would result in replacing theU1/2(logD)3/2 term in (3) withU (logZ)−1/2, under
the conditionsD2 (logD)7 ≤ V ≤ X andZ11 ≤ D. The exponent in Proposition 5.1
below would be improved from 1/5 to 1/3 (the true exponent seems to be 1).

The proof of Theorem 5.2 follows exactly as in the paper of Friedlander [20] except
that the logD term is everywhere substituted for logX, written asL in [20]. An exam-
ination of Friedlander’s proof reveals that this substitution is valid at each step of his
argument. Friedlander used this result to prove
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Theorem 5.3 (Friedlander). For anyA > 5, there is a constantc such that almost
every interval[y, y + (logy)A] contains at leastc (logy)A−1 numbersx such that
P−(x) > x1/4−ε, whereP−(x) is the smallest prime factor ofx (so x has at most 4
prime factors).

This result will be generalized to arbitrary interval lengths of small size.

Proposition 5.1.Let g(R) be an unbounded increasing function such thatg(R) <

(logR)5. Given any fixedε > 0, then for all y < R, except for a set of measure
O(R [g(R)]−ε/2), the interval[y, y + g(R)], contains anx with

P−(x) > exp([g(R)]1/5−ε).

Proof. One takes a largeT and has to show that almost ally ≤ T have anx ∈ [y, y +
g(R)] with P−(x) > exp([g(R)]1/5−ε). Using the above notation, one writesU = g(R)

and in order to get the result of Proposition 5.1, one must chooseZ = eU
1/5−ε

. Also, in
order to havef ((logD)/(logZ)) > 0, one takesD = Z2+ε.

SinceU → ∞, assume thaty > T/U and divide the interval[T/U, T ] into disjoint
subintervals of the form(X, 2X]. TakingV = X/U and applying Theorem 5.1 gives a
lower bound

S(A, Z) > U4/5+ε {f (2 + ε′)+O((logD)−1/3)
}

− |Ry(D)|,

so the main term has orderU4/5+ε. Now considerG ⊂ (X, 2X] given as the set ofy’s
for which |Ry(D)| > U4/5−ε. It follows that∫ 2X

X

|Ry(D)|dy > |G|U4/5−ε.

SinceU < (logX)5, one hasZ < e(logX)1−ε
and so

D2 ≤ e3(logX)1−ε ≤ X

2(logX)5
≤ X

2U
= V

2
,

for all sufficiently largeX. Also, sinceD = exp((2 + ε)U1/5−ε), one hasU =
C1(logX)5+ε′D for some constantsC1, ε

′, so

V

2
= X

2U
≤ C1

X

(logD)5
≤ X

2 logD
,

for all sufficiently largeX. The conditions of Theorem 5.2 are therefore satisfied, and
applying it gives∫ 2X

X

|Ry(D)|dy � X(U1/2(logD)3/2 + (logD)2) � XU4/5−3/2ε.

It follows that
|G| � XU−ε/2 = o(R),

i.e., the proportion of exceptionaly’s goes to zero. Thus almost ally ∈ (X/2, X] have
|Ry(D)| < U4/5−ε and this is dominated by the main termU4/5+ε of (3), soS(A, Z) is
nonzero for almost all suchy. Taking the union of the intervals gives the result.ut
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6. R-Free Squares

Before embarking on the rather daunting task of proving Theorem 3.4, I will do a
“warmup” consisting of proving Propositions 3.2 and 3.3.

Proof of Proposition 3.2. (a) lim supFp(R)/ logR ≤ −2/ log(1 − p): Let c >

−2/ log(1−p), and at each site(m, n) inB(R), consider a square of areac log‖(m, n)‖
and with lower left hand corner at(m, n). The probability that all sites in the square are
closed is(1 − p)c log‖(m,n)‖ < ‖(m, n)‖−2−ε, whereε > 0. Summing over all sites in
Z2 gives ∑

(m,n)∈Z2

‖(m,n)‖>2

1

‖(m, n)‖2+ε ,

which converges. The Borel-Cantelli Lemma [17] shows that the probability of infinitely
many such squares being closed is zero.

(b) lim inf Fp(R)/ logR ≥ −2/ log(1 − p): Let c < −2/ log(1 − p) and for each site
(m, n) with ‖(m, n)‖ > 2, consider a square of areac log‖(m, n)‖ with bottom left
hand corner atb(m, n) (log‖(m, n)‖)2c. As in part (a), it follows that each square has a
probability� ‖(m, n)‖−2−ε of being closed. Moreover, all these events are independent
so the result follows from the Borel Cantelli Lemma and the divergence of

∑
(m,n)∈Z2

‖(m,n)‖>2

(log‖(m, n)‖)2
‖(m, n)‖2+ε . ut

Proof of Proposition 3.3.(a) Lower bound: Consider an integerk, and the firstk2 primes
q1, . . . , qk2. By the Chinese Remainder Theorem, the following congruences have so-

lutionsm, n ≤ ∏k2

i=1 qi ,

m ≡ −i

mod

k∏
j=1

qik+j


 , n ≡ −j


mod

k∏
j=1

qjk+i


 ,

so gcd(m+i, n+j) > 0, for 1≤ i, j ≤ k. The prime number theorem givesk2(1+ε′)k2
>

‖(m, n)‖ > k2(1−ε)k, which yields the estimatek2 > (1 − ε′′) 1
2 logR/ log logR (one

can improve the 1/2 term toπ2/12).

(b) Upper bound:Assume that there is anR-free square{(m+i, n+j) : 1 ≤ i, j ≤ k}. By
Corollary 5.1, there arex1, . . . , x` ∈ [m+1, m+k] for whichP−(xi) > k1/2−ε, and such
that` � k/ logk. Writexi = ∏ri

j=1 q
eij
ij . One notes that ifq is a prime, then the number

of integers in a setS which are relatively prime toq is ≥ min{|S|(1 − 1/q), |S| − 1}.
The asymptotic relation ∑

k1/2−ε<q≤k
q prime

1

q
∼ − log(1/2 − ε) < 1

thus implies that the number of integers in[m + 1, m + k] relatively prime toxi is
� (1+ log(1/2− ε)) k− |{j ≤ ri : qij ≥ k}|, and so eachri > (1+ log(1/2− 2ε)) k.
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One further notes that gcd(xi, xj ) ≤ k for i 6= j , so thatxi andxj can share at most 2
distinct prime factors. This implies that the number of distinctqij ’s is � k2/ logk. The
prime number theorem gives

∏̀
i=1

xi �
∏

y<q≤D k2

q prime

q = eD k
2−k1/2−ε+o(1),

for some constantD, and so logxi � k logk for all i. This therefore gives logR �
k logk and the result follows since logk is of order log logR. ut

7. The Structure of the Infinite Component

In this section, I prove Theorem 3.4. One begins identifying some subsets of the infinite
component.

Lemma 7.1.The following sets are inC∞:

(1) {(m,1) : m > 0}. (2) {(p, n) : p > n}, p prime.

(3) {(m, q) : q < m < (q/2)20/11, q 6 |m}, qprime.

Proof. The first two results were proved above. The third follows from the unconditional
result of Heath-Brown and Iwaniec [34] which states that every interval of lengthy11/20

contains a prime (this has subsequently been improved, see [48]). Thus, ifq 6 |m, then
sinceq > 2m11/20, one of the intervals[m+m11/20] or [m−m11/20, m] has none of its
elements divisible byq and the corresponding line segment lies completely inR. By the
result of Heath-Brown and Iwaniec, this line segment will cross a line{(p, n)}, where
p is prime, and by (2), this is inC∞, so(m, q) is also inC∞. ut

One proceeds by proving an initial version of Theorem 3.4.

Lemma 7.2.All but O(R2/ logR) pairs of B(R) are surrounded by a rectangle of
perimeterO((logR)7) all of whose edges are contained inC∞.

Proof. Consider the set

S0 = {(m, n) ∈ B(R) : ∃ n′, P−(n′) > R1/5, (logR)7 + n > n′ > n,minimal,

(d, n′) = 1 if |d −m| < R1/13, ∃p ∈ [m− R1/13, m+ R1/13]}.
By Watt’s result that almost every interval of lengthy1/14+ε contains a prime,

E0,1 = {(m, n) ∈ B(R) : [m− R1/13, m+ R1/13] has no primes}
has density zero. In fact, his result shows that|E0,1| � R2/(logR)2, since substitut-
ing E = 3 in Theorem 1 of [48] already gives this estimate for intervals of length
R1/14(logR)22.

Next, if

E0,2 = {(m, n) ∈ B(R) : P−(n′) ≤ R1/5, for all (logR)7 + n > n′ > n},
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then |E1,2| � R2/ logR. This bound follows by an argument similar to the proof of
Proposition 5.1: Partition[R1/2, R] into intervals of the form[X,2X] and in each of
these intervals, letU = (logX)7, D = V 1/2/2, and for a fixed 1/10 > ε > 0, let
Z = D1/2−ε. The main term in Eq. (2) of Theorem 5.1 is then� (logX)6 while
Theorem 5.2 gives

1

X

∫ 2X

X

|Ry(D)|dy � (logX)5.

ThereforeG defined as the set ofy ∈ (X, 2X] for which |Ry(D)| � (logX)6 satisfies
|G| � X/ logX.

Finally, one considers

E0,3 = {(m, n) ∈ B(R) : P−(n′) > R1/5, (logR)7 + n > n′ > n, minimal,

∃d |d −m| < R1/13, (d, n′) > 1}.
But if P−(n′) > R1/5, then

|E0,3| � R(logR)7
∑

P−(n′)>R1/5

|d−m|<R1/13, (d,n′)>1

1 � R1+1/13(logR)7R
∑
p|n′

R

p

� R2+1/13−1/5 (logR)7 � R2

logR
.

SinceB(R)− S0 ⊂ E0,1 ∪ E0,2 ∪ E0,3, it follows that|B(R)− S0| � R2/ logR, and
soS0 represents almost all points ofB(R).

An examination of the definition ofS0 shows that for every(m, n) ∈ S0 there is
an unbroken horizontal line segmentL0,1(m, n) ⊂ C∞ of lengthR1/13, centered at
(m, n) and which passes above(m, n) within distanceO((logR)7), and which crosses
a vertical line{(p, n)}, wherep is prime. By Lemma 7.1 (2), this vertical line is inC∞,
so it follows thatL0,1(m, n) is also inC∞.

Replacing the conditionn′ > n with n′ < n yields the similar result with a line
segmentL0,2(m, n), passing below(m, n). To construct the corresponding vertical line
segmentsL0,3(m, n),L0,4(m, n), one must include the condition thatm, n � R11/20 in
order to apply part 3 of Lemma 7.1. The result then follows.ut

The next iteration already contains most of the ideas of the general procedure and is
included in order to give a self-contained proof of Theorem 3.3.

Lemma 7.3.All butO(R2/(log logR)3) pairs ofB(R) are surrounded by a rectangle
of perimeterO((log logR)36) all of whose edges are contained inC∞.

Proof. Consider the set

S1 = {(m, n) ∈ B(R) : ∃m′ P−(m′) > (logR)42,

(log logR)36 +m > m′ > m, minimal,

(m′, d) = 1, |d − n| < (logR)40.}.
Now let

E1,1 = {(m, n) ∈ B(R) : P−(m′) < (logR)42, for all (log logR)36 +m > m′ > m}.
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By Proposition 5.1, for almost ally, [y, y + (log logR)36] contains an integerx with
P−(x) > exp((log logR)36(1/5−ε)), and this is> (logR)42 for all sufficiently largeR.
The error term of Proposition 5.1 gives

|E1,1| � R2

(log logR)36ε/2 = R2

(log logR)3
,

by lettingε = 1/6. Next, one considers

E1,2 = {(m, n) ∈ B(R) : P−(m′) > (logR)42,

(log logR)36 +m > m′ > m, minimal,

∃d |d − n| < (logR)40, (m′, d) > 1}.
As before, one gets

|E1,2| � R(log logR)36
∑

P−(m′)>(logR)42

|d−n|<(logR)40, (m′,d)>1

1

� R (log logR)36(logR)40
∑
p|m′

R

p
� R2 (log logR)37

(logR)2

� R2

logR
,

for all sufficiently largeR. This last estimate used the fact that ifP−(m′) > (logR)42

andm′ < R, thenm′ can have at mostO(logR/ log logR) prime factors.
It follows thatS1 consists of almost all elements ofB(R). The definition ofS1 then

shows that for almost all(m, n) ∈ B(R), there is a line segmentL1,1(m, n) ⊂ R of
length at least(logR)40, centered at(m, n) and which passes by(m, n) at distance
O((log logR)36).

One now observes thatS0 ∩ S1 also comprises almost all elements ofB(R). The
definition ofS0 implies that for almost all(m, n), the line segmentL1,1(m, n) intersects
a rectangle of perimeterO((logR)7) whose edges lie inC∞ (note that these extend
in C∞ to lengthR1/13), soL1,1(m, n) will also be contained inC∞. Clearly, one can
similarly show that for almost all(m, n), there are line segmentsL1,j ⊂ R, j = 2,3,4,
of length(logR)40 and which pass within(log logR)36 of (m, n) on all four sides, and
by the same argumentL1,j ⊂ C∞, j = 2,3,4. ut

An examination of the proof of Lemma 7.3 reveals that the obstacle in continuing
this process is the term

∑
p|m′ 1/p, which must beo(1). The trivial estimate

∑
p|m

1

p
� ω(m)

P−(m)
(4)

was used and this will only allow one more iteration, if one first removes allm for which
ω(n) > 2 log logR (as is well known, this set has zero density [44]). In fact, in this
context, it is easy to improve substantially on (4), as was noted to me by G. Tenenbaum.
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Lemma 7.4.Letf (R) be any function increasing to infinity, then except for a set ofm

of sizeO(R/
√
f (R) logf (R)), one has the bound

∑
p|m

p≥f (R)

1

p
� 1√

f (R) logf (R)
.

Proof. One uses the simple estimate

∑
m≤R

∑
p|m

p≥f (R)

1

p
=

∑
p≥f (R)

R

p2 = R

f (R) logf (R)
.

This result reflects the fact that
∑
p|m 1/p has a limiting density, as follows easily from

the Erdős–Wintner Theorem [44].ut
This result allows one to iterate the above argument. Recall that rect(m, n) is the

perimeter of the smallest rectangle surrounding(m, n) which has all its edges inC∞.

Lemma 7.5.Let log1 z = logz andlogk+1 z = log(logk z), and letexpk z be the inverse
of logk z, then forR > expk+2(1015),

|(m, n) ∈ B(R) : rect(m, n) ≤ (logk+1R)
36}| = |B(R)|

[
1 −O

(
1

(logk+1R)
3

)]
,

(5)

where theO( ) term is independent ofk.

Proof. One proves this by induction onk. The initial stepk = 1 is exactly Lemma 7.3.
Now assume that (5) holds fork, then I will show that it holds fork + 1.

Thus assume that one has constructed for almost all(m, n), line segmentsLk,j (m, n),
j = 1,2,3,4, as above, but of length(logk R)

40, which pass within(logk+1R)
36, are

centered at(m, n) and lie completely inC∞. In particular, one assumes that the set

Sk = {(m, n) ∈ B(R) : ∃n′ P−(n′) > (logk R)
100,

(logk+1R)
36 + n > n′ > n, minimal,

(d, n′) = 1, |d −m| < (logk R)
40, (m, n′) ∈ C∞},

is such that|B(R)− Sk| � R2/(logk+1R)
3. One then considers

Sk+1 = {(m, n) ∈ B(R) : ∃m′ P−(m′) > (logk+1R)
100,

(logk+2R)
36 +m > m′ > m, minimal,

(m′, d) = 1, |d − n| < (logk+1R)
40}.

Now let

Ek+1,1 = {(m, n) ∈ B(R) : P−(m′) < (logk+1R)
100,

for all (logk+2R)
36 +m > m′ > m}.
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By Proposition 5.1, for anyε > 0, except forO(R/(logk+2R)
36ε/2)values ofy, the inter-

val [y, y+ (logk+2R)
36] contains an integerx with P−(x) > exp((logk+2R)

36(1/5−ε)).
Letting ε = 1/6, this says that except forO(R/(logk+2R)

3) values ofy, the interval
[y, y + (logk+2R)

36] contains an integerx with P−(x) > exp((logk+2R)
1+2/15). This

last quantity is eventually> (logk+1R)
100, in particular, when logk+2R > 10015/2, i.e.,

whenR > expk+2(1015). Thus, one concludes that

|Ek+1,1| � R2

(logk+2R)
3 , for R > expk+2(1015).

Next, one considers

Ek+1,2 = {(m, n) ∈ B(R) : P−(m′) > (logk+1R)
100,

(logk+2R)
36 +m > m′ > m, minimal,

∃d, |d − n| < (logk+1R)
40, (m′, d) > 1}.

As before, one gets

|Ek+1,2| � R(logk+2R)
36

∑
P−(m′)>(logk+1R)

100

|d−n|<(logk+1R)
40, (m′,d)>1

1

� R (logk+2R)
36(logk+1R)

40
∑
m≤R

P−(m)>(logk+1R)
100

∑
p|m

1

p
.

Now let

Ek+1,3 = {(m, n) ∈ B(R) :
∑
p|m′

p>(logk+1R)
100

1

p
≥ 1

(logk+1R)
50
√

logk+2R

for all (logk+2R)
36 +m > m′ > m}.

Applying Lemma 7.4 gives

|Ek+1,3| � R2 (logk+2R)
36

(logk+1R)
50
√

logk+2R
,

so

|Ek+1,2 − Ek+1,3| � R2(logk+2R)
36(logk+1R)

40

(logk+1R)
50
√

logk+1R
� R2

logk+1R
,

whenever(logk+1R)
9 > (logk+2R)

36, for example, whenR > expk+2(16). It follows
that Sk+1 consists of almost all elements ofB(R), where the exceptional set is�
R2/(logk+2R)

3.
The definition ofSk+1 also shows that for almost all(m, n) ∈ B(R), there is a line

segmentLk+1,1(m, n) ⊂ R of length at least(logk+1R)
40, centered at(m, n) and which

passes by(m, n) at distanceO((logk+2R)
36).
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One now observes thatSk ∩ Sk+1 also comprises almost all elements ofB(R) except
for an exceptional set of size

� R2

(logk+1R)
3 + R2

(logk+2R)
3 = (1 + Ak)

R2

(logk+1R)
3 ,

for sufficiently largeR, where

k∏
j=1

(1 + Aj) �
k∏
j=1

[
1 +O

(
1

(logj R)3

)]
= O(1).

The definition ofSk+1 implies that for almost all(m, n), the line segmentLk+1,1(m, n)

of length (logk+1R)
40 will intersect the perimeter of the rectangle of perimeter

(logk+1R)
36 constructed in the previous iteration (note that its sides extend to line

segments inC∞ of length (logk R)
40). Since the sides of this rectangle lie inC∞, it

follows thatLk+1,1(m, n)will also be contained inC∞. Thus, the line segments defined
in Sk+1 also lie inC∞.

Clearly, one can similarly show that for almost all(m, n), there are line segments
Lk+1,j ⊂ R, j = 2,3,4, of length(logk+1R)

40 and which pass within(logk+2R)
36 of

(m, n) on all four sides, andLk+1,j ⊂ C∞, j = 2,3,4. ut
Proof of Theorem 3.4.Assume that there is a functionf (R) increasing to infinity, and a
fixedλ > 0 such that for at leastλR2

i pairs(m, n) one has rect(m, n) > f (Ri), where
Ri is a sequence increasing to infinity.

One defines log∗ z to be the minimum number of iterations of log required to be≤ 2,
i.e., loglog∗ z z ≤ 2. Let k = log∗ R − log∗ f (R) − 2, then logk R � logf (R) for all
sufficiently largeR.

One can now apply Lemma 7.5 since the bound

expk+2(1015) = explog∗ R−logf (R)+4(1015) � logR = o(R)

holds. Furthermore, one has

1

(logk+1R)
3 � 1

log4 f (R)
→ 0,

since logk R � log3 f (R)andf (R) → ∞. Substituting this in (5) shows that for almost
all (m, n) ∈ B(R) one has rect(m, n) ≤ f (R), which contradicts the above assumption.
The result follows. ut

Proof of Theorem 3.3.Assuming Theorem 3.2, then this follows directly from Theo-
rem 3.4. For if the result were not true, then there would be a functionf (R) increasing to
infinity such thatθ(R) < 1/f (R) for all sufficiently largeR. However, Theorem 3.4 im-
plies that for sufficiently largeR, almost all points ofB(R) are surrounded by a rectangle
of perimeter

√
f (R) all of whose edges lie inC∞. This implies thatθ(R) � 1/

√
f (R)

which is a contradiction.ut
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8. The Infinite Ccomponent has a Density

As in Sect. 4, the idea is to compare the density of the infinite component in a big square

θ(R) = |B(R) ∩ C∞|
|B(R)|

with this density modulo a product of primes. Thus, let

θh = lim
R→∞

|{(m, n) ∈ B(R) : (m, n) ∈ infinite component moduloh}|
|B(R)| .

The following gives a local characterization of the infinite component moduloh.

Lemma 8.1.z is in the infinite component moduloh if and only ifz modh is connected
moduloh to all sides ofB(h).

Proof. In fact, this holds for the fundamental domainB∗(h) = {0 ≤ m, n < h} of
Z2 modh (soB(h) consists of 4 copies ofB∗(h)). To see this, note thatB∗(h) has
reflection symmetries generated by(m, n) 7→ (n,m) and(m, n) 7→ (m,−n) modh
which preserve relatively prime pairs modh. ThusB∗(h) consists of 8 triangles each of
which is a reflection of its adjacent neighbor, see Fig. 5. It is clear thatz is on the infinite
component if and only if it ish-connected to all three sides of the triangle on which it
lies and this is clearly equivalent to beingh-connected to all four sides ofB∗(h). ut

Lemma 8.2.If X < Y thenθP (X) ≥ θP (Y ).

Proof. If z ∈ B(P (Y )) is in the infinite component moduloP(Y ) thenz modP(Y ) is
P(Y ) connected to three boundaries ofB(P (Y )). Since reducing moduloP(X) does not
remove any connections, it follows thatz modP(X) isP(X) connected to the boundary
of B(P (X)). ut

Fig. 5.Reflection symmetries moduloh
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One concludes thatθP (X) is decreasing and therefore the limitθ∗ = limX→∞ θP (X)
exists.

Lemma 8.3.If bothX → ∞ andR/P (X) → ∞, thenθ(R) ≤ θP (X) + o(1).

Proof. This follows exactly as in the above also following the proof of Lemma 4.3.
Note that the boundary error in tilingB(R) with B(P (X)) is O(P (X)/R) = o(1) by
assumption. ut

One therefore hasθ(R) ≤ θ∗ + o(1) and the main result follows from

Lemma 8.4. limR→∞ θ(R) = θ∗.

Proof. If θ∗ = 0, then Lemma 8.3 shows thatθ = 0 as well and there is nothing to
prove. On the other hand, ifθ∗ > 0 consider a largeR and by Lemma 8.2, find a
largeX such thatθP (X) is very close toθ∗, with P(X) < R andR/P (X) large. Since
the prime number theorem says thatP(X) = eX+o(1), one can chooseX such that
R1/2/4< P(X) < R1/2. It follows thatX is of order logR, i.e., there are two constants
A,B, such thatA logR < X < B logR.

Now going fromR moduloP(X) toR inB(R) removes at most|B(R)| ∑d>X 1/d2

� |B(R)|/X elements. So, by the above estimate, one is removingO(R2/ logR) sites.
By Lemma 7.3, given 0< ε < 1/2, one can surround almost all sites with aC∞ rectan-
gle of perimeter< (logR)1/2−ε. Thus apart from a set of zero density, each individual
removal can disconnect at most(logR)1−2ε sites from the connected component (note
that none of the elements on the rectangles specified by Lemma 7.3 are removed, since
these belong toC∞ of R). It follows that at mostO(R2(logR)1−2ε/ logR) sites are dis-
connected, a vanishingly small percentage of the infinite connected component modulo
P(X). This implies thatθ(R) is asymptotically close toθP (X). ut

Acknowledgement.I would like to thank Cécile Dartyge for checking the method of Sect. 7 and Gérald
Tenenbaum for helpful comments and a crucial observation (Lemma 7.4).
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