Flowering graphs

Interactive proximity test to codes on graphs by flowering

Hugo Delavenne, Tanguy Medevielle, Élina Roussel

LIX, École Polytechnique, Institut Polytechnique de Paris Inria

Thursday 10th April 2025 @ Paris 8. Saint-Denis

2 Flowering protocol

2 Flowering protocol

3 Flowering graphs

- Interactive Oracle Proof of Proximity
- ▶ Fast Reed-Solomon IOPP

 \blacktriangleright \mathcal{P} has executed a complex algorithm $A: x \mapsto y$

Interactive Oracle Proofs of Proximity

Flowering graphs

- $\triangleright \mathcal{P}$ has executed a complex algorithm $A: x \mapsto y$
- \blacktriangleright very proud, it wants to share y to \mathcal{V}

- $\triangleright \mathcal{P}$ has executed a complex algorithm $A: x \mapsto y$
- \triangleright very proud, it wants to share y to \mathcal{V}
- \blacktriangleright \mathcal{V} only trusts what it sees

- $\triangleright \mathcal{P}$ has executed a complex algorithm $A: x \mapsto y$
- \triangleright very proud, it wants to share y to \mathcal{V}
- $\triangleright \mathcal{V}$ only trusts what it sees
- ▶ it can't accept y = A(x) and doesn't want to compute it itself

- $\triangleright \mathcal{P}$ has executed a complex algorithm $A: x \mapsto y$
- \triangleright very proud, it wants to share y to \mathcal{V}
- $\triangleright \mathcal{V}$ only trusts what it sees
- ightarrow it can't accept y = A(x) and doesn't want to compute it itself
- $\blacktriangleright \mathcal{P}$ is very sad

Flowering graphs

- $\triangleright \mathcal{P}$ has executed a complex algorithm $A: x \mapsto y$
- \triangleright very proud, it wants to share y to \mathcal{V}
- $\triangleright \mathcal{V}$ only trusts what it sees
- ightarrow it can't accept y = A(x) and doesn't want to compute it itself
- $\,\triangleright\,\, \mathcal{P}$ is very sad
- #emotion

SNARK means Succinct Non-interactive ARgument of Knowledge.

```
It turns A: x \mapsto y (that runs in 	au(|x|)) into
```


SNARK means Succinct Non-interactive ARgument of Knowledge.

It turns $\boldsymbol{A}: \boldsymbol{x} \mapsto \boldsymbol{y}$ (that runs in $au(|\boldsymbol{x}|)$) into

satisfying:

 $\blacktriangleright |\pi| \ll \tau$

- ▶ A' runs in $\tilde{O}(\tau)$
- ▶ there is a verifier \mathcal{V} in $poly(|\pi|)$ such that
 - ▷ **Completeness:** if A(x) = y then $\mathbb{P}(\mathcal{V}(\pi) \text{ accepts}) = 1$
 - \triangleright Soundness: if $A(x) \neq y$ then $\mathbb{P}_{\alpha}(\mathcal{V}(\pi) \text{ accepts}) \leqslant s$.

- Proof of Transaction (Blockchains)
- Proof of Authenticity (Signature preservation)
- Proof of Emulation (Speedrun)
- ▶ Proof of Training (AI regulation)

Definition Relative Hamming distance

Let $u, v \in \mathbb{F}^N$. $\Delta(u, v) := \frac{1}{N} |\{i \in [N] \mid u_i \neq v_i\}|$

A linear error correcting code is a linear subspace of \mathbb{F}^N .

Definition Reed-Solomon codes

Let
$$\mathcal{L}_N \subseteq \mathbb{F}$$
, $|\mathcal{L}_N| = N$ and $K < N$.

$$\mathsf{RS}[\mathcal{L}_N, K] := \{ f : \mathcal{L}_N \to \mathbb{F} \mid f \in \mathbb{F}[X]_{\leqslant K-1} \}$$

 $\mathsf{RS}[\mathcal{L}_N, K]$ has length N, dimension K and minimal distance $1 - \frac{K+1}{N}$.

Interactive Oracle Proofs of Proximity

Reduction from checking computation to testing proximity to $RS[\mathcal{L}_N, K]$

$$\begin{array}{ll} y = A(x) & \Longrightarrow & \mathsf{Arithmetization}(A, x, y) \in \mathsf{RS}[\mathcal{L}_N, K] \\ y \neq A(x) & \Longrightarrow & \Delta(\mathsf{Arithmetization}(A, x, y), \mathsf{RS}[\mathcal{L}_N, K]) > \delta \end{array}$$

Idea:

 $\label{eq:computation} \mbox{Computation} = \mbox{arithmetic circuit} = \mbox{composed polynomials} \rightarrow \mbox{Reed-Solomon code}$

Definition Locally-testable code

A code C is (ℓ, δ, s) -locally-testable if there is \mathcal{V} only ℓ accesses to u such that

- ▶ **Completeness:** if $u \in C$ then $\mathbb{P}(\mathcal{V}^u \text{ accepts}) = 1$
- ▶ **Soundness:** if $\Delta(u, C) > \delta$ then $\mathbb{P}(\mathcal{V}^u \text{ accepts}) \leq s$.

C has locality ℓ if *C* is (ℓ, δ, s) -l.-t. for s < 1.

Example Reed-Solomon codes are not locally-testable

 $\mathsf{RS}[\mathcal{L}_N, K]$ doesn't have locality $\ell < K + 1$.

Proof.

Any K values correspond to a degree $\leq K - 1$ polynomial by interpolation.

Interactive Oracle Proofs of Proximity

Interactive Oracle Proofs of Proximity

31

Euh ??? We are doing SNARKs right?

This is **not** Succinct Non-interactive.

Interactive Oracle Proofs of Proximity

Flowering graphs

Definition Cryptographic hash function

A cryptographic hash function $H: \{0,1\}^* \rightarrow \{0,1\}^{|H|}$

- looks injective: P cannot find collisions
- ▶ looks **random**: *P* cannot find input to get desired output

Fiat-Shamir replaces \mathcal{V} 's randomness by hash of previous messages:

$$\mathcal{P} \xrightarrow[w]{\alpha} \mathcal{V} \qquad \text{becomes} \qquad \alpha := H(w) \subsetneq \mathcal{P} \xrightarrow[w]{w} \mathcal{V}$$

31

Definition Oracle access

 \mathcal{P} provides to \mathcal{V} an **oracle access** to $u \in \mathbb{F}^n$ by giving **black-box** access to u.

In practice, \mathcal{P} provides the root of a **Merkle tree**.

Interactive Oracle Proof of Proximity

- ▶ **Completeness:** if $u \in C$ then $\mathbb{P}(\mathcal{V}^{u, \leftrightarrow \mathcal{P}} \text{ accepts}) = 1$
- ▶ Soundness: if $\Delta(u, C) > \delta$ then for any \mathcal{P} , $\mathbb{P}(\mathcal{V}^{u, \leftrightarrow \mathcal{P}} \text{ accepts}) \leq s$

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive Oracle Proofs.

In Theory of Cryptography: 14th International Conference, TCC 2016-B, Beijing, China, October 31-November 3, 2016, Proceedings, Part II 14, pages 31-60. Springer, 2016

Interactive Oracle Proofs of Proximity

Flowering graphs

Folding

31 31

Idea: Test even and odd parts $f(X) =: f_{\text{even}}(X^2) + X f_{\text{odd}}(X^2)$.

Definition Folding

Let $f : \mathcal{L}_N \to \mathbb{F}$ and $\alpha \in \mathbb{F}$.

$$\mathsf{Fold}[f,\alpha](X^2) := f_{\mathsf{even}}(X^2) + \alpha f_{\mathsf{odd}}(X^2) = \frac{f(X) + f(-X)}{2} + \alpha \frac{f(X) - f(-X)}{2X}$$

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

Interactive Oracle Proofs of Proximity

Flowering graphs

Folding

31 31

Idea: Test even and odd parts $f(X) =: f_{\text{even}}(X^2) + X f_{\text{odd}}(X^2)$.

Definition Folding

Let $f : \mathcal{L}_N \to \mathbb{F}$ and $\alpha \in \mathbb{F}$.

$$\mathsf{Fold}[f,\alpha](X^2) := f_{\mathsf{even}}(X^2) + \alpha f_{\mathsf{odd}}(X^2) = \frac{f(X) + f(-X)}{2} + \alpha \frac{f(X) - f(-X)}{2X}$$

▶ Field restriction: $\mathcal{L}_{N/2} := \{x^2 \mid x, -x \in \mathcal{L}_N\}$ so \mathbb{F} must have 2^N roots of unity

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

Interactive Oracle Proofs of Proximity

Flowering graphs

Folding

31

Idea: Test even and odd parts $f(X) =: f_{\text{even}}(X^2) + X f_{\text{odd}}(X^2)$.

Definition Folding

Let $f : \mathcal{L}_N \to \mathbb{F}$ and $\alpha \in \mathbb{F}$. Fold $[f, \alpha](X^2) := f_{\text{even}}(X^2) + \alpha f_{\text{odd}}(X^2) = \frac{f(X) + f(-X)}{2} + \alpha \frac{f(X) - f(-X)}{2X}$

- ▶ Field restriction: $\mathcal{L}_{N/2} := \{x^2 \mid x, -x \in \mathcal{L}_N\}$ so \mathbb{F} must have 2^N roots of unity
- ▶ Validity preservation: $f \in \mathsf{RS}[\mathcal{L}_N, K] \iff \mathbb{P}(\mathsf{Fold}[f, \alpha] \in \mathsf{RS}[\mathcal{L}_{N/2}, K/2]) > \frac{1}{|\mathbb{F}|}$
- ▶ Local check: \mathcal{V} computes Fold $[f, \alpha](x^2)$ with 2 queries to f

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

Interactive Oracle Proofs of Proximity

Flowering graphs

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

Interactive Oracle Proofs of Proximity

Flowering graphs

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

Interactive Oracle Proofs of Proximity

Flowering graphs

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

Interactive Oracle Proofs of Proximity

Flowering graphs

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

Interactive Oracle Proofs of Proximity

Flowering graphs

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

Interactive Oracle Proofs of Proximity

Flowering graphs

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

Interactive Oracle Proofs of Proximity

Flowering graphs

4

Proposition FRI complexities [BBHR18]

FRI protocol for $RS[\mathcal{L}_N, K]$ with m repetitions has following complexity:

- Prover complexity: < 8N
- Verifier complexity: $< 2m \log K$
- Number of queries: $2m \log K$
- Number of rounds: $\log K$

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

Interactive Oracle Proofs of Proximity

Flowering graphs Hu

Hugo Delavenne

(after encoding)

Proposition FRI completeness

If $f_0 \in \mathsf{RS}[\mathcal{L}_N, K]$ then \mathcal{V} accepts with probability 1.

Theorem FRI soundness [BCI+23]

If $\Delta(f_0, \mathsf{RS}[\mathcal{L}_N, K]) > \delta$ then for any $\tilde{\mathcal{P}}$ and $\varepsilon > 0$, \mathcal{V} accepts with probability

$$\leqslant \frac{K^2 \log K}{(2\varepsilon)^7 |\mathbb{F}|} + \left(1 - \min\left(\delta, 1 - \sqrt{K/N} - \varepsilon\right)\right)^m.$$

[BCI+23] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity Gaps for Reed-Solomon Codes. J. ACM, 70(5), October 2023

Interactive Oracle Proofs of Proximity

Flowering graphs Hu

2 Flowering protocol

3 Flowering graphs

▶ Graphs

- Folding graphs
- ► Flowering

Regular Indexed Multigraphs (RIM)

 $\Gamma = (V, E)$ is a *n*-RIM:

Multigraph: multiple edges and loops

Graphs

 $\Gamma = (V, E)$ is a *n*-RIM:

- Multigraph: multiple edges and loops
- ▶ **Regular:** same number *n* of edges

Graphs
$\Gamma = (V\!,E)$ is a $n\text{-}\mathsf{RIM}\text{:}$

- Multigraph: multiple edges and loops
- \triangleright **Regular:** same number *n* of edges
- ► Indexed: edge is $(v, \ell) \in V \times [n]$ Write $E(v, \ell) \in V$ the neighbor of v by ℓ

17

Word $f: V \times [n] \to \mathbb{F}$ on a graph Γ

17

Definition Code $\mathcal{C}[\Gamma, C_0]$

Given Γ a *n*-RIM and $C_0 \subseteq \mathbb{F}^n$,

$$f \in \mathcal{C}[\Gamma, C_0] \iff \forall v, f(v, \cdot) \in C_0.$$

We'll only use $C_0 = \mathsf{RS}[n, k]$.

Word $f: V \times [n] \to \mathbb{F}$ on a graph Γ

17

Word $f: V \times [n] \to \mathbb{F}$ on a graph Γ

Definition Code $\mathcal{C}[\Gamma, C_0]$

Given Γ a *n*-RIM and $C_0 \subseteq \mathbb{F}^n$,

 $f \in \mathcal{C}[\Gamma, C_0] \iff \forall v, f(v, \cdot) \in C_0.$

We'll only use $C_0 = \mathsf{RS}[n, k]$.

For 0, we must have $(c_0, b_0, g_0, r_0, g_8, b_9, c_{11}) \in \mathsf{RS}[7, k].$

Tutorial: Cutting graphs

Folding graphs

18

Cut-graph $\Gamma' = Cut[\Gamma, V']$:

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol

Flowering graphs

18 ,

Cut-graph $\Gamma' = Cut[\Gamma, V']$:

• Choose vertices $V' \subseteq V$

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol

Flowering graphs

Cut-graph $\Gamma' = Cut[\Gamma, V']$:

- \triangleright Choose vertices $V' \subseteq V$
- Cut the rest

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol Flo

Flowering graphs Hugo Delavenne

Cut-graph
$$\Gamma' = Cut[\Gamma, V']$$
:

- \triangleright Choose vertices $V' \subseteq V$
- Cut the rest
- Enjoy your new graph

$$E_{V'}(v, \ell) = egin{cases} E(v, \ell) & ext{if } E(v, \ell) \in V' \ v & ext{otherwise} \end{cases}$$

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Folding graphs

Definition Graph isomorphism

A bijection $\varphi: V' \to V''$ is an **isomorphism** $\Gamma' \to \Gamma''$ if

$$\forall (v',\ell) \in V' \times [n], \quad \varphi(E'(v',\ell)) = E''(\varphi(v'),\ell).$$

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol

Flowering graphs

Folding graphs

Definition Graph isomorphism

A bijection $\varphi: V' \to V''$ is an **isomorphism** $\Gamma' \to \Gamma''$ if

 $\forall (v',\ell) \in V' \times [n], \quad \varphi(E'(v',\ell)) = E''(\varphi(v'),\ell).$

Definition Flowering cut

With $V'' = V \setminus V'$, if $Cut[\Gamma, V'] \sim Cut[\Gamma, V'']$, the cut is **flowering**.

The cut-word Cut[f, V'] is the restriction $f_{|V' \times [n]}$.

Folding graphs

Definition Graph isomorphism

A bijection $\varphi: V' \to V''$ is an **isomorphism** $\Gamma' \to \Gamma''$ if

 $\forall (v',\ell) \in V' \times [n], \quad \varphi(E'(v',\ell)) = E''(\varphi(v'),\ell).$

Definition Flowering cut

With $V'' = V \setminus V'$, if $Cut[\Gamma, V'] \sim Cut[\Gamma, V'']$, the cut is **flowering**.

The cut-word Cut[f, V'] is the restriction $f_{|V' \times [n]}$.

Definition Folding

For
$$lpha \in \mathbb{F}$$
, $(v', \ell) \in V' imes [n]$,

$$\mathsf{Fold}[f,\alpha](v',\ell) := \mathsf{Cut}[f,V'](v,\ell) + \alpha \mathsf{Cut}[f,V''](\varphi^{-1}(v'),\ell).$$

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

011

100

010

101

001

110

ักกก

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol

Flowering graphs

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol

Flowering graphs

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol

Flowering graphs

Flowering

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol

Flowering graphs

Flowering

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol

Flowering graphs

Flowering

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol

Flowering graphs

Proposition Flowering complexities

Flowering with m repetitions has complexities:	(recall FRI)
• Prover complexity: $< 3N$	< 8N
► Verifier complexity: 4mnr	$< 2m\log K$
▶ Number of queries: $\sim 2mnr$	$2m\log K$
Number of rounds: r	$\log K$

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol

Flowering graphs Huge

Hugo Delavenne

Flowering

Proposition Flowering complexities

Flowering with m repetitions has complexities: (with our first graphs) (recall FRI)Prover complexity: < 3N< 8NVerifier complexity: 4mnr ($< 4m \log^2 N$) $< 2m \log K$ Number of queries: $\sim 2mnr$ ($< 2m \log^2 N$) $2m \log K$ Number of rounds: r ($< \log N$) $\log K$

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol Flow

Flowering graphs Hug

Hugo Delavenne

Flowering

23

Flowering

Hugo Delavenne

31

Proposition Flowering completeness

If $f \in C[\Gamma, \mathsf{RS}[n, k]]$ then \mathcal{V} accepts with probability 1.

Theorem Flowering soundness

If $\Delta(f, \mathcal{C}[\Gamma, \mathsf{RS}[n, k]]) > \delta$ then for any $\tilde{\mathcal{P}}$ and $\varepsilon > 0$, \mathcal{V} accepts with probability

$$\leqslant rac{r}{arepsilon |\mathbb{F}|} + (1 - \delta + arepsilon r)^m \, .$$

Recall FRI:

$$-\frac{K^2 \log K}{(2\varepsilon)^7 q |\mathbb{F}|} + \left(1 - \min\left(\delta, 1 - \sqrt{K/N} - \varepsilon\right)\right)^m$$

[BCI+23] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity Gaps for Reed-Solomon Codes. J. ACM, 70(5), October 2023

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted
Flowering protocol
Flowering graphs

1 Interactive Oracle Proofs of Proximity

2 Flowering protocol

3 Flowering graphs

- ► First graphs
- Expander graphs
- New cuts (current work)

Cayley graphs

First graphs

Definition Cayley graph Cay(G, S)

Fix (G, \cdot) . Let $S \subseteq G$ symmetric generating. Define $\Gamma = (G, E)$ where $E(g, s) = g \cdot s$.

Example

We take

- $\blacktriangleright \ G = (\mathbb{F}_2^r, +)$
- $\blacktriangleright \ S \subseteq G \text{ of size } n$
- $\blacktriangleright \ \Gamma = \mathsf{Cay}[G,S]$
- $\blacktriangleright \ C = \mathcal{C}[\Gamma, \mathsf{RS}[n, k]]$

[Cay78] Arthur Cayley. Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical Representation. American Journal of Mathematics, 1(2):174-176, 1878

Flowering graphs

Flowering graphs

Using S the columns of a parity check matrix of a $[n, n - r, d]_2$ binary code

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering graphs Flowering graphs Hugo De

Hugo Delavenne

First graphs

Using S the columns of a parity check matrix of a $[n, n - r, d]_2$ binary code

If $d \ll r$ (i.e. far from MDS), δ is **terrible** (O(1/N)).

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering graphs Flowering graphs Hugo Delavenne

First graphs

Definition Graph expansion

Let $\Gamma = (V, E)$ a *n*-regular graph and $A \in \{0, 1\}^{|V| \times |V|}$ its adjacency matrix. Let $\Lambda_1 \ge \Lambda_2 \ge ... \ge \Lambda_n \in \mathbb{R}$ be the eigenvalues of A.

Then Γ is λ -expander if $|\Lambda_i| \leq n\lambda$ for $i \geq 2$.

Definition Graph expansion

$\lambda \in [0,1]$ characterizes random walk propagation in $\Gamma.$ Small λ means good expansion.

Definition Graph expansion

$\lambda \in [0,1]$ characterizes random walk propagation in $\Gamma.$ Small λ means good expansion.

Lemma Minimal distance expansion lower bound [AC88]

If Γ is λ -expander, with $\delta = 1 - \frac{k+1}{n}$, $C[\Gamma, \mathsf{RS}[n, k]]$ has minimal distance $\geq \delta(\delta - \lambda)$.

Thus if $(\Gamma_i)_{i \in \mathbb{N}}$ has constant expansion, then $(\mathcal{C}[\Gamma_i, \mathsf{RS}[n_i, \gamma n_i]])_{i \in \mathbb{N}}$ has constant minimal distance.

[AC88] Noga Alon and Fan Chung. Explicit construction of linear sized tolerant networks. Discrete Mathematics, 72(1-3):15-19, 1988

Flowering graphs

Flowering graphs

Let

- $\triangleright \ G_p = \operatorname{SL}_3(\mathbb{F}_p)$
- \triangleright S_p symmetric generating
- $\blacktriangleright \ \Gamma_p = \mathsf{Cay}(G_p,S_p)$
- then $(\Gamma_p)_p$ has constant expansion.

Expander graphs

Let

- $\triangleright \ G_p = \operatorname{SL}_3(\mathbb{F}_p)$
- \triangleright S_p symmetric generating
- $\blacktriangleright \ \Gamma_p = \mathsf{Cay}(G_p, S_p)$
- then $(\Gamma_p)_p$ has constant expansion.

We obtain Γ_2 with

$$S_2 = \left\{ \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}^{\pm 1} \right\}:$$

Expander graphs

Let

- $\triangleright \ G_p = \operatorname{SL}_3(\mathbb{F}_p)$
- \triangleright S_p symmetric generating
- $\blacktriangleright \ \Gamma_p = \mathsf{Cay}(G_p, S_p)$
- then $(\Gamma_p)_p$ has constant expansion.

We obtain Γ_2 with

$$S_2 = \left\{ \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}^{\pm 1} \right\}:$$

Expander graphs

We can cut into m > 2 cuts

We can cut into $m>2\ {\rm cuts}$

▶ Choose *m* sets of vertices $V_0, ..., V_{m-1} \subseteq V$

We can cut into m>2 cuts

- ▷ Choose *m* sets of vertices $V_0, ..., V_{m-1} \subseteq V$
- Cut outgoing edges

We can cut into $m>2\ {\rm cuts}$

- ▷ Choose *m* sets of vertices $V_0, ..., V_{m-1} \subseteq V$
- Cut outgoing edges
- Get new graphs with petals

New cuts (current work)

We can cut into m>2 cuts

- \triangleright Choose *m* sets of vertices $V_0, ..., V_{m-1} \subseteq V$
- Cut outgoing edges
- Get new graphs with petals
- Define the new Fold with the isomorphisms

$$\mathsf{Fold}[f,\alpha](v,\ell):=\sum_{i=0}^{m-1}\alpha^i f(\varphi_i^{-1}(v),\ell)$$

Non-paritionning cuts

Cuts $V_1, ..., V_m$ may not be disjoint:

Let $S = \{s_0^{\pm 1}, s_2^{\pm 1}, \dots, s_{\tilde{n}-1}^{\pm 1}\}$ and $G = \langle S \rangle$ be finite. Write $\tilde{s}_i := s_i \mod \tilde{n}$. Let

$$\begin{split} r_g &:= \min\{k \in \mathbb{N} \mid g = \tilde{s}_0^{j_1} \cdots \tilde{s}_{r_g}^{j_{r_g}}\}\\ r &:= \max_{g \in G} r_g \leqslant \tilde{n} \cdot \operatorname{diam} \operatorname{Cay}(G, S) = O(\tilde{n} \log |G|) \end{split}$$

The cuts are $V_{i,j} := \left\{ \tilde{s}_i^j \cdot \tilde{s}_{i+1}^{j_{i+1}} \cdots \tilde{s}_r^{j_r} \mid j_{i+1}, ..., j_k \in \mathbb{N} \right\}.$

► $\Gamma_{i,j} \sim \Gamma_{i,0}$ with $\varphi_{i,j}(g) = \tilde{s}_i^{-j}g \rightarrow \operatorname{order}(\tilde{s}_i)$ cuts

▶ $\Gamma_{r,0}$ is a flower $\rightarrow O(\tilde{n} \log |G|)$ rounds

New cuts (current work)

Competing parameters with FRI

- ▷ We have a better soundness
- Our complexity could be improved

New cuts, new graphs

- ightarrow 2 disjoint cuts V', $V'' \rightarrow m$ covering cuts $V_1, V_2, ..., V_m$
- Compute complexity for general Cayley graphs

Make this actually useful

- ▷ Arithmetize circuits to graphs: colored De Bruijn
- ▷ Encode words on graphs into bigger flowering graphs