Flowering graphs

Proximity test to codes on graphs by flowering

Hugo Delavenne, Tanguy Medevielle, Élina Roussel

Future Surycat team LIX, École Polytechnique, Institut Polytechnique de Paris Inria

Friday 4th April 2025 @ C2 Davs 2025. Pornichet

SNARK means Succinct Non-interactive ARgument of Knowledge.

```
It turns A: x \mapsto y (that runs in 	au(|x|)) into
```


satisfying:

 $\blacktriangleright |\pi| \ll \tau$

- ▶ A' runs in $\tilde{O}(\tau)$
- ▶ there is a verifier \mathcal{V} in $poly(|\pi|)$ such that
 - ▷ **Completeness:** if A(x) = y then $\mathbb{P}_{\alpha}(\mathcal{V}(\pi) \text{ accepts}) = 1$
 - $\triangleright \text{ Soundness: if } A(x) \neq y \text{ then } \mathop{\mathbb{P}}_{\alpha}(\mathcal{V}(\pi) \text{ accepts}) \leqslant s.$

1 Interactive proximity tests

2 Flowering protocol

1 Interactive proximity tests

2 Flowering protocol

3 Flowering graphs

- Interactive Oracle Proof of Proximity
 - Interactive Proofs & arithmetization
 - Oracle access
 - Interactive Oracle Proofs of Proximity

Fast Reed-Solomon IOPP

- Folding Reed-Solomon codes
- ▷ FRI protocol
- Complexities
- Completeness and soundness

Arithmetization reduces checking a computation to testing proximity to a code C:

$$A(x) = y \implies Arithmetization(A, x, y) \in C$$

 $A(x) \neq y \implies \Delta(Arithmetization(A, x, y), C) > \delta$

With arithmetization + proximity test + Fiat-Shamir we get a NARK!

21

 \mathcal{P} can provide to \mathcal{V} an **oracle access** to $u \in \mathbb{F}^n$ by giving **black-box** access to u.

In practice, \mathcal{P} provides the root of a **Merkle tree**.

Interactive proximity tests

Interactive Oracle Proofs of Proximity

Interactive Oracle Proof of Proximity

- ▶ **Completeness:** if $u \in C$ then $\mathbb{P}(\mathcal{V}^{u, \leftrightarrow \mathcal{P}} \text{ accepts}) = 1$
- ▶ Soundness: if $\Delta(u, C) > \delta$ then for any \mathcal{P} , $\mathbb{P}(\mathcal{V}^{u, \leftrightarrow \mathcal{P}} \text{ accepts}) \leq s$

[BCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive Oracle Proofs.

In Theory of Cryptography: 14th International Conference, TCC 2016-B, Beijing, China, October 31-November 3, 2016, Proceedings, Part II 14, pages 31-60. Springer, 2016

Interactive proximity tests

Flowering graphs

21

We test proximity to $\mathsf{RS}[\mathcal{L}_N, \mathbf{K}] := \{f : \mathcal{L}_N \to \mathbb{F} \mid f \in \mathbb{F}[X]_{< K}\}$, with $|\mathcal{L}_N| = N$.

Idea. Test even and odd parts $f(X) =: f_{even}(X^2) + X f_{odd}(X^2)$.

Definition Fold

$$\begin{split} \mathsf{Fold}[f,\alpha](Y) &:= f_{\mathsf{even}}(Y) + \alpha f_{\mathsf{odd}}(Y) = \frac{f(X) + f(-X)}{2} + \alpha \frac{f(X) - f(-X)}{2X}, \\ \text{with "}Y &= X^2 \text{", } \alpha \in \mathbb{F} \end{split}$$

- ▶ Field restriction: $\mathcal{L}_{N/2} := \{x^2 \mid x, -x \in \mathcal{L}_N\}$ so \mathbb{F} must have 2^N roots of unity
- ▶ Validity preservation: $f \in \mathsf{RS}[\mathcal{L}_N, K] \iff \mathbb{P}(\mathsf{Fold}[f, \alpha] \in \mathsf{RS}[\mathcal{L}_{N/2}, K/2]) > \frac{1}{|\mathbb{F}|}$
- ▶ Local check: \mathcal{V} computes Fold $[f, \alpha](x^2)$ with 2 queries to f

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

Interactive proximity tests

Flowering graphs Hugo Delavenne

FRI protocol

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

Interactive proximity tests

Flowering graphs

Proposition FRI complexities [BBHR18]

FRI protocol for $RS[\mathcal{L}_N, K]$ with m repetitions has following complexity:

- Prover complexity: < 6N
- Verifier complexity: $< 2m \log K$

• Number of queries: $< 2m \log K$

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

Interactive proximity tests

Flowering graphs Hu

Hugo Delavenne

(without encoding)

21

Proposition FRI completeness

If $f_0 \in \mathsf{RS}[\mathcal{L}_N, K]$ then \mathcal{V} accepts with probability 1.

Theorem FRI soundness

If $\Delta(f_0, \mathsf{RS}[\mathcal{L}_N, K]) > \delta$ then for any $\tilde{\mathcal{P}}$ and $\varepsilon > 0$, \mathcal{V} accepts with probability

$$\leqslant \frac{K^2 \log K}{(2\varepsilon)^7 q} + \left(1 - \min\left(\delta, 1 - \sqrt{K/N} - \varepsilon\right)\right)^m.$$

[BCI+23] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity Gaps for Reed-Solomon Codes. J. ACM, 70(5), October 2023

Interactive proximity tests

Flowering graphs

1 Interactive proximity tests

2 Flowering protocol

3 Flowering graphs

Graphs

- Regular Indexed Multigraphs (RIM)
- \triangleright Words and codes on graphs

► Folding graphs

- ▷ Tutorial: Cutting graphs
- ▷ Graph isomorphism & folding
- ▷ « Vous voulez des exemples ? »

Flowering

- Flowering protocol
- Complexity comparison
- Completeness and soundness

Regular Indexed Multigraphs (RIM)

Graphs

 $\Gamma = (V, E)$ is a $n\text{-}\mathsf{RIM}\text{:}$

Multigraph: multiple edges and loops

Graphs

- $\Gamma = (V\!, E)$ is a n-RIM:
- Multigraph: multiple edges and loops
- ▶ **Regular:** same number *n* of edges

Graphs

- $\Gamma = (V, E)$ is a $n\text{-}\mathsf{RIM}\text{:}$
- Multigraph: multiple edges and loops
- \triangleright **Regular:** same number *n* of edges
- ► Indexed: edge is $(v, \ell) \in V \times [n]$ Write $E(v, \ell) \in V$ the neighbor of v by ℓ

Words and codes on graphs

Definition Code $\mathcal{C}[\Gamma, C_0]$

Given Γ a *n*-RIM and $C_0 \subseteq \mathbb{F}^n$,

$$f \in \mathcal{C}[\Gamma, C_0] \iff \forall v, f(v, \cdot) \in C_0.$$

We'll only use $C_0 = \mathsf{RS}[n, k]$.

Word $f: V \times [n] \to \mathbb{F}$ on a graph Γ

Tutorial: Cutting graphs

Folding graphs

12

Cut-graph $\Gamma' = Cut[\Gamma, V']$:

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol

Flowering graphs

Folding graphs

12

Cut-graph $\Gamma' = Cut[\Gamma, V']$:

• Choose vertices $V' \subseteq V$

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol

Flowering graphs Hu

Folding graphs

Cut-graph $\Gamma' = Cut[\Gamma, V']$:

- \triangleright Choose vertices $V' \subseteq V$
- Cut the rest

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol

Flowering graphs Hugo De

Cut-graph $\Gamma' = \text{Cut}[\Gamma, V']$:

- \triangleright Choose vertices $V' \subseteq V$
- Cut the rest \triangleright
- Enjoy your new graph

$$E_{V'}(v, \ell) = egin{cases} E(v, \ell) & ext{if } E(v, \ell) \in V' \ v & ext{otherwise} \end{cases}$$

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted Flowe

Definition Graph isomorphism

A bijection $\varphi: V' \to V''$ is an **isomorphism** $\Gamma' \to \Gamma''$ if

 $\forall (v',\ell) \in V' \times [n], \quad \varphi(E'(v',\ell)) = E''(\varphi(v'),\ell).$

Definition Flowering cut

With $V'' = V \setminus V'$, if $Cut[\Gamma, V'] \sim Cut[\Gamma, V'']$, the cut is **flowering**.

The cut-word Cut[f, V'] is the restriction $f_{|V' \times [n]}$.

Definition Folding

For
$$lpha \in \mathbb{F}$$
, $(v', \ell) \in V' imes [n]$,

$$\mathsf{Fold}[f,\alpha](v',\ell) := \mathsf{Cut}[f,V'](v,\ell) + \alpha \mathsf{Cut}[f,V''](\varphi(v'),\ell).$$

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

001

´110`

000

011

100

010

101

« Vous voulez des exemples ? »

Folding graphs

Flowering protocol

Flowering

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol

Flowering graphs

16

Proposition Flowering complexities	
Flowering with m repetitions has complexities:	(recall FRI)
• Prover complexity: $< 3N$	< 6N
• Verifier complexity: $< 4mn \log N$	$< 2m \log N$
• Number of queries: $< 2mn \log N$	$< 2m \log K$

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon Interactive Oracle Proofs of Proximity. In 45th international colloquium on automata, languages, and programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol F

Flowering graphs Huge

Proposition Flowering completeness

If $f \in C[\Gamma, RS[n, k]]$ then \mathcal{V} accepts with probability 1.

Theorem Flowering soundness

If $\Delta(f, \mathcal{C}[\Gamma, \mathsf{RS}[n, k]]) > \delta$ then for any $\tilde{\mathcal{P}}$ and $\varepsilon > 0$, \mathcal{V} accepts with probability

$$\leq \frac{\log N}{\varepsilon q} + (1 - \delta + \varepsilon \log N)^m$$
.

Recall for FRI:

$$\frac{K^2 \log K}{(2\varepsilon)^7 q} + \left(1 - \min\left(\delta, 1 - \sqrt{K/N} - \varepsilon\right)\right)^m$$

[BCI+23] Eli Ben-Sasson, Dan Carmon, Yuval Ishai, Swastik Kopparty, and Shubhangi Saraf. Proximity Gaps for Reed-Solomon Codes. J. ACM, 70(5), October 2023

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering protocol Flowering graphs

1 Interactive proximity tests

2 Flowering protocol

3 Flowering graphs

- ▷ Cayley graphs
- Our parameters
- ▷ Expander graphs
- ▷ Conclusion & future work

Definition Cayley graph Cay(G, S)

Fix (G, \cdot) . Let $S \subseteq G$ symmetric generating. Define $\Gamma = (G, E)$ where $E(q, s) = g \cdot s$.

Example

With
$$G = (\mathbb{F}_2^3, +)$$
 and $S = \{100, 010, 001, 111\}$,

We consider

 \blacktriangleright $G = (\mathbb{F}_2^r, +)$

 \triangleright $S \subseteq G$ of size n

[Cay78] Arthur Cayley. Desiderata and Suggestions: No. 2. The Theory of Groups: Graphical Representation. American Journal of Mathematics, 1(2):174-176, 1878

Flowering graphs

Flowering graphs

/ 2

We take

$$\blacktriangleright \ \Gamma = \mathsf{Cay}((\mathbb{F}_2^r, +), S)$$

- \blacktriangleright S the columns of a parity check matrix of a $[n, n r, d]_2$ binary code
- $\blacktriangleright \ C = \mathcal{C}[\Gamma, \mathsf{RS}[n, k]]$

Proposition Parameters of the code

$$N = n2^{r-1}$$

$$rate C \ge \frac{2k}{n} - 1$$

$$\frac{1}{2}\delta \le \Delta(C) \le \delta,$$
with $\delta = \frac{1}{2^{r-d+1}} \left(1 - \frac{k-1}{n}\right) = \frac{n2^{d-2}}{N} \left(1 - \frac{k-1}{n}\right)$

If $d \ll r$ (i.e. far from MDS), δ is **terrible** (O(1/N)).

[DMR25] Hugo Delavenne, Tanguy Medevielle, and Élina Roussel. Interactive Oracle Proofs of Proximity to Codes on Graphs, 2025. Submitted

Flowering graphs Flo

Flowering graphs Hu

Lemma Expansion bound [AC88]

If
$$\Gamma$$
 is λ -expander, with $\delta = 1 - \frac{k+1}{n}$

 $\Delta(\mathcal{C}[\Gamma,\mathsf{RS}[n,k]]) \geqslant \delta(\delta-\lambda)$

Thus constant expansion implies constant minimal distance.

Example Expander graph family

 $Cay(SL_3(\mathbb{F}_p), S_p)$ has constant expansion.

[AC88] Noga Alon and Fan Chung. Explicit construction of linear sized tolerant networks. Discrete Mathematics, 72(1-3):15-19, 1988

Flowering graphs

Competing parameters with FRI

- Better soundness
- Complexity could be improved

More possible cuts

$$\triangleright \ \mathbf{2} \text{ cuts } V', V'' \quad \rightarrow \quad m \text{ cuts } V_1, V_2, ..., V_m \\ \triangleright \ V = V' \sqcup V'' \quad \rightarrow \quad V = V_1 \cup V_2 \cup \cdots \cup V_m$$

21 / 21