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Abstract
This thesis is focused on symbolic algorithms for dynamical models defined by differential

or difference equations. Such algorithms aim at complementing traditional numerical

tools, they are exact and often operate on the level of symbolic expressions.

In the context of differential and difference equations, perhaps the most well-known

symbolic algorithms are the ones for finding closed-form solutions which are available

in many scientific software packages. However, a large portion (if not majority) of the

equations appearing in the modeling literature do not admit such solutions. This fact

does not render the symbolic methods useless. On the contrary, there is a number of

ways to transform a model on the symbolic level to facilitate its further analysis. In this

thesis, we discuss the following problems of this type:

• eliminating a subset of the variables (for example, the latent ones) from a model;

• assessing structural identifiability of parameters, that is, checking if the parameter

values can be inferred uniquely from input-output data, and transforming a model

into a one with better identifiability properties;

• performing exact model reduction, that is mapping a model into a one of lower

dimension without introducing approximation errors;

• quadratizing a model, that is embedding the model into a one with at most quadratic

nonlinearities.

The results we present for these problems range from theorems and theoretical algorithms

to practical software implementations and case studies.

Keywords
symbolic computation, differential equations, difference equations, differential algebra,

elimination, exact model reduction, parameter identifiability, quadratization
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1. Introduction

Dynamical models formulated in terms of differential or difference equations is one of the key tools

for representing real-world processes and phenomena in continuous and discrete time, respectively.

Nature (almost likely) has structure. Models, especially good ones, can inherit it. Analyzing and

revealing this structure are important steps towards understanding and successfully applying

dynamical models.

Two fundamental examples of this paradigm that go back to the 19th century and are centered

around the symmetries of differential equations are Lie group analysis of differential equations [91]

and differential Galois theory [101]. Starting with the works of Ritt [104, 105] and Kolchin [67],

the latter has been developed into a more general theory, differential algebra, aiming at providing

a framework for studying the structure of nonlinear differential equations beyond their symmetry

properties. The general philosophy behind many of these works was to extend commutative

algebra and algebraic geometry, traditionally applied to polynomial equations, to the differential

(and, later, difference [26]) ones.

While being originally developed inside mathematics, the language and tools from differen-

tial/difference algebra made their way to the sciences and engineering with one of the pioneering

application areas being control theory in the 1980s-1990s [32, 41, 54, 81, 86, 89, 124]. The avail-

ability of dedicated software tools was very limited at the time, so these earlier applications were

mostly restricted to relatively small models. The next important chapter in this story begins in the

1990s-2000s when computational tools for differential algebra started to be developed systemati-

cally [6, 15, 17, 59, 123]. These algorithmic and software advances allowed easier dissemination

of the language and methodology leading to applications of constructive differential algebra

also in mathematical biology [10, 83], cyber-physical systems [45, 114], and scientific machine

learning [29, 70].

Theoretical, computational, and applied aspects of differential algebra mentioned above

provide the background and serve as a staring point to the research described in the present

thesis. Furthermore, many of the contributions presented here can be naturally positioned with

respect to these three axes. On the other hand, from a higher-level perspective, the binding

theme of the present manuscript is revealing and exploiting the structure of a model through a
model transformation, and this general way to state the task calls for a more holistic choice of

mathematical and computational tools to be used. In particular, depending on a specific problem,

methods of differential algebra are augmented with tools from algebraic geometry, mathematical

logic, combinatorics, and representation theory, and classical symbolic computation algorithms

are being combined with discrete optimization and numerical computing. To be more explicit, let

us review the results presented in this thesis chapter by chapter.
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Chapter 2 describes some key concepts from differential and difference algebra relevant

for this thesis as well and some of our theoretical results in this domain. In particular, we

discuss that the rings of analytic functions and numerical sequences typically used in modeling of

continuous- and discrete-time systems, respectively, are universal solution spaces in the sense of

differential/difference algebra. This indicates that the chosen theoretical tools are indeed adequate

for the target application problems.

Using a geometric analogy, the transformations discussed in this thesis can be informally

classified into projections and liftings. Perhaps, the most natural appearance of the projection

motive in the context of models defined by differential and difference equations is the elimination
problemwhich is discussed in Chapter 3. Elimination problem asks, for a given system of equations,

to derive relations between a chosen subset of variables (in applications, the variables of interest

or the variables for which data is available). The results presented in Chapter 3 include effective

bounds reducing differential/difference elimination to the classical polynomial elimination and

practical algorithmic results. The lifting theme appears episodically in Section 3.5 where we study

a problem of representing a nonlinear differential equation as a projection of a rational dynamical

model (also known as realization problem in control theory). We finish Chapter 3 with analogues

of classical algebraic results of elimination flavor: differential Noether normalization lemma and

primitive theorem for difference-differential fields.

The projection theme continues further into Chapter 4 which is devoted to structural parameter
identifiability. For a model defined by parametric differential equations, a parameter is called

structurally identifiable if its value can be inferred uniquely from the input-output data assuming

the absence of noise and sufficiently exciting inputs. The problem is naturally connected to

elimination since it can be viewed as a study of the relation involving only the parameter of

interest and input and output variables of the model. The intuitive notion of identifiability may

be formalized in several ways, and not all of them are equivalent. This has caused significant

amount of confusion in the literature, and the first contribution presented in Chapter 4 is a series

of results establishing the exact relation between several popular definitions of identifiability and

even giving new semantics to some of them. The second contribution described in Chapter 4

consists of two new algorithms for assessing structural parameter identifiability. The corresponding

software tools allowed tackling problems which were out of reach before. The algorithms are

very different but both have elimination techniques of different flavor under the hood. The

corresponding software packages, SIAN and StructuralIdentifiability.jl, are both being

used in the modeling literature from mathematical biology [30, 120] to cyber-security [24], and a

recent survey [103] of tools for structural identifiability recommends them as the best choices

for assessing global identifiability. Chapter 4 is concluded by reporting work in progress on the

problem of transforming a non-identifiable model into an identifiable one.

We take a different point of view on projecting dynamical models in Chapter 5 about exact
model reduction. For a model described by ordinary differential equations (ODEs), the problem

consists of finding a map to a lower-dimensional ODE model such that the map respects the

differential structure. Therefore, compared to the elimination problem, the focus is shifted from

computing a prescribed projection to finding convenient direction to project along. Most of Chapter 5

is focused on linear exact reduction. In this case, the projection one looks for is a linear projection of

the state space of the model. We present several algorithmic results for this problem including first

practical algorithm allowing searching among all linear reductions. The key theoretical tool here

is the structure theory of finite-dimensional algebras which, being combined with sparse linear

algebra, allows performing computations for sophisticated models coming from systems biology.
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We conclude Chapter 5 with some recent progress on computing nonlinear exact reductions. This

task turns out to be closely related to the problem of transforming a non-identifiable model to an

identifiable one from the end of Chapter 4.

Quadratization problem is the main topic of Chapter 6 in which the lifting idea manifests itself

most explicitly. While the transformations considered in the preceding chapters ultimately aim at

reducing model’s “dimension” (in the sense of the number of variables of the order of the model),

here we are interested in reducing the degree of the nonlinearities in the model. More precisely,

quadratization of an ODE model is its embedding into a model with at most quadratic dynamics

or, in other words, a lifting of a model to a quadratic one. We present the first algorithm for finding

an optimal (of lowest possible dimension) quadratization for the case when the lifting map is

defined by monomials and extend this approach to models with control and to stability-preserving

quadratizations. Then we show how to apply the developed methodology to high-dimensional

models arising as semi-discretizations of partial differential equations (PDEs), and showcase the

resulting algorithm on a model of solar wind.

The last chapter of the thesis, Chapter 7, offers an outlook to promising directions for future

research discussing possible ways to circumvent existing computational bottlenecks, tighten the

connections between the developed symbolic and algebraic methods with applications, and explore

the potential of the developed point of view in new application domains.

Let us conclude the introduction with an account of the chronology of the results presented in

this manuscript and their position with respect to my PhD thesis in Mathematics entitled “Prime

differential algebras and Lie algebras associated to them” defended in 2016 [98]. Significant part

of my PhD research was devoted to obtaining differential analogues of classical algebraic results,

most notably the primitive element theorem [95]. Computation was not among the main themes

of my PhD thesis although I used computer calculations and Gröbner bases in proofs [97, 99]. I

have returned to these theoretical questions during the subsequent years [G2, G3, G37, G38, G39]

partly motivated by my research on computational and applied aspects of differential algebra.

My first big research direction after receiving PhD, differential and difference elimination

discussed in Chapter 3, follows the same pattern as my doctoral thesis: I worked on differential

and difference analogues of classical problem in computational algebra. In particular, effective

bounds from Sections 3.1, 3.2, and 3.3 can be viewed as a continuation of the tradition of effective

Nullstellensätze [63, 69, 73]. However, when further diving into more applied problems (in partic-

ular, in control theory) related to differential elimination such as realizability (Section 3.5) and

identifiability (Chapter 4), I have found out that “typical” differential and difference equations

appearing in applications in many aspects are very different from “typical” polynomial systems.

Because of this, direct analogies with the classical algebraic equations do not give much insight into

the dynamical situation anymore. Addressing this challenge opened a new chapter in my research

when the starting point of an investigation was not a natural question inspired by existing theory

but an applied problem with strong structural/algebraic flavor. My more recent research projects,

on exact model reduction (Chapter 5) and on quadratization (Chapter 6), emerged this way. In

particular, their connection to differential algebra, which was my main field of research during

the PhD studies and shortly after, is weaker, and other mathematical tools like representation

theory (for exact model reduction) and combinatorics (for quadratization) come to the forefront.



2. Differential and Difference Algebra

Most of dynamical models discussed in the thesis will be defined by algebraic differential or differ-

ence equations. Differential/difference algebra provides us a convenient language to operate with

such equations. The goal of this chapter will be to set up the notation from differential/difference

algebra which will be used throughout the text and to survey some basic facts from differen-

tial/difference algebra relevant to our discussion.

2.1 Differential/difference rings and fields

Solutions of differential and difference equations can be sought in various structures including

smooth functions, power series, trigonometric series, etc. If one wants to plug an element of some

structure into an algebraic differential/difference equation, such a structure has to be equippedwith

arithmetic operations and derivation/shift. This motivates the notions of differential/difference

rings.

Definition 2.1.1 — Differential rings and fields.
• Let 𝑅 be a commutative ring. An additive map 𝛿 : 𝑅→ 𝑅 is called a derivation if it satisfies
the Leibniz rule:

𝛿 (𝑎𝑏) = 𝛿 (𝑎)𝑏 +𝑎𝛿 (𝑏) for every 𝑎,𝑏 ∈ 𝑅.

We will typically denote 𝛿 (𝑎) by 𝑎′ and, for 𝑛 ⩾ 0, 𝛿𝑛 (𝑎) by 𝑎 (𝑛) .
• A commutative ring equipped with a derivation is called a differential ring. If a differential
ring is a field, it is called a differential field.

• A commutative ring equipped with several pairwise commuting derivations is called par-
tial differential ring. If the set of derivations is denoted by Δ = {𝜕1, . . . , 𝜕𝑚}, such a ring

will also be called a Δ-ring.
• For a differential ring, a subring closed under the derivation is called a differential subring.
Differential subfields are defined in the same way. A differential ring which is an algebra

over its differential subfield, is called a differential algebra. Δ-subring, Δ-subfield, and
Δ-algebra are defined in the same way.

■ Example 2.1 — Differential rings.
• Any ring can be considered as a differential ring with respect to the zero derivation or even

as a partial differential ring with respect to several zero derivations.

• Consider the ring C[𝑥] and the field C(𝑥). They are a differential ring and field with respect
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to
d
dx , respectively. Moreover, they are differential algebras over the constant field C.

• Let 𝐷 ⊂ C be a domain in the complex plane. By Hol(𝐷) andMer(𝐷) we denote the set of
all holomorphic and meromorphic functions in 𝐷 , respectively. They are a differential ring

and a differential field with respect to
d
dz , respectively.

• The examples above naturally extend to the partial differential case, for example, the field

C(𝑥1, . . . ,𝑥𝑚) of rational functions is a Δ-field for Δ = {𝜕1, . . . , 𝜕𝑚} if we take 𝜕𝑖 =
d
dx𝑖 for

1 ⩽ 𝑖 ⩽𝑚. ■

Definition 2.1.2 — Difference rings.
• Let 𝑅 be a commutative ring. An additive map 𝜎 : 𝑅→ 𝑅 is called an endomorphism if

𝜎 (1) = 1 and

𝜎 (𝑎𝑏) = 𝜎 (𝑎)𝜎 (𝑏) for every 𝑎,𝑏 ∈ 𝑅.

• A commutative ring equipped with an endomorphism is a difference ring. If a difference
ring is a field, it is called a difference field.

• For a difference ring, a subring closed under the endomorphism is called a difference
subring. Difference subfields are defined in the same way. A difference ring which is an

algebra over its difference subfield, is called a difference algebra.

One can naturally extend Definition 2.1.2 to the setting with several commuting endomor-

phisms (thus defining partial difference rings). Such objects will be mentioned only tangentially in

this text, so we will not formally define them here.

■ Example 2.2 — Difference rings.
• Any ring can be considered as a difference ring with respect to the identity endomorphism.

• Consider the ring C[𝑥] and the field C(𝑥). They are a difference ring and field with respect

to 𝜎 (𝑓 (𝑥)) = 𝑓 (𝑥 + 1), respectively. They are also difference algebras over the constant

field C.
• The ring or meromorphic functions on a complex plane is a difference ring with respect to a

shift 𝑓 (𝑧) → 𝑓 (𝑧 +1) or a dilation 𝑓 (𝑧) → 𝑓 (𝑞𝑧) (where 𝑞 ∈ C is a fixed constant).

• Let 𝑅 be any ring. Then the ring of two-sided infinite sequences 𝑅Z is a difference ring with

respect to the shift operator, that is, 𝜎 ({𝑎𝑖}𝑖∈Z) = {𝑎𝑖+1}𝑖∈Z. ■

2.2 Differential/difference polynomials
Typical algebraic differential/difference equations are polynomial expressions in unknown functions

and their derivatives/shifts. This idea can be formalized using the notion of differential/difference

polynomial.

Notation 2.1. Let 𝑥 be an element of a differential ring and ℎ be a nonnegative integer. Then we
introduce

𝑥 (<ℎ) := (𝑥,𝑥 ′, . . . ,𝑥 (ℎ−1) ), 𝑥 (∞) := (𝑥,𝑥 ′,𝑥 ′′, . . .) .

Notation 𝑥 (⩽ℎ) is defined analogously. This notation can be extended to tuples x = (𝑥1, . . . ,𝑥𝑛) as

x(<ℎ) := (𝑥 (<ℎ)
1 , . . . ,𝑥

(<ℎ)
𝑛 ), x(∞) := (𝑥 (∞)

1 , . . . ,𝑥∞𝑛 ) .



14 Chapter 2. Differential and Difference Algebra

Definition 2.2.1 — Differential polynomials. Let 𝑅 be a differential ring. Consider a ring of

polynomials in infinitely many variables

𝑅 [𝑥 (∞) ] := 𝑅 [𝑥,𝑥 ′,𝑥 ′′,𝑥 (3) , . . .]

and extend the derivation from 𝑅 to this ring by (𝑥 ( 𝑗 ) )′ := 𝑥 ( 𝑗+1)
. The resulting differential ring

is called the ring of differential polynomials in 𝑥 over 𝑅. The ring of differential polynomials in

several variables is defined by iterating this construction.

■ Example 2.3 Weierstrass’s elliptic function ℘(𝑧) satisfies the following differential equation:

(℘′(𝑧))2 = 4℘(𝑧)3−𝑔2℘(𝑧) −𝑔3. This equation can be written as the following differential polyno-

mial over a constant field Q(𝑔2,𝑔3): (𝑥 ′)2−4𝑥3−𝑔2𝑥 −𝑔3 ∈ Q(𝑔2,𝑔3) [𝑥 (∞) ]. ■

In order to extend this definition to the partial differential case, we fix Δ = {𝜕1, . . . , 𝜕𝑚}.

Notation 2.2. Let 𝑥 be an element of a Δ-ring and h = (ℎ1, . . . ,ℎ𝑚) be a tuple of elements of Z⩾0∪{∞}.
We introduce

𝑥 (<h) := {𝜕𝑒11 . . . 𝜕
𝑒𝑚
𝑚 𝑥 | ∀ 1 ⩽ 𝑖 ⩽𝑚 : 0 ⩽ 𝑒𝑖 < ℎ𝑖}.

Notation 𝑥 (⩽h) is defined analogously. If we denote∞∞∞ := (∞, . . . ,∞︸   ︷︷   ︸
𝑚 times

), then 𝑥 (∞∞∞) will be the set of all

partial derivatives of 𝑥 . Similarly to Notation 2.1, this notation can be extended to tuples x= (𝑥1, . . . ,𝑥𝑛).

Definition 2.2.2 — Partial differential polynomials. Consider a Δ-ring 𝑅. Then the Δ-ring
structure can be extended to the infinitely-dimensional polynomial ring

𝑅 [𝑥 (∞∞∞) ] := 𝑅 [𝜕𝑒11 . . . 𝜕
𝑒𝑚
𝑚 (𝑥) | ∀ 1 ⩽ 𝑖 ⩽𝑚 : 𝑒𝑚 ∈ Z⩾0]

by setting 𝜕𝑖 (𝜕𝑒11 . . . 𝜕
𝑒𝑖
𝑖
. . . 𝜕

𝑒𝑚
𝑚 (𝑥)) := 𝜕𝑒11 . . . 𝜕

𝑒𝑖+1
𝑖

. . . 𝜕
𝑒𝑚
𝑚 (𝑥). The resulting Δ-ring is called the ring

of Δ-polynomials in 𝑥 over 𝑅. The ring of Δ-polynomials in several variables is defined by

iterating this construction.

■ Example 2.4 Let𝑚 = 2 and 𝑅 be a Δ-ring. Then the Jacobian of 𝑥1,𝑥2, that is����𝜕1(𝑥1) 𝜕2(𝑥2)
𝜕1(𝑥2) 𝜕2(𝑥2)

���� = 𝜕1(𝑥1)𝜕2(𝑥2) − 𝜕1(𝑥2)𝜕2(𝑥1),
is an element of the bivariate Δ-polynomial ring 𝑅 [𝑥 (∞∞∞)

1 ,𝑥
(∞∞∞)
2 ]. ■

Notation 2.3. Let 𝑥 be an element of a difference ring and ℎ be a nonnegative integer. Then we
introduce

𝜎<ℎ (𝑥) := (𝑥,𝜎 (𝑥), . . . ,𝜎ℎ−1(𝑥)), 𝜎∞(𝑥) := (𝑥,𝜎 (𝑥),𝜎2(𝑥), . . .).

Notation 𝜎⩽ℎ (𝑥) is defined analogously. As Notation 2.1, this notation can be naturally extended to
tuples x = (𝑥1, . . . ,𝑥𝑛).
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Definition 2.2.3 — Difference polynomials. Let 𝑅 be a difference ring. Consider a ring of

polynomials in infinitely many variables

𝑅 [𝜎∞(𝑥)] := 𝑅 [𝑥,𝜎 (𝑥),𝜎2(𝑥),𝜎3(𝑥), . . .]

and extend the endomorphism 𝜎 from 𝑅 to this ring by 𝜎 (𝜎 𝑗 (𝑥)) := 𝜎 𝑗+1(𝑥). The resulting

difference ring is called the ring of difference polynomials in 𝑥 over 𝑅. The ring of difference

polynomials in several variables is defined by iterating this construction.

■ Example 2.5 Fibonacci sequence {𝑓𝑖}𝑖∈Z = (. . . ,1,1,2,3,5, . . .) can be viewed as an element of the

difference ring QZ
with respect to shift (see Example 2.2). Then the recurrence 𝑓𝑛+2 = 𝑓𝑛+1 + 𝑓𝑛 can

be expressed as a difference polynomial 𝜎2(𝑥) −𝜎 (𝑥) −𝑥 ∈ Q[𝜎∞(𝑥)]. ■

2.3 Differential ideals and their solutions
If a tuple of functions satisfies several algebraic differential equations, that is, the tuple is a zero

of several differential polynomials, then it is also a zero of any combination of the derivatives of

these polynomials. This idea is formalized using the notion of differential ideal.

Definition 2.3.1 — Differential ideals. Let 𝑅 be a differential ring (resp., Δ-ring) and 𝐼 ⊂ 𝑅 be an

ideal. Then 𝐼 is called a differential ideal (resp., Δ-ideal) if 𝑎′ ∈ 𝐼 for every 𝑎 ∈ 𝐼 (resp., 𝜕𝑖 (𝑎) ∈ 𝐼
for every 1 ⩽ 𝑖 ⩽𝑚).

For every elements 𝑎1, . . . ,𝑎ℓ , the smallest differential ideal (resp., Δ-ideal) containing

𝑎1, . . . ,𝑎ℓ is the ideal generated by 𝑎
(∞)
1 , . . . ,𝑎

(∞)
ℓ

(resp., 𝑎
(∞∞∞)
1 , . . . ,𝑎

(∞∞∞)
ℓ

). We will denote it by

⟨𝑎1, . . . ,𝑎ℓ⟩ (∞)
(resp., ⟨𝑎1, . . . ,𝑎ℓ⟩ (∞∞∞)

).

■ Example 2.6 Consider a differential polynomial 𝑥 ′ −𝑥 . Its solutions in the differential ring of

formal power series C[[𝑡]] (with the standard derivation
d
dt ) are exactly power series of the form

𝑎𝑒𝑡 for 𝑎 ∈ C. Clearly, these series are also zeros of (𝑥 ′−𝑥) (𝑖 ) = 𝑥 (𝑖+1) −𝑥 (𝑖 )
for every 𝑖 as well as

any other element of ⟨𝑥 ′−𝑥⟩ (∞)
. ■

■ Example 2.7 We now extend the differential ideal from the previous example with one more

generator 𝑥 ′′−1. The solutions of 𝑥 ′′−1 inC[[𝑡]] are the quadratic functions of the form 1
2𝑡

2+𝑎𝑡 +𝑏,
so the system 𝑥 ′−𝑥 = 𝑥 ′′− 1 = 0 does not have a solution in this differential ring. This can be also

seen as follows. The ideal contains 1 because

(𝑥 ′′−1)′− (𝑥 ′′−1) − (𝑥 ′−𝑥)′′ = 1,

so existence of a zero in any differential ring would imply the impossible identity 1 = 0. ■

As the following theorem (following from [64, Theorem 2.1]) shows, Example 2.7 is prototypical

in the sense that the presence of 1 in the ideal is equivalent to the inconsistency. We will formulate

it for Δ-fields, and this will include ordinary differential fields for |Δ| = 1.

Theorem 2.3.1 — Differential Nullstellensatz, abstract version. Let 𝑘 be a Δ-field and let 𝐼 ⊂
𝑘 [x(∞∞∞) ] be a Δ-ideal. Then there exists a Δ-field 𝐾 ⊃ 𝑘 such that 𝐼 has a solution in 𝐾 if and

only if 1 ∉ 𝐼 .

For more specific choice of 𝑘 , one can say more about the sufficient 𝐾 (folklore result, see [96,

Proposition 2.4] for a proof).



16 Chapter 2. Differential and Difference Algebra

Theorem 2.3.2 — Differential Nullstellensatz, power series. Let 𝐼 ⊂ C[x(∞∞∞) ] be a differential
ideal with 1 ∉ 𝐼 . Then 𝐼 has a solution in the power series ring C[[𝑡1, . . . , 𝑡𝑚]].

■ Example 2.8 — Constant coefficients are essential. Consider a differential ideal ⟨𝑥2 − 𝑡⟩ (∞) ⊂
C[[𝑡]] [𝑥 (∞) ]. Since there is no power series 𝑥 (𝑡) with 𝑥2(𝑡) = 𝑡 , the ideal does not have a solution
in C[[𝑡]]. On the other hand, the ideal does not contain 1 by Theorem 2.3.1 because it has a

solution 𝑥 =
√
𝑡 in C[[

√
𝑡]]

[
1√
𝑡

]
⊃ C[[𝑡]]. ■

The limitation illustrated by Example 2.8 can be avoided if one considersmeromorphic functions

as coefficient and solution space. The following Ritt’s theorem of zeros and a related Seidenberg’s

embedding theorem [112] are the core facts relating differential-algebraic considerations with the

realm of analysis.

Theorem 2.3.3 — Ritt’s theorem of zeroes [104, p. 176]. Let D ⊂ C𝑚 be a domain, and let 𝑅 be

the Δ-field of meromorphic functions on this domain. Consider a differential ideal 𝐼 ⊂ 𝑅 [x(∞∞∞) ]
such that 1 ∉ 𝐼 . Then there exists a domain D0 ⊂ D such that 𝐼 has a solution in the field of

meromorphic functions in D0.

R Old theorems, new proofs. While Theorems 2.3.1 and 2.3.2 are quite straightforward to prove,

the classical proofs of Ritt’s theorem and a closely related Seidenberg’s theorem were relying

on the Riquier theory from PDEs and the machinery of characteristics sets scattered over the

book by Ritt [104] making them accessible only for the experts. With Yu.P. Razmyslow and

our student D. Pavlov, we have proposed a new short and elementary proof of both results

relying only on basic algebra and the standard Cauchy-Kovalevskaya theorem [G37].

R Non-radical ideals. As long as one is interested in solutions in integral domains (like power

series ring above), one can always replace an ideal with its radical. In a more general

case, non-radical ideals come into play, and even the simplest ones like ⟨𝑥𝑚⟩ (∞)
have rich

combinatorial structure explored in our works [G2, G3] with Rida Ait El Manssour (a PhD

student).

2.4 Difference ideals and their solutions
Definition 2.4.1 — Difference ideals. Let 𝑅 be a difference ring and 𝐼 ⊂ 𝑅 be an ideal. Then 𝐼 is

called a difference ideal if 𝜎 (𝑎) ∈ 𝐼 for every 𝑎 ∈ 𝐼 .
For every elements 𝑎1, . . . ,𝑎ℓ , the smallest difference ideal containing 𝑎1, . . . ,𝑎ℓ is the ideal

generated by 𝜎∞(𝑎1), . . . ,𝜎∞(𝑎ℓ ).

We have seen in Theorem 2.3.2 that, for constant coefficient algebraic differential equations,

formal power series play a role of a “universal solution domain”. The following theorem shows

that, in the difference setting, the ring of sequences (see Example 2.2) plays the same role.

Theorem 2.4.1 —A.Ovchinnikov, G. Pogudin, T. Scanlon [G32, Theorem 7.1]. LetK be a constant

algebraically closed difference field, and consider a difference ideal 𝐼 ⊂ K[𝜎∞(x)]. Then 𝐼 has a
solution in the ring of sequences KZ

if and only if 1 ∉ 𝐼 .
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While the statements of Theorems 2.4.1 and 2.3.2 look quite similar, the former is a much

harder to prove and involves establishing effective difference Nulstellensatz and some tools from

model theory.

Theorem 2.4.1 in the paper [G32] is given for not necessarily constant fieldK but the statement

is slightly more technical — one has to “twist” 𝜎 on the ring of sequences. Under additional

assumption that the cardinality of K is large enough (typically, uncountable), Theorem 2.4.1 was

generalized in a joint paper with T. Scanlon and M. Wibmer to the partial difference case (and even

further) [G42, Theorem 3.1]. We also demonstrate a striking difference between the difference

and partial difference case which does not occur in the differential world: while the existence of a

sequence solution can be algorithmically checked for difference equations [G32, Theorem 3.1], it

is undecidable in the partial difference case [G42, Proposition 3.9].



3. Differential/Difference Elimination

Let us consider a system of equations (for example, linear, polynomial, differential, ...)

𝑓1(x,y) = . . . = 𝑓𝑛 (x,y) = 0

in two groups of unknowns x = (𝑥1, . . . ,𝑥𝑠) and y = (𝑦1, . . . ,𝑦ℓ ). Then the elimination problem is

to find a nontrivial equation 𝑔(y) = 0 in y only, which holds for every solution of the system,

or establish that there is no such equation. A more refined version of the problem would be to

describe the set of all such equations. The most prominent examples of elimination methods

include Gaussian elimination for linear equations and resultants for polynomial elimination going

back to Cayley, Sylvester, and Macaulay.

R The elimination problem often includes, as a special case, the consistency problem: if one

takes y to be empty, then the existence of nontrivial equation 𝑔(y) = 0 is equivalent to the
fact that the original system implies an impossible equality 1 = 0, so the system does not

have any solutions. On the other hand, if such equality does not follow from the original

equations, one can often prove the existence of solutions in suitable domains (see Sections 2.3

and 2.4 for differential and difference equations).

3.1 Differential elimination via characteristic sets
In the context of differential equations, the elimination problem was already considered by Ritt,

the founder of differential algebra, in the 1930-s, see [105]. He developed the foundations of

the characteristic set approach, which has been made fully constructive by Seidenberg [113].

The algorithmic aspect of this research culminated in the Rosenfeld-Gröbner algorithm [17, 61]

implemented in the BLAD library [16] (available throughMaple). Further developments include

EPSILON library [123] and differential Thomas decomposition [6, 106].

These methods use characteristic sets or their variations in order to perform the computation

and represent the result of elimination. The definition is a bit technical (we refer to [61] for details)

but the idea is the same as in the case of triangular sets used for polynomial computation [60]

which, in turn, can be viewed as a far-reaching generalization of the row echelon form of a matrix.

More precisely, the variables are ordered and the equations are transformed into triangular shape

allowing to eliminate variables one by one.

Practical algorithms based on these ideas, most notably the aforementioned Rosenfeld-Gröbner

algorithm, could be successfully applied to systems of moderate size but their scalability has been

known to be limited. On the theoretical side, one of the most natural complexity measures is
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the maximal order of the differential polynomial appearing during the computation or, in other

words, how large the polynomial rings to consider may get. In the case of a single derivation,

such a bound for the Rosenfeld-Gröbner algorithm was given in [48]: the order may grow at

most by the factor (𝑛− 1)!, where 𝑛 is the total number of variables. The first order bound for the

Rosenfeld-Gröbner algorithm in the PDE case was given in our joint papers with R. Gustavson

and A. Ovchinnikov [G14, G15]: we have found an explicit function 𝐹 (𝑚,ℎ,𝑛)1 depending on the

number of derivations𝑚, the order of the input ℎ, and the number of variables 𝑛 such that the

total order during the computation may grow at most by a factor of 𝐹 (𝑚,ℎ,𝑛).
The question of bounding the size of the output of the Rosenfeld-Gröbner algorithm was later

revisited in our paper with W. Li, A. Ovchinnikov, and T. Scanlon [G25]. By combining methods

from model theory and theoretical computer science, we have shown that the mere existence
of an algorithm such as Rosenfeld-Gröbner implies the existence of computable bounds on the

output of the algorithm. We used this result to show that there is a computable bound for the

number of prime components of a Δ-ideal in terms of the combinatorial data of its generators [G25,

Theorem 3.1] which we then used to give a computable reduction of elimination for delay-PDE

equations to polynomial elimination [G25, Theorem 3.2] in the spirit of Sections 3.2 and 3.3.

3.2 Bounds for effective differential elimination
Another approach to the differential elimination question, which can also be traced back to

Ritt [105, p. 118], is to reduce the differential elimination problem to polynomial elimination. An
attractive feature of this point of view is that one can take advantage of the existing powerful

theoretical and practical tools for polynomial elimination. More precisely, this question in the

ODE case can be stated as follows:

Problem 3.2.1 For a system of differential polynomials 𝑓1, . . . , 𝑓ℓ ∈ K[x(∞) ,y(∞) ], compute an a
priori bound 𝐵 such that

⟨𝑓1, . . . , 𝑓ℓ⟩ (∞) ∩K[y(∞) ] ≠ {0} ⇐⇒ ⟨𝑓 (⩽𝐵)1 , . . . , 𝑓
(⩽𝐵)
ℓ

⟩ ∩K[y(∞) ] ≠ {0}.

R Although the latter intersection belongs to a polynomial ring K[y(∞) ] in infinitely many

variables, the ideal is generated by finitely many polynomials, so one can focus on a finitely

generated subring containing the generators. Thus, solving Problem 3.2.1 gives an algorithm

to check if a differential elimination ideal is nonzero.

First results towards Problem 3.2.1 were obtained for the case of y being empty, that is, for the

consistency problem. The first bound was given in the general PDE case in [47] based on careful

analysis of the Rosenfeld-Gröbner algorithm and involved very fast-growing functions. This result

was substantially improved in [28] for the constant-coefficient ODE case: a doubly-exponential

bound involving the degrees, orders, and number of variables was given. This result was based

on novel ideas to work in certain truncated differential rings which allowed using methods from

constructive algebraic geometry. This approach was further extended to nonconstant coefficients

and PDEs in [53]. Under additional assumptions on the input system, differential resultants can

offer another point of view on Problem 3.2.1, see [79, 108].

1
The actual formula is complicated but, curiously, it involves Fibonacci numbers.
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In the joint work [G28] with A. Ovchinnikov and T. Vo, we extended the results of [28] in

two directions. First, we performed a more refined analysis of how the geometry of algebraic

ideals in differential rings interacts with differentiation
2
and used it to derive a fully explicit bound

sufficient to perform practical computations for some systems. Second, we have observed that

being able to work with nonconstant coefficients (using techniques from [53]) allows to establish a

bound for the elimination problem, not only for consistency checking. Here is a simplified version

of the main result of the paper:

Theorem 3.2.2 — A. Ovchinnikov, G. Pogudin, T. Vo [G28, Theorem 1]. Consider differential
polynomials 𝑓1, . . . , 𝑓ℓ ∈ K[x(<ℎ) ,y(∞) ] over a differential field K with the total degree with

respect to x(<ℎ) at most 𝑑 . Let 𝑚 be the dimension of the (algebraic, not differential) ideal

generated by 𝑓1, . . . , 𝑓ℓ in K(y(∞) ) [x(<ℎ) ]. Then

⟨𝑓1, . . . , 𝑓ℓ⟩ (∞) ∩K[y(∞) ] ≠ {0} ⇐⇒ ⟨𝑓 (⩽𝐵)1 , . . . , 𝑓
(⩽𝐵)
ℓ

⟩ ∩K[y(∞) ] ≠ {0},

where 𝐵 = 𝑑 (ℎ | x |+1−𝑚)2𝑚+1
if 𝑑 > 1 and 𝐵 =𝑚 +1 if 𝑑 = 1.

We give a tighter bound for the case when 𝑓1, . . . , 𝑓ℓ generate a radical algebraic ideal [G28, Theo-

rem 1] and a bound allowing to compute any truncation ⟨𝑓1, . . . , 𝑓ℓ⟩ (∞)∩K[y(<𝐻 ) ] of the elimination

ideal [G28, Theorem 3].

■ Example 3.1 — [G28, Example 1]. Consider the predator-prey model{
𝑥 ′ = 𝑎𝑥 −𝑏𝑥𝑦,
𝑦′ = −𝑐𝑦 +𝑑𝑥𝑦

(3.1)

defined by two polynomials 𝑓1 = 𝑥
′−𝑎𝑥 +𝑏𝑥𝑦 and 𝑓2 = 𝑦

′ +𝑐𝑦−𝑑𝑥𝑦 in Q(𝑎,𝑏,𝑐,𝑑) [𝑥,𝑥 ′,𝑦,𝑦′] over
the constant field Q(𝑎,𝑏,𝑐,𝑑). In the notation of the theorem, we have ℎ = 2 and 𝑑 = 1 as we take
the degree with respect to 𝑥 only. For computing𝑚, we consider an algebraic ideal generated

by 𝑓1, 𝑓2 in a bivariate polynomial ring Q(𝑎,𝑏,𝑐,𝑑,𝑦,𝑦′) [𝑥,𝑥 ′]. Since the 𝑓1 and 𝑓2 are coprime, the

ideal is zero-dimensional, so𝑚 = 0. Theorem 3.2.2 yields a bound 𝐵 = 1, and, indeed, after one
differentiation we find

𝑎𝑐𝑦2 +𝑎𝑦𝑦′−𝑏𝑐𝑦3−𝑏𝑦2𝑦′−𝑦𝑦′′ + (𝑦′)2 ∈ ⟨𝑓1, 𝑓 ′1 , 𝑓2, 𝑓 ′2 ⟩. (3.2)

■

3.3 Effective difference elimination

The elimination and consistency problems in the difference case exist in two substantially different

setups:

• the solutions can be sought in the space of sequences (which is a “universal solution space”

for difference equations by Theorem 2.4.1), or

• the solutions can be sought in difference fields (the ring of sequences is not a field and cannot
be embedded into a field as it has zero divisors).

2
I have further extended this analysis in my paper [G41]. The problem turned out to be connected to questions

about jet schemes coming from the singularity theory.
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In the latter case, the corresponding first-order theory is “well-behaving” (is decidable and admits

quantifier elimination) [23], so in theory the elimination and consistency problems are decidable

as well. Furthermore, there are some explicit algorithmic results in this direction [44, 78].

However, if one is interested in sequence solutions (for example, for discrete-time dynamical

systems), which provide a “universal solution space” thanks to Theorem 2.4.1, then the corre-

sponding first-order theory is undecidable [58], so there is no simple way to establish even the

decidability of the elimination problem in the sequence case. Together with A. Ovchinnikov and T.

Scanlon, we have established the first effective bound which, similarly to Theorem 3.2.2, allowed

reducing difference elimination to polynomial.

Theorem 3.3.1 — A. Ovchinnikov, G. Pogudin, T. Scanlon [G32, Theorem 3.4]. Consider dif-
ference polynomials 𝑓1, . . . , 𝑓ℓ ∈ K[𝜎<ℎ (x),𝜎∞(y)] over a difference field K. Let 𝑚 and 𝐷 be

the dimension and the degree of the (algebraic, not difference) ideal generated by 𝑓1, . . . , 𝑓ℓ in

K(𝜎∞(y)) [𝜎<ℎ (x)]. Then

⟨𝜎∞(𝑓1), . . . ,𝜎∞(𝑓ℓ )⟩∩K[𝜎∞(y)] ≠ {0} ⇐⇒ ⟨𝜎<𝐵 (𝑚,𝐷 ) (𝑓1), . . . ,𝜎<𝐵 (𝑚,𝐷 ) (𝑓ℓ )⟩∩K[𝜎∞(y)] ≠ {0},

where 𝐵(0,𝐷) =𝐷 +1, 𝐵(1,𝐷) = 𝐷3

6 + 𝐷2

2 + 4𝐷
3 +1, and 𝐵(𝑚,𝐷) = 𝐵(𝑚−1,𝐷) +𝐷𝐵 (𝑚−1,𝐷 )

for𝑚 > 1.

■ Example 3.2 Let 𝐹𝑛 be the 𝑛-th Fibonacci number. It turns out [34, p. 856] that the sequence

𝐴𝑛 := 𝐹2𝑛 satisfies a nonlinear difference equation. We can find it as follows. We introduce

𝐵𝑛 := 𝐹2𝑛+1. Then standard identities 𝐹2𝑘 = 𝐹𝑘 (2𝐹𝑘+1− 𝐹𝑘 ) and 𝐹2𝑘+1 = 𝐹 2𝑘+1 + 𝐹
2
𝑘
yield the following

system of difference equations

𝐴𝑛+1 =𝐴𝑛 (2𝐵𝑛 −𝐴𝑛), 𝐵𝑛+1 =𝐴
2
𝑛 +𝐵2𝑛 . (3.3)

Considered as polynomial equations in 𝐵𝑛 and 𝐵𝑛+1, system (3.3) defines an affine variety of

dimension zero and degree two over Q(𝐴𝑛,𝐴𝑛+1). Theorem 3.3.1 implies that it is sufficient to

consider system (3.3) and two of its shifts to eliminate 𝐵. Performing this computation, we indeed

find a difference equation 5𝐹 42𝑛𝐹2𝑛+1 −2𝐹 22𝑛𝐹2𝑛+2 + 𝐹 32𝑛+1 = 0. ■

In the case of the consistency problem (i.e., |y | = 0), the theorem gives the first proof that

the problem is decidable. Furthermore, it implies that, if there is a finite sequence of elements in

K satisfying the system of length greater than 𝐵(𝑚,𝐷), then there exists a full infinite sequence

solution [G32, Corollary 3.2].

Corollary 3.3.2 The problem of checking, for given 𝑓1, . . . , 𝑓ℓ ∈ K[𝜎∞(x)], the existence of

solutions of 𝑓1 = . . . = 𝑓ℓ = 0 in the ring KZ
of sequence is decidable for an algebraically closed

field K.

Interestingly, as we have shown with T. Scanlon and M. Wibmer in [G42], a number of

reasonable generalizations of the consistency problem are not decidable.

Theorem 3.3.3 — G. Pogudin, T. Scanlon, M. Wibmer [G42]. The following problems are unde-

cidable:

1. Given 𝑓1, . . . , 𝑓ℓ ∈ R[𝜎∞(x)], check the existence of solutions of 𝑓1 = . . . = 𝑓ℓ = 0 in RZ
.

2. Given 𝑓1, . . . , 𝑓ℓ ,𝑔 ∈ C[𝜎∞(x)], check the existence of solutions of 𝑓1 = . . . = 𝑓ℓ = 0 & 𝑔 ≠ 0.
3. Check the existence of solutions for a system with two commuting automorphisms in the
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ring of bivariate sequences.

The proof technique used to establish Theorem 3.3.1 was then successfully applied in [G26]

by W. Li, A. Ovchinnikov, T. Scanlon, and myself to give an analogous bound for the elimination

and consistency problems for delay-differential equations. We extended the result further to

delay-PDEs in [G25, Theorem 3.2].

3.4 Practical differential elimination for ODE models

As described in Sections 3.1 and 3.2, several approaches to differential elimination have been

proposed and resulted in practically useful algorithmic tools such as the Rosenfeld-Gröbner

algorithms and its variations. These algorithms are quite general: they can be applied to an

arbitrary system of polynomially nonlinear PDEs. There is a price to pay for such versatility: many

interesting examples coming from applications cannot be tackled in a reasonable time. On the

other hand, since differential equations in sciences and engineering are typically used to describe

how the system of interest will evolve from a given state, many dynamical models in the literature

are described by systems in the state-space form:

x′ = f (x,u), y = g(x,u) (3.4)

where f and g are tuples of rational functions, x, y, and u are tuples of differential unknowns

(the state, output, and input variables, respectively). For such a system, one typically wants to

eliminate the 𝑥-variables, that is, compute the input-output relations, the relations between the

𝑦-variables and 𝑢-variables (see [27, 118]). For instance, the predator-prey model from Example 3.1

is problem of this sort with x = (𝑥,𝑦), no inputs, and the output being equal to 𝑦, i.e. 𝑔(𝑥,𝑦) = 𝑦.
In a joint work with R. Dong (a master student), C. Goodbrake, and H. Harrington [G12], we

proposed a new approach to performing elimination tailored to the systems of the form (3.4). The

idea was to use a different way of representing a prime differential ideal generalizing (3.4). Modulo

the differential ideal defined by (3.4), x together with u(∞)
form a transcendence basis and then

each of the equations in (3.4) gives a relation between one of the lowest-order non-basis elements

(such as x′ or y) in terms of the basis ones. If one allows to consider different transcendence bases,

then the elimination can be rephrased as a change of ordering task. Building upon this idea, we

developed an algorithm based on specially organized iterated resultant computation.

For benchmarking problems from the literature, our implementation significantly outper-

formed general purpose packages such as DifferentialAlgebra [16] and DifferentialThomas [6]

performing eliminations for problems which were out of reach before, see Table 3.1 (for details

of the comparison, see [G12, Section 6.3]). This algorithm was a basis of our new software for

assessing structural parameter identifiability, see Section 4.5.

3.5 Anti-elimination

In the previous section, we discussed a problem to compute, for a system in the state-space

form standard in control theory, the relations between inputs u and outputs y or, equivalently,

to eliminate the state variables x. Interestingly, an inverse problem which can be thought as

anti-elimination also appears in control theory and is referred to as realization problem [110, 117],

here is one way of stating it.
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Model DiffAlgebra DiffThomas New algorithm form [G12]

SIWR model > 5h. > 5h. 3s.
SIWR model - 2 > 5h. > 5h. 0.2s.
MAPK pathway - 1 13s. 7s. 2.5s.
MAPK pathway - 2 > 5h. > 5h. 27.6s.
MAPK pathway - 3 > 5h. > 5h. 397s.
SEAIJRC model > 5h. > 5h. 28.6s.
Akt pathway 0.2s. > 5h. 0.2s.
NF𝜅B > 5h. > 5h. > 5h.
Mass-action 4.7s. > 5h. < 0.1s.
SIRS w. forcing > 5h. > 5h. 1s.

Table 3.1: Comparison of the algorithm from [G12] with general purpose libraries for differential

elimination (for details on examples and benchmarking, see [G12, Table 5])

Problem 3.5.1 — Realization problem. Given a differential polynomial 𝑝 (𝑦,u) ∈ K[𝑦 (∞) ,u(∞) ],
find a dynamical system of the form (3.4) such that 𝑝 is the minimal (compared first by order and

then by degree) relation between 𝑦 and u in the ideal generated by the system. If such system

exists, then 𝑝 is said to be realizable. Often, an additional requirement that the system (3.4)

should be affine in u is imposed (input-affine realization).

For example, the differential polynomial (3.2) is realizable and one of its realizations is the

predator-prey model (3.1).

The case when there are no inputs was studied by Forsman [43] who proved an elegant algebro-

geometric criterion: 𝑝 (𝑦) ∈ K[𝑦 (∞) ] is realizable if and only if the algebraic hypersurface defined

by 𝑝 (i.e., regarding the derivatives of 𝑦 as independent variables) is unirational. Furthermore,

if 𝑝 is realizable, then it can be realized by a model of order ℎ := ord𝑦 𝑝 , that is, a model with

|x | = ℎ. Since the inequality |x | ⩽ ℎ holds for any realization, this means that there is always

a realization of minimal possible order, in particular it is locally observable, which is a desired

property in control theory (cf. [119]).

Together with Dmitrii Pavlov (a master student), we have extended the latter result to the case

with inputs
3
.

Theorem 3.5.2 — D. Pavlov, G. Pogudin [G36, Theorem 3.2]. If a differential polynomial 𝑝 (𝑦,u) ∈
K[𝑦 (∞) ,u(∞) ] is realizable (resp., input-affine realizable), then it is realizable (resp., input-affine

realizable) by a model of order ord𝑦 𝑝 . In particular, it admits a locally observable realization.

Using this general theorem, we have proposed the first explicit realization algorithms for

systems with inputs for the cases when ord𝑢 𝑝 = 0 (modulo an algorithm for checking rationality

of a hypersurface) [G36, Algorithm 1] and when ord𝑝 ⩽ 1 [G36, Algorithm 1].

3
In the paper the theorem is stated and proved for |u | = 1 but the same argument works for multiple inputs
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3.6 Lifting solutions back: differential Noether normalization

In the classical algebraic geometry, if a prime ideal 𝐼 ⊂ K[x,y] over an algebraically closed field K
has zero elimination ideal 𝐼 ∩K[y] = {0}, then the projection of the zero set of 𝐼 on the y plane is

dominant, that is, surjective outside of a small (Zariski closed) set. An important question is, for

a 𝑑-dimensional ideal 𝐼 , find a 𝑑-variate subring K[z] ⊂ K[x,y] such that the projection of the

zero set of 𝐼 on the z-plane will actually be surjective. This would provide a “parametrization” of

the zero set of 𝐼 by the z-coordinates. The existence of such parametrization is asserted by the

celebrated Noether Normalization Lemma.

A differential analogue of this problem is also quite natural. Consider a prime differential ideal

𝐼 ⊂ K[x(∞) ]. Its differential dimension 𝑑 is defined, roughly speaking, as the number of arbitrary

functions defining a general solution of the ideal. Than a natural task is to find 𝑑 coordinates in

the ring K[x(∞) ] such that any assignment of functions to these coordinates can be completed to

a solution of 𝐼 . I have shown [G41] that this is always possible, here is a version of the main result

for power series solutions (the paper also gives versions for differentially closed fields and analytic

functions):

Theorem 3.6.1 —G. Pogudin [G41, Corollary 5.3]. Consider a prime differential ideal 𝐼 ⊂K[x(∞) ]
of differential dimension 𝑑 . Then there exist 𝑎1, . . . ,𝑎𝑑 ∈ K[x(∞) ] such that any assignment of

elements of K[[𝑡]] to 𝑎1, . . . ,𝑎𝑑 can be extended to a solution of 𝐼 in K[[𝑡]].

The proof is constructive and can be turned into an algorithm.

3.7 Primitive element theorem

Another construction with strong elimination flavor in classical algebra is the primitive element

theorem which says that an algebraic finitely generated field extension 𝐹 ⊂ 𝐸 can be generated by

a single element. For example, Q(
√
2,
√
3) can be generated over Q by

√
2+

√
3 only. This theorem

is a very useful tool for performing computations in algebraic field extensions. One can observe

that in the presence of derivation one can generate even transcendental extensions with a single

element.

■ Example 3.3 Consider an extension C ⊂ C(𝑥,𝑒𝑥 ). The field C(𝑥,𝑒𝑥 ) cannot be generated over C
by a single element because the functions 𝑥 and 𝑒𝑥 are algebraically independent. However, if we

take 𝛼 = 𝑥 +𝑒𝑥 , then we will see that

𝑥 = 𝛼 −𝛼 ′ +1 and 𝑒𝑥 = 𝛼 ′−1,

So one can generate the whole extension using only 𝛼 and its derivatives. ■

And indeed, Kolchin [68] has established a differential analogue of the primitive element

theorem for Δ-fields.

Theorem 3.7.1 — Kolchin [68, §4]. Consider an extension of Δ-fields 𝐹 ⊂ 𝐸 := 𝐹 (𝑎 (∞∞∞)
1 , . . . ,𝑎

(∞∞∞)
ℓ

)
(finitely Δ-generated) such that every 𝑎𝑖 is a solution of a nonzero Δ-polynomial from 𝐹 [𝑥 (∞∞∞) ]
(Δ-algebraic). Assume that there exist elements 𝑏1, . . . ,𝑏𝑚 ∈ 𝐹 such that the Jacobian matrix

(𝜕𝑖𝑏 𝑗 )𝑖, 𝑗 is nonsingular.
Then there exists 𝑎 ∈ 𝐸 such that 𝐸 = 𝐹 (𝑎 (∞∞∞) ).
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The condition on the Jacobian is imposed for the ground field 𝐹 , not for 𝐸. In particular,

Theorem 3.7.1 does not tell us anything about the existence of a single generator in Example 3.3.

A similar theorem has been proven by Cohn [26, p. 203, Theorem III] for extensions of difference

fields under an assumption that 𝜎 has infinite order but, again, on the ground field.

For the case of differential fields, Theorem 3.7.1 has been strengthened to require the existence

of a nonconstant element only in 𝐸 in my Ph.D. thesis [95] thus covering Example 3.3. Interestingly,

while a single generator in the setup of Theorem 3.7.1 could be always constructed as a linear

combination of 𝑎1, . . . ,𝑎ℓ , it was not the case if 𝐹 is a constant field, so a polynomial in 𝑎1, . . . ,𝑎ℓ
has to be considered.

All the primitive element theorems mentioned above have been generalized and strengthened

in my paper [G39].

Theorem 3.7.2 — G. Pogudin [G39, Theorem 2.1]. Consider an extension of fields 𝐹 ⊂ 𝐸 equipped

with derivations 𝜕1, . . . , 𝜕𝑚 and automorphisms 𝜎1, . . . ,𝜎𝑠 such that the derivations and automor-

phisms pairwise commute. Assume that

• 𝐸 is generated over 𝐹 using the derivations and automorphisms by finitely many elements;

• every 𝑎 ∈ 𝐸 satisfies a difference-PDE (a polynomial relation involving the derivations and

automorphisms);

• there exist𝑚 elements of 𝐸 with nonsingular Jacobian, and no nontrivial power product

of 𝜎1, . . . ,𝜎𝑠 acts as the identity on 𝐸.

Then there exists 𝑎 ∈ 𝐸 such that 𝐸 is generated over 𝐹 by 𝑎 using the derivations and automor-

phisms.

In the following example, Theorem 3.7.2 implies the existence of a primitive element while

none of the prior results would be applicable.

■ Example 3.4 Consider Δ = {𝜕𝑧, 𝜕𝜏 }. Let M(C,H) denote the field of bivariate meromorphic

functions on C×H in variables 𝑧 and 𝜏 , whereH = {𝜏 ∈ C | Im(𝜏) > 0}. We considerM(C,H) as
a Δ-field by letting 𝜕𝑧 and 𝜕𝜏 act as the partial derivatives in 𝑧 and 𝜏 , respectively. Let

𝜃1(𝑧,𝜏) := −𝑖
∞∑︁

𝑗=−∞
(−1) 𝑗𝑒 ( 𝑗+1/2)2𝜋𝑖𝜏𝑒 (2𝑗+1)𝜋𝑖𝑧

be one of the Jacobi theta functions. Function 𝜃1(𝑧,𝜏) satisfies the heat equation [88, p. 433]:

𝜕2𝑧𝜃1(𝑧,𝜏) = 4𝜋𝑖𝜕𝜏𝜃1(𝑧,𝜏) .

Thus, 𝜃1(𝑧,𝜏), 𝜃1(2𝑧,𝜏), and 𝜃1(3𝑧,𝜏) are Δ-algebraic over C. Therefore, Theorem 3.7.2 applied to

the extension

𝐹 := C ⊂ 𝐸 := C(𝜃1(𝑧,𝜏) (∞∞∞) , 𝜃1(2𝑧,𝜏) (∞∞∞) , 𝜃1(3𝑧,𝜏) (∞∞∞) )

implies that there exists a function 𝑓 (𝑧,𝜏) ∈ 𝐸 such that 𝜃1(𝑧,𝜏), 𝜃1(2𝑧,𝜏), and 𝜃1(3𝑧,𝜏) can be

written as rational functions in 𝑓 and its partial derivatives. ■



4. Structural Parameter Identifiability

Parametric dynamical models (such as parametric ODE systems which we will consider in this

chapter) is one of the standard tools used for modeling in the sciences. Once such a model has

been designed, the next step is usually to fit the parameter values from the experimental data.

At this step, it may happen that, due to the structure of a model, several parameter values may

yield exactly the same output time series. For example, consider a scalar ODE with two unknown

parameters 𝑎 and 𝑏:

𝑥 ′(𝑡) = 𝑥 (𝑡) +𝑎 +𝑏. (4.1)

Since the parameters appear only as a sum 𝑎 +𝑏, the values 𝑎 = 𝑎 +𝑐 and 𝑏 = 𝑏 −𝑐 will produce
the same solution and, thus, time series for 𝑥 (𝑡) regardless of the value of 𝑐 . In such case, the

parameters 𝑎 and 𝑏 are called structurally nonidentifiable. On the other hand, if the parameter

value can be inferred uniquely under the assumption of complete noise-free data, the parameter

is called structurally identifiable. Thus, structural parameter identifiability is a prerequisite for

meaningful parameter estimation. An important advantage of this property is that it can be

assessed based on the model only, before data is collected, and the results of the assessment can

be used to revise the model or change the experiment design.

One could say that the identifiability issue in (4.1) was artificially created. Let us consider a

less obvious yet still simple example.

■ Example 4.1 Consider a two-dimensional linear model which describes flows of material from

compartment 2 to compartment 1 (at rate 𝑏) and from compartment 1 to the environment (at rate

𝑎), see Figure 4.1

Comp. 1 (𝑥1) Comp. 2 (𝑥2)
𝑏𝑎

Figure 4.1: Scheme of the compartment model

{
𝑥 ′1(𝑡) = −𝑎𝑥1(𝑡) +𝑏𝑥2(𝑡),
𝑥 ′2(𝑡) = −𝑏𝑥2(𝑡) .

(4.2)

We generate a time series for 𝑥1(𝑡) using the initial conditions 𝑥1(0) = 𝑥2(0) = 1.0 and parameter

values 𝑎 = 0.4, 𝑏 = 0.7. For various pairs (𝑎,𝑏) ∈ [0,1] × [0,1], we compute 𝑥2(0) giving the best fit

and plot the logarithm of the mean squared error on a heatmap in Figure 4.2a. While we see that

the original pair (0.4,0.7) gives a perfect fit, there is another pair (0.7,0.4) which gives a perfect fit

as well. Indeed, if we plot the solution for the system for 𝑥1(0) = 1.0, 𝑥2(0) = 2.5, 𝑎 = 0.7, 𝑏 = 0.4
(Figure 4.2c), we will see that the 𝑥1-coordinate is exactly the same as in the original simulation
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(a) Logarithm of the loss function

(b) Solution for 𝑎 = 0.4, 𝑏 = 0.7 (c) Solution for 𝑎 = 0.7, 𝑏 = 0.4

Figure 4.2: Compartment model (4.2): error landscape (a) and alternative parameter values (b, c)
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(Figure 4.2b). In general, one can verify that the time series for 𝑥1 produced by the initial conditions

𝑥1(0) = 𝑥∗1 and 𝑥2(0) = 𝑥∗2 and parameters 𝑎 = 𝑎∗ and 𝑏 = 𝑏∗ is the same as for

𝑥1(0) = 𝑥∗1, 𝑥2(0) =
𝑏∗−𝑎∗
𝑎∗

𝑥∗1 +
𝑏∗

𝑎∗
𝑥∗2, 𝑎 = 𝑏∗, 𝑏 = 𝑎∗.

Note that there is no obvious symmetry between 𝑎 and 𝑏 in the original model (4.2). Therefore, if

one did not look at a large enough region in the parameter space when searching for the parameter

values, one could easily find only one of the two possible values and be convinced that these are

the only “true” values. ■

4.1 Problem statement and the state of the art
Throughout this chapter, we will study a parametric ODE model in the state-space form (commonly

used in the modeling and control literature):

Σ =

{
x(𝑡)′ = f (𝜇𝜇𝜇,x(𝑡),u(𝑡)),
y(𝑡) = g(𝜇𝜇𝜇,x(𝑡),u(𝑡)),

(4.3)

where

• x(𝑡) is a vector of state variables defining the internal state of the system;

• y(𝑡) is a vector of output variables (representing the data collected in an experiment);

• u(𝑡) is a vector of input variables (external forces/inflows imposed on the system by an

experimenter);

• 𝜇𝜇𝜇 is a vector of scalar parameters to be inferred;

• f and g are tuples of functions; we will restrict ourselves to rational functions, that is,

elements of C(𝜇𝜇𝜇,x(𝑡),u(𝑡)).
In what follows, we will, for the sake of brevity, omit the explicit time dependence for x,y,u. One
can state the (structural) identifiability problem as follows.

Problem 4.1.1 — Identifiability. Given a function ℎ(𝜇𝜇𝜇,x) in parameters and states, determine if,

for a generic trajectory of (4.3), the value of ℎ can be reconstructed uniquely from the time series

for inputs u and outputs y under the assumption of complete noise-free data and sufficiently

exciting inputs.

For the moment, we will use this partially informal problem statement and postpone the discus-

sion of rigorous definitions of identifiability to the next section. Below, we will outline several

versions/refinements of this general problem and finish the section with a very brief overview of

the history of the problem.

Local and global identifiability
If one requires, as in Problem 4.1.1 that the value of ℎ has to be reconstructable uniquely, then

this property is also often referred to as global identifiability. There also exists a weaker property

of local identifiability meaning that the value can be reconstructed uniquely in a small enough

neighborhood. For the dynamical models described by rational functions considered in this chapter

this is equivalent to saying that the value can be reconstructed up to finitely many options. For

example, parameters 𝑎 and 𝑏 in Example 4.1 are not globally identifiable but, since the possible

values are always only (𝑎,𝑏) and (𝑏,𝑎), they are locally identifiable. On the other hand, in the
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model (4.1), the parameters are not identifiable even locally because there are infinitely many

possible values for any of them.

Identifiability vs. observability
In the literature, one frequently uses two different notions: identifiability for parameters and

observability for the state variables. These notions are not completely unrelated since one can

always consider a parameter 𝜇 as a state variable satisfying the equation 𝜇′ = 0, therefore identifi-
ability can always be reduced to observability. In this chapter, we will use word “identifiability”

for everything: for parameters, states, and functions of them.

Identifiable functions
Problem 4.1.1 was formulated not only for individual parameters/states but also for functions of

them. For example, while 𝑎 and 𝑏 in (4.1) are not identifiable, their sum 𝑎 +𝑏 can be expressed as

𝑥 ′−𝑥 , so can be uniquely estimated from perfect data. Similarly, parameters 𝑎 and 𝑏 in Example 4.1

are only locally identifiable since they are defined up to a swap, but their sum 𝑎 +𝑏 and 𝑎𝑏 are

invariant under the swapping and, thus, identifiable. Such identifiable functions form a field:

the sum, product, and quotient of reconstructable quantities is clearly reconstructable as well.

Therefore, instead of asking about identifiability of a particular function as in Problem 4.1.1, one

can also ask to find the field of identifiable functions, that is, everything what can be reconstructed

(see Section 4.4 for further discussion).

Brief history of the problem
The identifiability problem goes back at least to the 1970s [9] and has attracted attention of

researchers from different domains. In this section we do not attempt to survey all important results

but highlight the ones relevant to the discussion in this chapter. The fundamental observability

rank condition due to Hermann and Krener [57] reduced checking local identifiability to computing

the rank of matrix composed of high-order Lie derivatives giving a good algorithm for medium-size

models. Sedoglavic [111] found a way to compute these ranks very efficiently, and his algorithm

allows assessing local identifiability of large models and is implemented in many modern software

packages.

The problem of assessing global identifiability turned out to be more challenging. One of

the first approaches was the Taylor series method due to Pohjanpalo [100] which reduced the

problem to solving an infinite system of equations. For practical computations, the system had

to be heuristically truncated (see Section 4.3). A complete algorithm based on reformulating

identifiability as a differential elimination problem and applying the characteristic set method

(see Section 3.1) was proposed by Ljung and Glad [81]. Another approach utilizing differential

elimination for computing so-called input-output equations goes back the the thesis of Ollivier [89],

and was later used in software tools such as DAISY [10] and COMBOS [84]. While these tools

allowed practical computation for many important models, their applicability was still limited by

the scalability of the underlying elimination algorithms. A more detailed overview of the field and

available tools up until the early 2010-s can be found in [25, 85].

4.2 Definitions: via Algebra, Analysis, and Input-output equations
While the identifiability question as stated in Problem 4.1.1 is a natural one to ask, it is not an

easy one to formalize. A number of different notions of identifiability can be found in a survey [3].

In this section, we will outline the three main different approaches to defining identifiability and
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characterize how they relate to each other. To keep the presentation and notation simple, we will

restrict ourselves to the case of polynomial models without inputs, and define identifiability for a

single parameter. All the results cited below hold in the general situation as well (for a sufficiently

rich class of inputs, see [125] for a discussion of different choices).

It is natural to define identifiability is in terms of the trajectories of the model (4.3). Let us

give one such definition adapted from [G18, Definition 2.5].

Definition 4.2.1 — Identifiability: analytic definition. Consider a system in the state-space

form {
x′ = f (𝜇𝜇𝜇,x),
y = g(𝜇𝜇𝜇,x),

(4.4)

and let 𝑛, 𝑚, and 𝑠 be the dimensions of x, y, and 𝜇𝜇𝜇, respectively. Assume that f and g are

vectors of polynomials. For a point (x̃∗, �̃�𝜇𝜇) ∈ C𝑛+𝑠 , by Y(x̃∗, �̃�𝜇𝜇,𝑡) we will denote the germ of the

unique analytic solution of (4.4) with the initial condition x(0) = x̃∗ and 𝜇𝜇𝜇 = �̃�𝜇𝜇.
A parameter 𝜇1 ∈ 𝜇𝜇𝜇 is called globally (resp., locally) identifiable if there exists a proper Zariski

open Ω ⊂ C𝑛+𝑠 such that, for every (x̃∗, �̃�𝜇𝜇) ∈ Ω, the number of different 𝜇1-coordinates in the

set

{(x̂∗, �̂�𝜇𝜇) ∈ C𝑛+𝑠 | Y(x̂∗, �̂�𝜇𝜇,𝑡) = Y(x̃∗, �̃�𝜇𝜇,𝑡)}

is equal to one (resp., is finite).

While Definition 4.2.1 captures the intuitive notion of identifiability, “no other parameter

value can produce the same solution”, it is not very convenient for algorithmic computation.

To this end, one often uses an algebraic definition of identifiability (see, e.g. [31, Section II]) as

follows.

Definition 4.2.2 — Identifiability: algebraic definition. In the notation of Definition 4.2.1, 𝜇1
is said algebraically identifiable if there exist polynomials 𝑃1,𝑃2 ∈ C[y(∞) ] such that 𝑃2 does

not vanish identically on all the analytic solutions of (4.4) and, for every analytic solution

𝜇𝜇𝜇∗,x∗(𝑡),y∗(𝑡) of (4.4) on which 𝑃2 does not vanish, we have

𝜇∗1 =
𝑃1(y∗(𝑡))
𝑃2(y∗(𝑡))

. (4.5)

Local algebraic identifiability is defined analogously but 𝜇1 is required to satisfy an algebraic

equation over C[y(∞) (𝑡)], not a linear one as in (4.5).

It is quite plausible that identifiability in the sense of Definition 4.2.2 implies identifiability

according to Definition 4.2.1: indeed, (4.5) gives a formula to uniquely reconstruct the value of a

parameter from a trajectory. Surprisingly, these definitions are in fact equivalent, meaning that, if

a reconstruction of the parameter value is possible in principle, it is possible via the formula (4.5).

Theorem 4.2.1 — H. Hong, A. Ovchinnikov, G. Pogudin, C. Yap [G18, Proposition 3.4]. Global
(resp., local) identifiability in the sense of Definition 4.2.1 is equivalent to the global (resp., local)

algebraic identifiability in the sense of Definition 4.2.2.

In the light of Theorem 4.2.1, we will refer to identifiability in the sense of Definitions 4.2.1
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and 4.2.2 as simply identifiability.
Yet another way to define identifiability comes from the idea that all one can really observe is

the relations between inputs and outputs of the system, so the coefficients of these relations are

exactly the quantities which can be inferred from the input-output data. The following example

illustrates the approach.

■ Example 4.2 Consider a model

𝑥 ′1 = 𝑎𝑥2, 𝑥 ′2 = −𝑏𝑥1, 𝑦 = 𝑥1 +𝑐 (4.6)

with states 𝑥1,𝑥2, parameters 𝑎,𝑏,𝑐 and single output 𝑦. By doing differential elimination (see

Chapter 3), we find the minimal relation on the output to be

𝑦′′ +𝑎𝑏𝑦−𝑎𝑏𝑐 = 0.

On one hand, one can argue that, given a time series for 𝑦, we cannot fit anything which is not a

function of the coefficients of the relation, 𝑎𝑏 and 𝑎𝑏𝑐 . On the other hand, evaluating the equation

at two time points 𝑡1 and 𝑡2, we obtain a linear system(
𝑦 (𝑡1) 1
𝑦 (𝑡2) 1

) (
𝑎𝑏

−𝑎𝑏𝑐

)
= −

(
𝑦′′(𝑡1)
𝑦′′(𝑡2)

)
with respect to 𝑎𝑏 and 𝑎𝑏𝑐 . If the matrix of this system is nonsingular, then one can compute the

values of 𝑎𝑏 and 𝑎𝑏𝑐 and, therefore, of 𝑐 . ■

One can turn these considerations into a definition. Unlike Definitions 4.2.1 and 4.2.2, this

definition makes sense only for functions in parameters, not states (may seem an annoying

limitation, but becomes completely natural once viewed from a right angle, see Theorem 4.2.3). To

keep the presentation simple, we will consider the single-output case, the results below hold in

full generality.

Definition 4.2.3 — Identifiability: input-output approach. In the notation of Definition 4.2.1,

assume that𝑚 = 1. Consider the minimal (comparing first w.r.t. the order and then w.r.t. the

degree) polynomial differential equation 𝑃 (𝑦,𝑦′, . . . ,𝑦 (ℎ) ) = 0 with coefficients in C(𝜇𝜇𝜇) satisfied
by 𝑦 for every solution of (4.4).

Assume that 𝑃 is normalized so that at least one of its coefficients is equal to one, and

denote the remaining coefficients by 𝑐1(𝜇𝜇𝜇), . . . ,𝑐ℓ (𝜇𝜇𝜇). Then a parameter 𝜇1 is globally (resp.,
locally) input-output identifiable (IO-identifiable) if 𝜇1 ∈ C(𝑐1, . . . ,𝑐ℓ ) (resp., 𝜇1 is algebraic over
C(𝑐1, . . . ,𝑐ℓ )).

Definition 4.2.3 has two attractive features: it is well-suited for computation [89] (used in

software DAISY [10] and COMBOS [84]), and not only it allows to assess identifiability, but it also

gives a direct way to find the generators of the whole field of identifiable functions.

However, in contrast to Theorem 4.2.1, we have found an example [G18, Example 2.14], in

which a parameter is IO-identifiable but is not identifiable. We further proved, together with A.

Ovchinnikov and P. Thompson, that identifiability implies IO-identifiability [G34, Theorem 1]. We

can thus summarize the established relations between the definitions as follows:

Definition 4.2.1 Definition 4.2.2 Definition 4.2.3

⇐⇒ =⇒
analytic algebraic input-output
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The attractive features of IO-identifiability outlined above make it natural to establish cases

in which it actually agrees with identifiability. One result in this direction is the following

theorem.

Theorem 4.2.2 — A. Ovchinnikov, G. Pogudin, P. Thompson [G33, Theorem 1]. For single-output
linear models, identifiability is equivalent to IO-identifiability.

We have established the equivalence also to a class of multi-output linear compartment models

(for details, see [G33, Theorems 2 and 3]). Identifiability of such models was further explored by

Natali Gogishvili (undergraduate student) in a project under my supervision [46].

We have found a new characterization of IO-identifiability with A. Ovchinnikov, A. Pillay,

and T. Scanlon in [G30] which nicely explains the aforementioned discrepancies between the

definitions. We will say that a parameter 𝜇1 in (4.4) is multi-experiment identifiable if its value
can be inferred from a finite number of generic trajectories of (4.4) (as opposed to a single

trajectory in Definition 4.2.1). Such multi-experimental setup is quite natural for some application

domains [122].

Theorem 4.2.3 — A. Ovchinnikov, A. Pillay, G. Pogudin, T. Scanlon [G30, Theorem 19]. Multi-

experiment identifiability is equivalent to the IO-identifiability.

In a subsequent paper [G31], we developed an efficient algorithm for computing an upper

bound for the sufficient number of experiments which overestimates the minimal number by at

most one. Interestingly, this result, in addition to differential algebra, also used model theory in

the sense of mathematical logic [G31, Section 7].

4.3 Taylor series revisited: SIAN algorithm and software

When it comes to assessing (global) identifiability in practice, the algorithms behind the existing

software could be roughly subdivided into two classes:

1. Based on input-output equations. As described in Example 4.2, this approach consists of first

eliminating the state variables and then considering if the parameters of interest can be

expressed in terms of the coefficients of the obtained input-output relations.

2. Based on the Taylor series. The idea is to take the coefficients of the truncated power series

for the output variables up to certain order, write then in terms of states and parameters,

and then check if the parameters of interest can be expressed using these quantities (see

Example 4.3 below).

The former approach has already been illustrated on a toy Example 4.2, let us show the latter

using the same system.

■ Example 4.3 — Taylor seriesmethod. Wewill again consider the model (4.6). Start with expressing

the derivatives of 𝑦 at zero (that is, the coefficients of the Taylor series for 𝑦) in terms of the

parameters and initial conditions:

𝑦 (0) = 𝑥1(0) +𝑐, 𝑦′(0) = 𝑥 ′1(0) = 𝑎𝑥2(0),
𝑦′′(0) = 𝑎𝑥 ′2(0) = −𝑎𝑏𝑥1(0), 𝑦 (3) (0) = −𝑎𝑏𝑥 ′1(0) = −𝑎2𝑏𝑥2(0).

Since 𝑦 is assumed to be observed, the above quantities are known. Therefore, we can conclude
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that 𝑎𝑏 and 𝑐 are globally identifiable because they can be written as:

𝑎𝑏 =
−𝑦 (3) (0)
𝑦′(0) and 𝑐 = 𝑦 (0) + 𝑦

′′(0)
𝑎𝑏

.

In other words, we solve the identifiability problem for 𝑎𝑏 and 𝑐 by solving the rational field

membership problem for 𝑎𝑏 and 𝑐 and field generated by 𝑦 (0), . . . ,𝑦 (3) (0). ■

The method goes back to the work by Pohjanpalo [100] in the 1970s. However, the result of

the computation clearly depends on the number of derivatives considered. In order to turn the

approach into an algorithm, one has to find a way to choose this order so that the correctness is

guaranteed.

The survey [25] from 2011 mentions three software tool capable of assessing global identifiabil-

ity. Two of them, DAISY [10] and COMBOS [84], use the approach via the input-output equations

but do not verify if IO-identifiability coincides with identifiability for the model in question and,

thus, can return an incorrect (according to Definitions 4.2.1 and 4.2.2) result [G18, Example 2.14].

The remaining one, GenSSI 2.0 [80], followed the Taylor series approach with a heuristic used for

choosing the truncation order can lead to incorrect result as well [G18, Example 2.16].

Together with H. Hong, A. Ovchinnikov, and C. Yap in [G18] we have designed a complete and

rigorous global identifiability algorithm based on the Taylor series approach. Our implementation

compared favorably to the state-of-the-art in terms of performance: we were able to analyze

models which were out of reach before [G18, Table 6.1]. The key ingredients of the algorithm are:

• an effective characterization of the truncation order sufficient to retain all the identifiability

information [G18, Theorem 3.16];

• aMonte Carlo randomized algorithms to check the corresponding field membership problem

together with an explicit error bound [G18, Theorem 4.2].

The implementation based on this paper has been turned into a Maple-based software tool

SIAN [G17].

The main bottleneck for SIAN is a Gröbner basis computation (used to check the field mem-

bership). Together with M. Bessonov, I. Ilmer, T. Konstantinova, A. Ovchinnikov, and P. Soto, we

have recently proposed [G6] a monomial ordering defined in terms of the structure of the input

ODE model which allowed to speed up the computation even further.

4.4 Computing identifiable functions
Once some parameters of interest turn out to be nonidentifiable, the next natural question is what
is identifiable then? For instance, in Example 4.3 we saw that, while 𝑎 and 𝑏 are not identifiable, the

function 𝑎𝑏 is identifiable. Furthermore, one can check that identifiable functions form a subfield

in C(𝜇𝜇𝜇) which will be called the field of identifiable functions.

Problem 4.4.1 — Identifiable functions computation. Given a model (4.3), find a generating set

ℎ1, . . . ,ℎℓ ∈ C(𝜇𝜇𝜇) of the field of identifiable functions.

It has been known [G34, Corollary 1] that generators of the field of IO-identifiable functions

can be read off from the input-output equations. However, IO-identifiable functions do not always

coincide with the identifiable ones. This challenge was addressed in our work with A. Ovchinnikov,

A. Pillay, and T. Scanlon [G30]: we designed and implemented an algorithm solving Problem 4.4.1

even if identifiability does not agree with IO-identifiability for a model in question. The approach
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was to start with input-output equations of the model, and find all additional relations between

the same differential monomials which appear if one allows taking the coefficients from the field

containing both C(𝜇𝜇𝜇) and the first integrals of the model. We show [G30, Theorem 11] that,

roughly speaking, the elements of C(𝜇𝜇𝜇) appearing in these extra relations will generate the whole

field of identifiable functions. One of the byproducts of this work was strengthening existing

algorithms for subfield intersection [G30, Appendix B].

In order to make these developments usable by other researchers, together with I. Ilmer

and A. Ovchinnikov, we have combined (in a synergistic way) the implementation of the algo-

rithms from [G30] with SIAN [G17] into a single web-based application [G20]. Both SIAN and

code from [G30] were written in Maple which is a proprietary software, and the format of web-

application turned out to be ideal to make the software accessible to the researchers without

a Maple license and was appreciated by the users. The software received the Best Software

Presentation award at the ISSAC conference in 2021 [G19].

4.5 Faster IO-equations: StructuralIdentifiability.jl library
While the algorithms described in Section 4.4 provide a full solution of the Problem 4.4.1 in theory,

the practical tools derived from them such as the web-based Structural Identifiability Toolbox

were applicable only to models of moderate size. The main computational bottleneck for these

implementations was computing the input-output equations for the model, that is, equations

involving only inputs, outputs, and parameters (see Example 4.2). Since this computation is a

special case of the differential elimination problem (see Chapter 3), classical Rosenfeld-Gröbner

algorithm was used. However, being applicable to general nonlinear PDE systems, this algorithm

was not taking advantage of the particular shape of the equations in the state-space from (4.3),

and many important models remained out of reach.

In project started together with R. Dong (master student), C. Goodbrake, and H. Harrington,

we aimed at reworking the approach based on input-output equations with efficiency and rigor in

mind. Our joint paper [G12] describing the result of this work contained the key ingredients for a

such a new algorithm:

• Elimination. We have developed a more efficient differential elimination algorithm tailored

to the models in the state-space form (3.4), it is described in more detail in Section 3.4.

• “Sanity check” for input-output equations. Before the coefficients of an input-output equation

can be used to assess identifiability, one has to check whether the IO-identifiability coincides

with identifiability for the model at hand (see Section 4.2). This can be done by checking that

a certain Wronskian determinant is nonzero [G34, Lemma 1]. However, the new elimination

algorithm was capable to compute really large input-output equations, for which the way

this Wronskian computation was done before (e.g., in [G20]) became completely impractical.

We have proposed a new approach [G12, Section 5.3] which proved to be efficient for all the

models we have encountered since then. Thanks to this new algorithm we could actually

check how often identifiability and IO-identifiability coincide on a wide range of models

from the literature, and have found out that they coincide in a vast majority of cases [G12,

Table 3].

• Efficient field membership testing. Once the input-output equations have passed the “sanity

check”, the identifiability of a function of parameters ℎ(𝜇𝜇𝜇) is verified by checking whether

ℎ(𝜇𝜇𝜇) belongs to the field generated by the coefficients of the input-output equations. In the

earlier works, the classical algorithm [87] was employed which required computing Gröbner
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Model DAISY [10] SIAN [G17] New algorithm

SIWR model [G12, Example 6] OOM > 5h. 18s.
SIWR model - 2 [G12, Example 6] OOM 213s. 0.7s.
Pharmacokinetics [G12, Example 7] > 5h. > 5h. 406s.
MAPK pathway - 1 [G12, Example 8] OOM 31s. 39.5s.
MAPK pathway - 2 [G12, Example 8] > 5h. > 5h. 58s.
SEAIJRC model [G12, Example 9] OOM > 5h. 131.3s.
Akt pathway [G12, Example 11] 182s. 28s. 5s.

Table 4.1: Comparison of the new algorithm [G12] with other software (OOM: “out of memory”)

basis with coefficients in a rational function field. Again, for larger models we targeted, this

approach was impractical. In order to address this challenge, we have established theory to

allow randomized reduction to much more efficient Gröbner basis computation over Q [G12,

Theorem 3.2].

Combining these ingredients, we have designed and developed an algorithm which could

assess identifiability for models which were out of reach before on a laptop — Table 4.1 reproduces

a fragment of [G12, Table 4].

Our implementation of the resulting algorithm was a basis for the first release in 2021 of the

new identifiability software tool, StructuralIdentifiability
1
package written in Julia language. In

the subsequent years the package has been actively developed: 38 releases made, 100+ stars on

github received. The package was also included into the SciML (Scientific Machine Learning
2
)

ecosystem. The software greatly benefited from new contributors including students. Now it can

assess local identifiability for discrete-time system, compute identifiable functions of states and

parameters, and propose reparametrizations of models (see Section 4.6).

4.6 Identifiable reparametrizations

This section describes current work in progress joint with Alexander Demin (student) and Christo-

pher Rackauckas. The implementations of the algorithms presented below are already available in

StructuralIdentifiability.jl together with tutorials
3
. The papers are in preparation.

Fast IO-equations computation implemented in StructuralIdentifiability.jl allows not

only to assess identifiability of some given functions of parameters but also to find a generating

set for all identifiable functions (i.e. solve Problem 4.4.1) since, in most cases, the coefficients of

the IO-equations provide such a generating set. However, this solution of Problem 4.4.1 is not

completely satisfactory: the coefficients may be too large to be analyzed by a human researcher.

We developed a new algorithm for computing a convenient generating set for the field of

identifiable functions. Compared to our earlier work [G30], the algorithm is more efficient and

performs more nuanced simplification of the resulting generating set. But the key novelty is the

fact that it can also compute the generating set of all the identifiable functions in parameters

and states (also called observable functions). This is achieved by combining the coefficients of the

1https://github.com/SciML/StructuralIdentifiability.jl
2https://sciml.ai
3https://docs.sciml.ai/StructuralIdentifiability/stable/tutorials/identifiable_functions/ and

https://docs.sciml.ai/StructuralIdentifiability/stable/tutorials/reparametrization/

https://github.com/SciML/StructuralIdentifiability.jl
https://sciml.ai
https://docs.sciml.ai/StructuralIdentifiability/stable/tutorials/identifiable_functions/
https://docs.sciml.ai/StructuralIdentifiability/stable/tutorials/reparametrization/
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IO-equations with few terms of the Taylor expansions of the outputs similarly to how it is done in

SIAN (see Section 4.3) but the number of terms is much smaller, and this makes the computation

efficient.

■ Example 4.4 — Computing identifiable functions. The running example in this section will be

the following SEUIR epidemiological model [109, Eq. (5.2)]:

𝑆 ′ = − 𝛽

𝑁
(𝐼 +𝑈 )𝑆,

𝐸′ = 𝛽

𝑁
(𝐼 +𝑈 )𝑆 −𝛾𝐸,

𝑈 ′ = (1−𝛼)𝛾𝐸 −𝛿𝑈 ,
𝐼 ′ = 𝛼𝛾𝐸 −𝛿𝐼,
𝑦 = 𝐼 ,

where 𝛼 , 𝛽 , 𝛾 , 𝛿 , 𝑁 , are parameters, 𝑆 , 𝐸, 𝐼 , 𝑈 are states, and the number of infected individuals 𝐼

is the output of the model. The input-output equation has more than a hundred of coefficients

including not very simple ones such as 𝛼2𝛿7𝑁 2− 3𝛼2𝛾𝛿6𝑁 2− 9𝛼2𝛾2𝛿5𝑁 2− 4𝛼2𝛾3𝛿4𝑁 2
. Applying

our simplification algorithm, we find that the whole field of identifiable functions in parameters is

generated by 𝛾,𝛿,
𝛽

𝛼𝑁
.

Furthermore, we can now bring the states into the picture: the field of all identifiable function

in parameters and states is generated by

𝛾, 𝛿,
𝛽

𝛼𝑁
, 𝐼, 𝛼𝐸, 𝛼𝑆, 𝛼 (𝐼 +𝑈 ) . (4.7)

■

The ability to compute identifiable functions in the parameters and states is valuable not

only as a source of additional information about the model. Simplified generators of the field of

identifiable functions such as (4.7) are natural new coordinates for an identifiable reparametrization
of the model. Indeed, a derivative of any of the generators is identifiable again and, thus, must be

expressible in terms of them yielding a reparametrized model.

■ Example 4.5 — Reparametrizing the model. We give names to the new coordinates from (4.7):

𝑆 := 𝛼𝑆, 𝐸 := 𝛼𝐸, 𝑈 := 𝛼 (𝐼 +𝑈 ), 𝛽 := 𝛽

𝛼𝑁
.

Then these quantities together with already identifiable 𝐼 ,𝛾,𝛿 yield the following model

𝑆 ′ = −𝛽 𝑆𝑈 ,
𝐸′ = 𝛽 𝑆𝑈 −𝛾𝐸,
𝑈 ′ = −𝛿𝑈 +𝛾𝐸,
𝐼 ′ = 𝛾𝐸 −𝛿𝐼,
𝑦 = 𝐼 .

In this model, all the states and parameters are globally identifiable. Both new coordinates and

the new model were computed using the new functionality of StructuralIdentifiability.jl.
Interestingly, the first three equations form themselves a so-called SEIR model. This has also

been pointed out in the original paper [109, Eq. (5.8)] but the last equation connecting this

SEIR-submodel to the original output found by our software has not been discovered. ■
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Realistic dynamical models used in life sciences can involve tens, hundreds, or even thousands of

equations. Researchers working with such large-scale models face two challenges:

• Complexity: how to compute with such models efficiently?

• Interpretability: how to derive mechanistic insights from models of this size?

One way to address these challenges is to use model reduction algorithms that replace a model

with a simpler one while preserving, at least approximately, some of the features of the original

model. Most popular methods solve this task by performing an approximate model reduction (e.g.,

[4, 12]), that is, finding a simpler model which approximately agrees with the original one. These

approaches are applicable in a wide range of contexts and can considerably reduce the model

size. On the other hand, approximation errors are introduced and the structure of a model can be

destroyed thus making the reduced model harder to interpret.

A complementary approach is to perform exact model reduction. Let us illustrate it with the

following toy three-dimensional model with unknown functions 𝑥1,𝑥2,𝑥3:
𝑥 ′1 = 𝑥1 + (𝑥2 +𝑥3)2,
𝑥 ′2 = 𝑥3,

𝑥 ′3 = 𝑥2−𝑥1.
(5.1)

Consider quantities 𝑦1 = 𝑥1 and 𝑦2 = 𝑥2 +𝑥3 and study their dynamics:

𝑦′1 = 𝑥
′
1 = 𝑥1 + (𝑥2 +𝑥3)2 = 𝑦1 +𝑦22, and 𝑦′2 = 𝑥

′
2 +𝑥 ′3 = 𝑦2−𝑦1.

We see that 𝑦1 and 𝑦2 satisfy themselves a system of equations of lower dimension:{
𝑦′1 = 𝑦1 +𝑦22,
𝑦′2 = 𝑦2−𝑦1.

(5.2)

Then model (5.2) is a reduction of (5.1), and it is exact in the sense that, for every solution of (5.1),

the corresponding quantities 𝑦1 and 𝑦2 satisfy (5.2) exactly.

This chapter presents algorithms and software for the problem of finding exact model re-

ductions. Most of the chapter is devoted to linear reductions (also called lumpings) in which the

new variables are linear combinations of the original ones. The last section (Section 5.5) will

discuss ongoing work on nonlinear reductions and connection of this problem with the structural

identifiability problem from Chapter 4.
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5.1 Linear reductions: problem statement and prior results
Definition 5.1.1 — Lumping. Consider an ODE system

x′ = f (x) (5.3)

in the variables x= (𝑥1, . . . ,𝑥𝑛) with rational right-hand side, that is, f = (𝑓1, . . . , 𝑓𝑛) and 𝑓1, . . . , 𝑓𝑛 ∈
C(x). We say that a linear transformation y = x𝐿 with y = (𝑦1, . . . ,𝑦𝑚), 𝐿 ∈ C𝑛×𝑚 , and rank𝐿 =𝑚
is a lumping of (5.3) if there exists g = (𝑔1, . . . ,𝑔𝑚) with 𝑔1, . . . ,𝑔𝑚 ∈ C(y) such that

y′ = g(y)

for every solution x of (5.3). In other words, the linear forms y satisfy themselves a self-

contained ODE system. The number𝑚 is called the dimension of the lumping, and the entries

of y are referred to as macro-variables.

■ Example 5.1 The reduction (5.2) of the system (5.1) can be presented in the framework of

Definition 5.1.1 as follows:

𝑦1 = 𝑥1, 𝑦2 = 𝑥2 +𝑥3 =⇒
(
𝑦1 𝑦2

)
=
(
𝑥1 𝑥2 𝑥3

) ©«
1 0
0 1
0 1

ª®¬ =⇒ 𝐿 =
©«
1 0
0 1
0 1

ª®¬
■ Example 5.2 — Conservation laws as lumpings. Assume that the system (5.3) has a linear

conservation law, that is, there exist c ∈ C𝑛 such that 𝑐1𝑥1 + . . .+𝑐𝑛𝑥𝑛 = const along any trajectory

of (5.3). Then such a conservation law yields a lumping of order one defined by 𝑦 = 𝑐1𝑥1 + . . .+𝑐𝑛𝑥𝑛
and equation 𝑦′ = 0. ■

Definition 5.1.2 — Constrained lumping. In the notation of Definition 5.1.1, assume that one is

additionally given a vector xobs of linear forms in x. Then a lumping y = x𝐿 is called a constrained
lumping with respect to xobs if the entries of xobs can be expressed as linear combinations of the

entries of y.
In other words, constrained linear lumping is a reduction required to preserve a set of

observable variables xobs of interest. For example, the lumping from Example 5.1 is a constrained

linear lumping with respect to one-dimensional observable vectors xobs = (𝑥1) and xobs =
(𝑥1 +𝑥2 +𝑥3).

The previous research on the topic has been mostly focused on the case when the macro-

variables y are sums of subsets of x or, in other words, when the matrix 𝐿 in Definition 5.1.1 is a

0/1-matrix. For this setting, powerful methods have been developed, see e.g. [20, 21, 39, 40]. These

include, in particular, a software ERODE [19] which can very efficiently find the smallest lumping

among the ones coming from a subdivision of the set x (that is, each macro-variable is the sum of

one of the sets in the subdivision).

5.2 Constrained linear reductions: CLUE package

As described in the previous section, the prior algorithms for finding lumpings were restricted to

the case of 0/1 coefficients which could be reformulated as a combinatorial optimization problem

in finite (but huge) search space. Allowing the coefficients to be arbitrary numbers makes the
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search space infinite and requires tools from algebra. We start with presenting a reduction of the

problem of computing lumpings to a linear algebra problem.

We consider a polynomial dynamical system

x′ = p(x), where p ∈ C[x] . (5.4)

We denote by 𝐽 (x) the Jacobian matrix of p with respect to x, that is, the matrix with the columns

being ∇(𝑝1), . . . ,∇(𝑝𝑛). Since the system (5.4) is defined by polynomials, 𝐽 (x) can be viewed as

a polynomial in x with matrix coefficients. Let𝑚1(x), . . . ,𝑚𝑁 (x) be the monomials appearing in

𝐽 (x), then we can write

𝐽 (x) =
𝑁∑︁
𝑖=1

𝐽𝑖𝑚𝑖 (x), where 𝐽1, . . . , 𝐽𝑁 ∈ C𝑛×𝑛 .

The following lemma is the key tool for computing lumpings with arbitrary coefficients.

Proposition 5.2.1 — A. Ovchinnikov, I.C. Pérez Verona, G. Pogudin, M. Tribastone [G29, Section
S.II]. A matrix 𝐿 ∈ C𝑛×𝑚 is a lumping of the system (5.4) if and only if the column space of 𝐿 is

invariant under 𝐽1, . . . , 𝐽𝑁 .

While the importance of the Jacobian in the context of exact linear reduction has been recog-

nized in the pioneering works by Li and Rabitz [77] and has been used to derive some necessary

conditions, the “if and only if” criterion from Proposition 5.2.1 has not been formulated until our

paper [G29].

Proposition 4.4.1 reduces the search of a constrained lumping of smallest order to the following

problem in linear algebra.

Input A list of matrices𝑀1, . . . ,𝑀𝑠 ∈ C𝑛×𝑛 and a list of vectors 𝑣1, . . . , 𝑣𝑟 ∈ C𝑛 .
Output A basis of the smallest (with respect to inclusion) subspace 𝑉 ⊂ C𝑛 containing 𝑣1, . . . , 𝑣𝑟

and invariant under𝑀1, . . . ,𝑀𝑠 .

In theory, this problem is easy: one starts with 𝑣1, . . . , 𝑣𝑟 and adds products of already chosen vectors

with𝑀𝑖 ’s until the generated subspace stabilizes (summarized in [G29, Algorithm 1]). Making such

an algorithm to scale to dimensions of hundreds and thousands required carefully reorganizing

this computation, utilizing modular computation, and taking advantage of the sparsity of the

input matrices. We have implemented a resulting algorithm in a python package CLUE [G29].

Since it allows a larger class of reductions, we were able to produce reductions of lower dimension

than the state-of-the-art methods while keeping the observed variables (see [G29, Table 1]). We

describe a specific example in detail in the next section.

Proposition 5.2.1 and, thus, the CLUE algorithm are restricted to ODE systems with polynomial

right-hand side. However, many models coming from applications (for example, describing

reaction networks with enzymatic reactions) are defined by rational functions. Together with

A. Jimenez-Pastor (postdoc) and J. Jacob (undergraduate student) in [G21], we have generalized

Proposition 5.2.1 to the case of rational dynamics [G21, Lemma 6] and used the more general

version to propose an efficient randomized algorithm for computing optimal constrained lumping

for rational ODE systems. This algorithm was integrated into the CLUE package as well.

5.3 Showcasing CLUE and quest for interpretability
As an example of lumping for a system from the literature, we consider a model of multisite

phosphorylation [115]. It describes a protein with𝑚 identical and independent binding sites that
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simultaneously undergo phosphorylation and dephosphorylation. Each binding site can be either

phosphorylated or unphosphorylated and bound or unbound to a kinase. This yields four different

states for a site as on Figure 5.1a. The chemical species in the model are kinase, phosphatase,

and all possible protein configurations giving 4𝑚 +2 species in total. Possible reactions between

these species include phosphorylation/dephosphorylation and binding/unbinding of kinase. The

evolution of this system is described by an ODE system with the variables being the concentrations

of species and the dynamics being defined by the standard mass-action kinetics [38].

a. model components

multisite protein 

phosphorylation site 

kinase 

b. possible states of one site 

P phosphorylation

1

kinase/phosphatase binding

2

P

3

P

4

ns = 4

s  = {1, 2, 3, 4}

phosphatase 

(a) Setup of the model (for𝑚 = 3).

 macro-variable representations

m=2 phosphoprylation sites:

Y  = + + + + + + 2x

m=3 phosphoprylation sites:

Y  = + + + + . . .

+ 2x + 2x + 2x + 3x

main state of a macro-variable

other three states

(b) New interpretable macro-variables for𝑚 = 2,3.

Figure 5.1: Multisite phosphorylation model

Reductions discovered by ERODE [19] (for𝑚 = 2, . . . ,8) consisted in replacing the concentrations

of protein configurations by the sums of the concentrations of configurations differing by a

permutation of the sites. Therefore, the number of macro-variables is equal to

(
𝑚+3
3
)
+ 2. In

contrast, the analysis performed by CLUE [G29] with the observable being the amount of kinase

always results in just six macro-variables (independently on𝑚!). We provide the corresponding

numbers in Table 5.1 below. Note that each of these reductions (even when the original dimension

was 16 thousands) was computed in less than a minute on a laptop.

𝑚 Original dim ERODE dim CLUE dim 𝑚 Original dim ERODE dim CLUE dim

2 18 12 6 5 1026 58 6

3 66 22 6 6 4098 86 6

4 258 37 6 7 16386 122 6

Table 5.1: The dimensions of the original model of multisite phosphorylation (for different𝑚’s) and the

dimensions of the reductions discovered by ERODE and CLUE

While the reductions obtained by CLUE are very attractive in terms of dimension, not all

computed macro-variables had meaningful interpretations: two of them were the concentrations

of kinase and phosphatase, and the other four were linear combinations of protein configurations.

Among the latter, one remained not understood during our work on the original CLUE paper. Similar

interpretability challenges occurred in other examples we have considered in [G29].

This issue has been addressed in our work [G44] with X. Zhang (undergraduate student). Our

idea was that, since any linear lumping is defined up to an invertible linear change of coordinates

in the reduced model, one should be able to improve the interpretability of a reduction by a

postprocessing which would choose, for a given reduction, a “better basis”. We used convex

geometry to design an algorithm finding a new set of macro-variables with all the coefficients
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being nonnegative and subject to certain minimality condition. This notion of “better basis” proved

to be efficient: it produced interpretable reductions for all three case studies from [G29] in which

such reductions could not be obtained before.

For the multisite phosphorylation model, the new set of macro-variables produced by our

algorithm again included the concentrations of kinase and phosphatase, and each of the four

other macro-variables involving the protein configurations corresponded to a state of a site (e.g.,

unbounded and unphosphorylated), and each protein configuration appeared with a coefficient

equal to the number of sites in it with this state. Examples of these new macro-variables are given

on Figure 5.1b for𝑚 = 2 and𝑚 = 3. This admits a natural interpretation: the constructed reduction

replaces the concentration of the protein configurations with the “concentrations” of each of the

four states of the sites.

5.4 Computing hierarchies of reductions

The algorithms used in the CLUE described in the two previous sections were designed to compute

constrained linear reductions (see Definition 5.1.2) meaning that the input consisted of an ODE

model and a list of observables to be present in the reduction. While in some cases such observables

are naturally available, in many situations they are not, so an educated guess is required.
A natural way to state the problem in the unconstrained case is to find an exact linear reduction

of the smallest possible dimension. However, such a reduction may be too coarse: if a model

has a linear first integral ℓ (x) = const, then a macro-variable 𝑦 := ℓ (x) defines a one-dimensional

reduced system 𝑦′ = 0 (see Example 5.2) which carries too little information about the original

system’s dynamics.

In our work [G11] with A. Demin and E. Demitraki (both undergraduate students), we came

up with a more flexible way of stating the exact linear reduction problem in the unconstrained

case. To this end, we define a chain of lumpings [G11, Definition 2] as a sequence of lumpings

where the reduced system of the 𝑖-th lumping is the starting system for the 𝑖 +1-st one, and the

first lumping is a lumping of the input model. We will call such a chain maximal if it has the
largest possible length. Given a chain of lumpings, user can move along it and choose an optimal

trade-off between the size of the reduced model and the amount of detail preserved.

We give an algorithm to compute a maximal chain of reductions and implement it in the

Julia package ExactODEReduction1. Compared to the constrained lumpings in CLUE, the algo-
rithm has much more powerful algebraic tools behind as it builds upon the structure theory

of finite-dimensional algebras. These algebraic concept enter the scene as follows: in terms of

Proposition 5.2.1, if A is an algebra generated by 𝐽1, . . . , 𝐽𝑁 , then the lumpings are in a bijective

correspondence of the invariant subspaces (i.e., submodules) with respect to this algebra. Further-

more, the maximal chains of lumpings correspond to the Jordan-Hölder filtrations of C𝑛 . This
interpretation allowed us to use numerous tools from the representation theory of such algebras,

and our implementation efficiently works with the models of dimension around one hundred.

In addition to detailed case studies reported in the paper [G11, Section 5], we have evaluated

the algorithm on models of dimension not exceeding 133 from the BioModels database [82], the

average length of the produced chain of reductions and average runtime on a laptop are reported

in Table 5.2. One can observe that there is typically a nontrivial number of reductions providing a

user with a “menu” within a couple of minutes.

1https://github.com/x3042/ExactODEReduction.jl

https://github.com/x3042/ExactODEReduction.jl
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Dimensions Chain length Runtime Dimensions Chain length Runtime

2 - 9 1.39 0.6 s 40 - 59 6.08 4.58 s
10 - 19 2.61 0.21 s 60 - 79 6.95 34.57 s
20 - 29 2.13 0.44 s 80 - 99 7.09 96.38 s
30 - 39 2.71 1.74 s 100 - 133 21.5 202.52 s

Table 5.2: Lengths of chains of reductions and runtimes for models from BioModels database [G11, Table 1]

5.5 Nonlinear reductions: the other side of identifiable reparametrizations

Compared to the linear version discussed before and well-understood reductions by scaling

transformations [62, 75], the general problem of finding exact reductions is much more challenging

and, thus, much less studied. Interestingly, this problem turn out to be closely connected to the

structural identifiability problem from Chapter 4 as we will explain below. As in the linear case,

one can consider constrained (observables to be preserved provided) and unconstrained settings.

In the constrained case we start with an ODE system x′ = f (x) and a list of observed quantities

y = g(x), and want to produce new variables z = h(x) which satisfy themselves an ODE system of

lower dimension, and y can be expressed in terms of z. This process is summarized on Figure 5.2.

x′ = f (x)
ODE system

y = g(x)
observables

z = h(x)
new variables

z′ = f̃ (z)
y = g̃(z)

reduced model

Figure 5.2: Constrained exact nonlinear reduction

The workflow on the Figure 5.2 is essentially the same as has been employed for identifiable

reparametrizations in Section 4.6. Furthermore, by definition, any identifiable functions of states

are expressible via the outputs and their derivatives and, thus, must be expressible in terms of the

new state variables z. This means that the minimal constrained nonlinear reduction we can hope

for is a reduction with the states being generators of the field of identifiable functions, and this is

exactly what we constructed in Section 4.6.

The idea of the connection between the exact reduction and identifiability was further devel-

oped in the unconstrained context in our work with A. Jimenez-Pastor [G22]. In this setting, we are

not given any observables, so we can choose some observables and then use the methodology for

the constrained case. The choice of observables is crucial here: the above discussion implies that,

in order to make the reduction nontrivial, one should choose observables for which the model is

nonidentifiable. In other words, unconstrained exact reduction can be viewed as an adversarial
version of the identifiability problem. We used an ansatz to search for such “nonidentifying” ob-

servables. The observability rank condition allows expressing the desired lack of identifiability as

a polynomial relation on the ansatz coefficients. Let us illustrate the approach using an example

from [G22].

■ Example 5.3 — Exact nonlinear reduction [G22, Example 4]. The following four-dimensional

model with two scalar parameters 𝑘 and 𝐾 can be obtained using CLUE from a 227-dimensional
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model described in [14]:
𝑥 ′1 = −2𝐾𝑥1𝑥2 +𝑘𝑥3,
𝑥 ′2 = −2𝐾𝑥1𝑥2−𝑘𝑥2𝑥3 +𝑘𝑥3 +2𝑘𝑥4,
𝑥 ′3 = 2𝐾𝑥1𝑥2−𝐾𝑥2𝑥3−𝑘𝑥3 +2𝑘𝑥4,
𝑥 ′4 = 𝐾𝑥2𝑥3−2𝑘𝑥4.

(5.5)

If one takes a linear ansatz for an output 𝑦 = 𝑎1𝑥1 + . . .+𝑎4𝑥4, then computation shows that the

model will be nonidentifiable with respect to this output if and only if 𝑎1 +𝑎4 = 2𝑎3. We will set

𝑦 = 𝑥2.

One way to compute the actual reduction is described in [G22], but we will apply directly the

reparametrization algorithm from Section 4.6. We obtain


𝑧′1 = −2𝑧1𝑧2 +𝑐2,
𝑧′2 = −𝑐1𝑧1𝑧2 + 1

2𝑐1𝑐2,

𝑦 = 𝑧1,

where


𝑧1 = 𝑥2,

𝑧2 = 𝐾𝑥1 + 𝐾
2 𝑥3 +

𝑘
2 ,

𝑐1 = 𝐾,

𝑐2 = 𝑘𝑥2 +𝑘𝑥3 +2𝑘𝑥4.

Note that 𝑐2 is in fact constant since it is a first integral of the model. Since the reduced model

has a first integral 𝑐1𝑧1−2𝑧2 = 𝑐3, the number of states can be brought further down to one:

𝑧′1 = 𝑧1(𝑐1𝑧1−𝑐3) +𝑐2, 𝑦 = 𝑧1.

This is now a Ricatti equation, and it can be solved in a closed form. Recall that the whole reduction

process has started with a 227-dimensional ODE model! ■
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In Section 4.6 and Chapter 5, we saw that, given a dynamical model defined by an ODE system, it

may be beneficial to pass from the original coordinates to new ones. The new coordinates were

preferable either because they were identifiable as in Section 4.6 or they defined a state space of

smaller dimension as in Chapter 5.

The present chapter is also devoted to a coordinate transformation, called quadratization. It
aims at “simplifying” a model as well but in a different sense: reducing the degrees of the defining
equations rather than the dimension. Let us illustrate this idea on a toy example.

■ Example 6.1 — Quadratization. Consider a scalar ODE 𝑥 ′ = 𝑥3 in a single variable 𝑥 = 𝑥 (𝑡) with
cubic right-hand side. We augment the state space with a coordinate𝑤 = 𝑥2. Then we can write

the original equation as 𝑥 ′ = 𝑥𝑤 with quadratic right-hand side, and we can do the same for𝑤 ′
:

𝑤 ′ = 2𝑥𝑥 ′ = 2𝑥4 = 2𝑤2.

Therefore, the coordinate transformation 𝑥 → (𝑥,𝑥2) maps any solution of the original equation

to a solution of the following ODE system with at most quadratic right-hand side:

𝑥 ′ = 𝑥𝑤, 𝑤 ′ = 2𝑤2. ■

The fact that any ODE system can be embedded into a system with at most quadratic non-

linearities as in the example above has been established at least 100 years ago [5, 74] and has

been rediscovered several times since then. In the recent years, such transformations have found

applications in a number of areas including model order reduction [11, G8, 50, 71, 72, 94], synthetic

biology [37, 55, 56], numerical integration [8, 49, 51, 52], and reachability analysis [42].

6.1 Quadratization algorithms for ODEs
In order to state the results for the ODE case explicitly, we formalize Example 6.1 in a definition.

Definition 6.1.1 —Quadratization. Consider a polynomial system of ODEs

x′ = p(x), (6.1)

where p(x) = (𝑝1(x), . . . ,𝑝𝑛 (x)) with 𝑝1, . . . ,𝑝𝑛 ∈ C[x]. Then an ℓ-dimensional vector of new

variables

w =w(x) ∈ C[x]ℓ (6.2)
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is said to be a quadratization of (6.1) if there exist vectors q1(x,w) and q2(x,w) of dimensions

𝑛 and ℓ , respectively, such that degq1,degq2 ⩽ 2 and

x′ = q1(x,w) and w′ = q2(x,w). (6.3)

The dimension ℓ of vector w is called the order of quadratization. A quadratization of the

smallest possible order is called an optimal quadratization.
If all the polynomials𝑤1(x), . . . ,𝑤ℓ (x) are monomials, the quadratization is called a mono-

mial quadratization. If a monomial quadratization has the smallest possible order among all

the monomial quadratizations of the system, it is called an optimal monomial quadratization.

The quadratization constructed in Example 6.1 is monomial and of order one, and, therefore, it

is an optimal (monomial) quadratization. In general, the orders of optimal quadratization and

optimal monomial quadratization can significantly differ. Several examples of this phenomenon

were constructed by F. Alauddin (high-school student) in a project [1] under my supervision.

The fact that any polynomial ODE admits a monomial quadratization has been known since the

early 20th century [5, 74] and has been reproved several times since then (e.g., in [18, 22, 50, 65,

66]). Furthermore, all these proofs are constructive and yield algorithms (essentially, the same

algorithm) to construct a monomial quadratization for a given model. However, in most cases, the

order of such a quadratization would be too large for meaningful applications.

The first practical, both in terms of the runtime and in terms of the order of the output,

algorithm producing quadratizations was designed by Fages, Hemery, and Soliman [56] and

implemented in the BioCham software [13]. The idea of this algorithm was to take the large

quadratization extracted from the constructive proof of the existence and use SAT-solving tech-

niques to find a smallest subset which would still be a quadratization. Although the algorithm

does not guarantee optimality, the output often has low order and in many cases turns out to be

optimal (see [G9, Table 3]).

Together with A. Bychkov (master student) we have designed an algorithm for finding an

optimal monomial quadratizations for an ODE system [G9]. It performed a search in the space of

all monomial quadratizations following the Branch-and-Bound paradigm and achieved efficiency

thanks to domain-specific pruning rules (for example, relating quadratizations and𝐶4-free graphs).

We have implemented this algorithm in QBee package in Python. Table 6.1 (an excerpt from [G9,

Table 3]) compares QBee with BioCham in terms of the order of the resulting quadratization and

runtime. We see that QBee can find quadratizations of lower order and compares favorably to the

state-of-the-art in terms of the runtime.

BioCham QBee BioCham QBee

ODE system time order time order ODE system time order time order

Circular(6) 37.6 5 4.2 5 Hill(15) 64.1 5 0.34 5

Circular(8) — — 453.3 6 Hill(20) — — 2.4 6

Hard(3) 1.09 11 8.6 9 Monom(3) 0.44 13 84.2 10

Hard(4) 20.2 13 96.9 10 Cubic Cycle(7) — — 160.9 14

Table 6.1: Benchmarking packages BioCham and QBee for the quadratization problem

(for the benchmark details, see [G9])

The next natural class of models to consider are ODE models with input, that is, systems of
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the form

x′ = p(x,u),

where u = (𝑢1, . . . ,𝑢𝑠) is a vector of external inputs. In this case, the new variables are allowed

to involve inputs and, consequently, the quadratized system may contain the derivatives of the

inputs (see [G8, Definition 3.1]).

■ Example 6.2 — Quadratization with inputs. Consider, for example, a scalar ODE 𝑥 ′ = 𝑥2𝑢. Then,
with a new variable𝑤 = 𝑥𝑢, we can write the system in a quadratic form

𝑥 ′ = 𝑥𝑤, 𝑤 ′ = 𝑥 ′𝑢 +𝑥𝑢′ = 𝑥2𝑢2 +𝑥𝑢′ =𝑤2 +𝑥𝑢′. ■

In our work with A. Bychkov, O. Issan, and B. Kramer [G8], we prove that such quadratization

always exists.

Theorem 6.1.1 — A. Bychkov, O. Issan, G. Pogudin, B. Kramer [G8, Theorem 3.3]. Every polyno-

mial system with external inputs x′ = p(x,u) admits a monomial quadratization.

We have implemented an efficient algorithm for searching quadratizations in the input case

in QBee [G8, Sections 5.2]. In some applications it is desirable, however, to avoid the derivatives of

the inputs in the right-hand side of the quadratized system (for example, if input is modeled by a

step function). We show [G8, Proposition 3.9] that the problem of finding a quadratization with

this restriction is equivalent to a long-open problem in computational algebra of determining if a

polynomial vector field is locally finite [35].

Another natural way to extend the standard algorithms for quadratization is to perform quadra-

tizations which would preserve some important properties of the model. Since the quadratized

model is typically used in the context of numerical computation, it is desirable to preserve the

stability properties of the input model (this may not happen by default, see [G10, Example 2]!).

In our work [G10] with Y. Cai (undergraduate student), we study this problem focusing on the

stability of the equilibrium points. Recall that an equilibrium is called dissipative if the real parts of
the eigenvalues of the linearization of the vector field are negative; dissipativity implies asymptotic

stability of the point (and any positive eigenvalue implies instability).

Theorem 6.1.2 — Y. Cai, G. Pogudin [G10, Theorem 1]. For every polynomial system x′ = p(x),
there exists a monomial quadratization which maps the dissipative equilibria of the system to

dissipative equilibria of the quadratization.

We also designed and implemented an extension of the QBee algorithm to compute such dissipativity-

preserving quadratizations.

6.2 Towards quadratization of PDEs
One of the motivations for studying the quadratization problem is its applications to model order

reduction. For any dynamical model, one can learn a quadratic reduced order model for time-series

data by projecting on the dominant components and the least squares fitting. However, if the

original model was not quadratic, the adequacy of the reduced model obtained by this procedure

is questionable. Lift & Learn method [102] addresses this challenge by using the coordinate

transformation given by a quadratization to lift the time-series data for the original model to the
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one for the quadratized model. For the latter, approximating a projection by a quadratic reduced

model turns out to be more accurate and better respect the underlying model structure.

High-dimensional models to be reduced often arise as semi-discretizations of PDEs. Consider,

for example, a PDE in a single dependent variable 𝑣 (𝑡, 𝜉) of the form

𝜕𝑣 (𝑡, 𝜉)
𝜕𝑡

= 𝑝0(𝑣 (𝑡, 𝜉)) +𝑝1(𝑣 (𝑡, 𝜉))
𝜕𝑣 (𝑡, 𝜉)
𝜕𝜉

, (6.4)

where 𝑝0 and 𝑝1 are univariate polynomials. If we fix 𝑁 and semi-discretize (6.4) in the 𝜉 variable

by introducing 𝑥𝑖 (𝑡) := 𝑣 (𝑡, 𝑖/𝑁 ) for 𝑖 = 0, . . . ,𝑁 , then we obtain a (𝑁 +1)-dimensional ODE system

of the form

𝑥 ′𝑖 = 𝑝0(𝑥𝑖) +𝑝1(𝑥𝑖)ℓ𝑖 (𝑥0, . . . ,𝑥𝑁 ), 𝑖 = 0, . . . ,𝑁 , (6.5)

where ℓ (𝑥0, . . . ,𝑥𝑁 ) is a linear function corresponding to the discretization of the operator
𝜕
𝜕𝜉

(for example, ℓ𝑖 =
𝑥𝑖+1−𝑥𝑖
1/𝑁 ). In order to apply the Lift & Learn method sketched above, one has to

quadratize the ODE system (6.5). On one hand, the dimension of this system can be equal to

hundreds or thousands which is beyond the capacities of the existing quadratization software. On

the order hand, the equations in the system have the same structure, so one may expect to find

structured quadratizations admitting a concise representation.

In our work with A. Bychkov, O. Issan, and B. Kramer [G8], we have formalized this observation

by defining dimension-agnostic quadratizations [G8, Section 4] which is a way to simultaneously

describe quadratizing transformation for the systems (6.5) derived from (6.4) with different 𝑁 ’s

and ℓ𝑖 ’s. An example of such description would be “all variables of the form 𝑥2𝑖 and all variables
of the form 𝑥𝑖𝑥 𝑗 , where 𝑥 𝑗 appears in ℓ𝑖”. We prove that dimension-agnostic quadratization exists

for a large class of cases including evolutionary PDEs which are affine with respect to the spatial

derivatives (as, e.g., (6.4)) in [G8, Theorem 4.6] and show that it can be found by computing a

quadratization for𝑁 = 4 and a specific set of ℓ𝑖 ’s [G8, Proposition 4.7], which can be done efficiently
using QBee.

We have applied the resulting quadratization algorithm for reducing an ODE system appearing

as a semi-discretization of the solar wind model using real data [G8, Section 7]. The ODE system

to be reduced had dimension more than a hundred but we could quadratize it by running QBee on

a system of dimension eight. The resulting six-dimensional reduced model has achieved much

better accuracy than the one obtained without using quadratization as shown on Figure 6.1.

Figure 6.1: Approximation error for reduced order models obtained with (red) and without (blue)

quadratization (taken from [G8, Figure 7.2])
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In this final chapter I describe several topics for future research continuing the lines of work

presented in this manuscript. The topics selected for this chapter represent three main axes of

prospective studies: deeper understanding of already studied problems and, thus, more efficient

algorithms for them (Section 7.1), overhauling existing methods to address challenges arising from

applications (Section 7.2), and applying tools from differential/difference algebra to new domains

(Section 7.3).

7.1 Fighting expression swell: concise representations and numerical computation

While the algorithms and software described in this thesis compare favorably to the state-of-the-

art and can considerably push the boundaries of what can be practically computed, the majority

of them (except for the linear model reduction algorithms from Chapter 5) are mostly limited to

models of dimension not exceeding 20. One of the main reasons for them not to scale further is a

well-known problem in symbolic computation: intermediate expression swell. This means that the

polynomials or equations appearing during the computation may become huge and hinder the

efficiency. For example, input-output equations of a model of dimension as small as four or five

can easily contain thousands of terms. We propose two related ways to address this challenge.

Alternative representations
While the result of differential elimination indeed may contain thousands of terms, this may be

not because of the inherent complexity of this differential polynomial but rather due to the fact

that the standard monomial representation is not the most appropriate one. For example, consider

a system of differential equations in 𝑥1, . . . ,𝑥𝑛 and 𝑦1, . . . ,𝑦𝑛 :

𝑥1𝑦1 + . . .+𝑥𝑛𝑦𝑛 = 0, 𝑥 ′1 = 0, . . . 𝑥 ′𝑛 = 0,

which expresses the fact that functions 𝑦1, . . . ,𝑦𝑛 are linearly dependent over constants. Then, if

one eliminates x’s, the resulting ideal will contain the Wronskian of y which is a polynomial with

𝑛! terms but admits a concise representation. Our initial studies indicate that Wronskian-like

expressions are abundant in the results of differential elimination. One of the reasons for this is

the fact that differential resultants are known to be differentially homogeneous [79, Theorem 5.13],

and differentially homogeneous polynomials are spanned by Wronskians of certain form [36]. A

short-term goal would be to study differential resultants in this special basis aiming at, in a longer

term, developing a general theory of such representations and using it in the algorithms.
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Another direction is to allow integro-differential polynomials: a recent work by Lemaire and

Roussel [76] shows that the result of integral eliminationmay be smaller than the purely differential

one by several orders of magnitude (and beneficial from the numerical standpoint [121])! Develop-

ing systematic theory and algorithms to take advantage of this is also a direction for future research.

The first step in this direction would be to polish and refine a method for speeding up identifiability

analysis via partial integration of an ODE model developed with Stefan Vayl (undergraduate stu-

dent) which has already been successfully used in a case study [7, Section 3.2.2]. Questions for the

longer term include theory for showing (im)possibility of integral/integro-differential elimination

and general algorithms for performing it.

Numerical computation
In the case of polynomial system solving, one way to avoid computing with large expressions is

to use numerical computation, this approach is referred to as numerical algebraic geometry [116].

In this approach, polynomial ideals are represented by several of their approximate numerical

solutions (witness set). For differential equations, one could use numerical or power series solutions

as they both can be viewed as approximations but in different topologies. In both cases, efficient

algorithms for computing such solutions are available. Furthermore, power series solutions have

already been used in our elimination algorithm for ODEmodels in Section 3.4 in order to distinguish

between different components of an ideal. Further replacing ideals with their solutions for heavy

computations and then employing sparse interpolation to reconstruct the result at the end can

have dramatic impact on the performance of the algorithm. A short-term task in this direction is

to develop an elimination algorithm for polynomial differential models following this evaluation-

interpolation approach. Our work in progress with Yulia Mukhina (PhD student) yields such an

algorithm and shows that it is indeed capable to push the limits of computation. Further steps in

longer term would involve avoiding performing full reconstruction and using representations via

solutions (power series and/or numerical) to answer the questions of interest directly.

7.2 Transformations for learning

One of the recent trends in computing with dynamical models is to apply learning techniques

(also referred to as scientific machine learning). Examples of this include learning a smaller

surrogate model or learning a numerical solution for the corresponding equations instead of

applying classical numerical simulation methods. One of the key steps in applying machine

learning techniques is transforming the data from the original representation to a potentially

more convenient one (feature engineering). In the context of scientific machine learning, data

often comes from a model, so one can search for such transformations on the level of the model.

This is precisely what happens in the applications of quadratization algorithms to model order
reduction in Section 6.2 where a reduced model learned using the quadratized equations turns

out to be more accurate than the one learned using the original model. Continuing this research,

the next short-term goal is to develop quadratization algorithms to be applied to PDEs directly in

order to obtain more versatile and concise quadratizations in the context of model order reduction,

this is a work in progress with Boris Kramer and Albani Olivieri (master student).

Another example involving the results presented in this thesis is learning parameters of ODE
models from time series using neural networks: acquiring enough time series to ensure struc-

tural identifiability is one of the steps of the workflow presented in [29] (and our software

StructuralIdentifiability.jl described in Section 4.5 is used in the workflow). Unlike the
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model reduction example above, only the result of identifiability analysis is used in learning,

and the model transformation remains behind the scenes. A short-term task is to make a full

use of the developed techniques by performing model reparametrization described in Section 4.6

and using the new coordinates for learning. This requires making the experimental approach

presented here efficient and robust. In longer term, an important question would also to make the

new coordinates not only identifiable but interpretable so that learning them would be especially

insightful. Furthermore, even when parameters and states are identifiable, i.e. could be in principle

learned, one has still significant freedom in choosing the specific coordinates, and this affects the

accuracy and robustness of computation. For a recent example involving differential elimination

see [70]. Systematically developing tools for such coordinate choice in already identifiable model

is an intriguing problem for future long-term research.

7.3 Symbolic computation and differential algebra for calculus of variations
Many dynamical models, especially defined by (partial) differential equations, are derived from

fundamental optimality principles (minimization of energy, Fermat’s principle, etc), and many

important structural features they possess are in fact inherited from the functionals they optimize.

It is therefore natural to develop symbolic and algebraic tools to work with these functionals

directly. Several interesting and original works exploring and exploiting the connections between

calculus of variations and differential algebra including [107] and papers by P. Olver [90, 92, 93]

appeared in the 1980-s. An interesting direction for future research is to revisit these results

from the point of view of recent developments in differential algebra and advances in symbolic

computation including the ones described in the present thesis. In particular, our works with R.

Ait El Manssour [G2, G3] on differential analogues of dual numbers could be a starting point for

developing algebraic formalism for infinitesimal variations. Short- and medium-term projects

suitable for entering the new domain and exploring the algebraic aspects of it may include

dimension counting for high-order null Lagrangians [90] and homogeneous Lagrangians, and

explicit symbolic computation algorithms for the inverse problem of calculus of variations [2, 33].
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the Rosenfeld–Gröbner algorithm”. In: Journal of Symbolic Computation 43.8 (Aug. 2008),

582–610. url: http://dx.doi.org/10.1016/j.jsc.2007.12.002 (cit. on p. 19).

[49] C. Gözükirmizi and M. Demiralp. “Solving ODEs by obtaining purely second degree multi-
nomials via branch and bound with admissible heuristic”. In: Mathematics 7.4 (2019). url:

https://www.mdpi.com/2227-7390/7/4/367 (cit. on p. 44).

[50] C. Gu. “QLMOR: a projection-based nonlinearmodel order reduction approach using quadratic-
linear representation of nonlinear systems”. In: IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems 30.9 (2011), pp. 1307–1320. url: https://doi.
org/10.1109/TCAD.2011.2142184 (cit. on pp. 44, 45).

https://doi.org/10.1007/978-3-030-03858-8
http://dx.doi.org/10.1073/pnas.0809908106
https://doi.org/10.1016/j.tcs.2011.12.059
https://doi.org/10.1016/j.tcs.2011.12.059
http://dx.doi.org/10.1016/S1474-6670(17)55072-7
http://dx.doi.org/10.1016/S1474-6670(17)55072-7
https://doi.org/10.1007%2F978-3-030-89716-1_6
https://doi.org/10.1016/b978-0-08-041901-5.50061-0
doi.org/10.1016/j.jsc.2007.05.005
doi.org/10.1016/j.jsc.2007.05.005
http://dx.doi.org/10.1007/978-3-642-54862-8_19
https://arxiv.org/abs/2406.16132
http://dx.doi.org/10.1016/j.jalgebra.2009.05.032
http://dx.doi.org/10.1016/j.jalgebra.2009.05.032
http://dx.doi.org/10.1016/j.jsc.2007.12.002
https://www.mdpi.com/2227-7390/7/4/367
https://doi.org/10.1109/TCAD.2011.2142184
https://doi.org/10.1109/TCAD.2011.2142184


REFERENCES 59

[51] L. Guillot, B. Cochelin, and C. Vergez. “A generic and efficient Taylor series–based con-
tinuation method using a quadratic recast of smooth nonlinear systems”. In: International
Journal for numerical methods in Engineering 119.4 (2019), pp. 261–280. url: https:
//doi.org/10.1002/nme.6049 (cit. on p. 44).

[52] L. Guillot, B. Cochelin, and C. Vergez. “A Taylor series-based continuation method for
solutions of dynamical systems”. In: Nonlinear Dynamics 98.4 (2019), pp. 2827–2845. url:

https://doi.org/10.1007/s11071-019-04989-5 (cit. on p. 44).

[53] R. Gustavson, M. Kondratieva, and A. Ovchinnikov. “New effective differential Nullstellen-
satz”. In: Advances in Mathematics 290 (2016), pp. 1138–1158. url: http://dx.doi.org/
10.1016/j.aim.2015.12.021 (cit. on pp. 19, 20).

[54] A. Haddak. “Differential algebra and controllability”. In: Nonlinear Control Systems Design

1989. 1990, 13–16. url: http://dx.doi.org/10.1016/B978-0-08-037022-4.50008-9
(cit. on p. 9).

[55] M. Hemery and F. Fages. “Algebraic biochemistry: a framework for analog online computation
in cells”. In: Computational Methods in Systems Biology. 2022, pp. 3–20. url: https:
//doi.org/10.1007/978-3-031-15034-0_1 (cit. on p. 44).

[56] M. Hemery, F. Fages, and S. Soliman. “On the complexity of quadratization for polynomial
differential equations”. In: Computational Methods in Systems Biology. Ed. by A. Abate,

T. Petrov, and V. Wolf. Cham: Springer International Publishing, 2020, pp. 120–140. url:

https://doi.org/10.1007/978-3-030-60327-4_7 (cit. on pp. 44, 45).

[57] R. Hermann and A. J. Krener. “Nonlinear controllability and observability”. In: IEEE Trans-

actions on automatic control 22.5 (1977), pp. 728–740. url: http://doi.org/10.1109/
TAC.1977.1101601 (cit. on p. 29).

[58] E. Hrushovski and F. Point. “On von Neumann regular rings with an automorphism”. In:

Journal of Algebra 315.1 (2007), pp. 76–120. url: http://dx.doi.org/10.1016/j.
jalgebra.2007.05.006 (cit. on p. 21).

[59] E. Hubert. “Factorization-free decomposition algorithms in differential algebra”. In: Journal
of Symbolic Computation 29.4–5 (May 2000), 641–662. url: http://dx.doi.org/10.
1006/jsco.1999.0344 (cit. on p. 9).

[60] E. Hubert. “Notes on triangular sets and triangulation-decomposition algorithms I: polynomial
systems”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003, pp. 1–39.

url: https://doi.org/10.1007/3-540-45084-x_1 (cit. on p. 18).

[61] E. Hubert. “Notes on triangular sets and triangulation-decomposition algorithms II: differential
systems”. In: Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2003, pp. 40–

87. url: https://doi.org/10.1007/3-540-45084-x_2 (cit. on p. 18).

[62] E. Hubert and G. Labahn. “Scaling invariants and symmetry reduction of dynamical systems”.
In: Foundations of Computational Mathematics 13.4 (Aug. 2013), 479–516. url: http:
//dx.doi.org/10.1007/s10208-013-9165-9 (cit. on p. 42).

[63] Z. Jelonek. “On the effective Nullstellensatz”. In: Inventiones mathematicae 162.1 (Apr.

2005), 1–17. url: http://dx.doi.org/10.1007/s00222-004-0434-8 (cit. on p. 11).

[64] I. Kaplansky. An introduction to differential algebra. Hermann, 1957 (cit. on p. 15).

https://doi.org/10.1002/nme.6049
https://doi.org/10.1002/nme.6049
https://doi.org/10.1007/s11071-019-04989-5
http://dx.doi.org/10.1016/j.aim.2015.12.021
http://dx.doi.org/10.1016/j.aim.2015.12.021
http://dx.doi.org/10.1016/B978-0-08-037022-4.50008-9
https://doi.org/10.1007/978-3-031-15034-0_1
https://doi.org/10.1007/978-3-031-15034-0_1
https://doi.org/10.1007/978-3-030-60327-4_7
http://doi.org/10.1109/TAC.1977.1101601
http://doi.org/10.1109/TAC.1977.1101601
http://dx.doi.org/10.1016/j.jalgebra.2007.05.006
http://dx.doi.org/10.1016/j.jalgebra.2007.05.006
http://dx.doi.org/10.1006/jsco.1999.0344
http://dx.doi.org/10.1006/jsco.1999.0344
https://doi.org/10.1007/3-540-45084-x_1
https://doi.org/10.1007/3-540-45084-x_2
http://dx.doi.org/10.1007/s10208-013-9165-9
http://dx.doi.org/10.1007/s10208-013-9165-9
http://dx.doi.org/10.1007/s00222-004-0434-8


60 REFERENCES

[65] E. H. Kerner. “Universal formats for nonlinear ordinary differential systems”. In: Journal of
Mathematical Physics 22.7 (1981), pp. 1366–1371 (cit. on p. 45).

[66] M. Kinyon and A. Sagle. “Quadratic dynamical systems and algebras”. In: Journal of Dif-
ferential Equations 117.1 (Mar. 1995), 67–126. url: http://dx.doi.org/10.1006/jdeq.
1995.1049 (cit. on p. 45).

[67] E. R. Kolchin. Differential algebra and algebraic groups. Academic Press, 1971. isbn: 978-

0124157484 (cit. on p. 9).

[68] E. R. Kolchin. “Extensions of differential fileds, I”. In: Annals of Mathematics 43.4 (), pp. 724–

729. url: https://www.jstor.org/stable/1968962 (cit. on p. 24).

[69] J. Kollár. “Sharp effective Nullstellensatz”. In: Journal of the American Mathematical Society

1.4 (Oct. 1988), p. 963. url: http://dx.doi.org/10.2307/1990996 (cit. on p. 11).

[70] M. Komatsu. Estimate epidemiological parameters given partial observations based on al-
gebraically observable PINNs. 2024. url: https://arxiv.org/abs/2407.12598 (cit. on

pp. 9, 50).

[71] B. Kramer and K.Willcox. “Balanced truncation model reduction for lifted nonlinear systems”.
In: Realization and Model Reduction of Dynamical Systems: A Festschrift in Honor of the

70th Birthday of Thanos Antoulas. Ed. by C. Beattie, P. Benner, M. Embree, S. Gugercin,

and S. Lefteriu. Cham: Springer International Publishing, 2022, pp. 157–174. isbn: 978-

3-030-95157-3. url: https://doi.org/10.1007/978-3-030-95157-3\_9 (cit. on

p. 44).

[72] B. Kramer and K. Willcox. “Nonlinear model order reduction via lifting transformations
and proper orthogonal decomposition”. In: AIAA Journal 57.6 (2019), pp. 2297–2307. url:

https://doi.org/10.2514/1.J057791 (cit. on p. 44).

[73] T. Krick, L. M. Pardo, and M. Sombra. “Sharp estimates for the arithmetic Nullstellensatz”. In:
DukeMathematical Journal 109.3 (Sept. 2001). url: http://dx.doi.org/10.1215/S0012-
7094-01-10934-4 (cit. on p. 11).

[74] M. N. Lagutinskii. “On the question about the simplest for of a system of ordinary differential
equations”. In: Sbornik: Mathematics 27.4 (1911), pp. 420–423. url: http://mi.mathnet.
ru/sm6583 (cit. on pp. 44, 45).

[75] F. Lemaire and A. Ürgüplü. “A method for semi-rectifying algebraic and differential systems
using scaling type Lie point symmetries with linear algebra”. In: Proceedings of the 2010
International Symposium on Symbolic and Algebraic Computation. Vol. 2. ACM, 2010,

85–92. url: http://dx.doi.org/10.1145/1837934.1837956 (cit. on p. 42).

[76] F. Lemaire and L. Roussel. “Contribution to integral elimination”. Apr. 2024. url: https:
//hal.science/hal-04570612 (cit. on p. 49).

[77] G. Li and H. Rabitz. “A general analysis of exact lumping in chemical kinetics”. In: Chemical

Engineering Science 44.6 (1989), pp. 1413–1430. url: https://doi.org/10.1016/0009-
2509(89)85014-6 (cit. on p. 39).

[78] W. Li, C.-M. Yuan, and X.-S. Gao. “Sparse difference resultant”. In: Journal of Symbolic

Computation 68 (2015), pp. 169–203. url: https://doi.org/10.1016/j.jsc.2014.09.
016 (cit. on p. 21).

http://dx.doi.org/10.1006/jdeq.1995.1049
http://dx.doi.org/10.1006/jdeq.1995.1049
https://www.jstor.org/stable/1968962
http://dx.doi.org/10.2307/1990996
https://arxiv.org/abs/2407.12598
https://doi.org/10.1007/978-3-030-95157-3\_9
https://doi.org/10.2514/1.J057791
http://dx.doi.org/10.1215/S0012-7094-01-10934-4
http://dx.doi.org/10.1215/S0012-7094-01-10934-4
http://mi.mathnet.ru/sm6583
http://mi.mathnet.ru/sm6583
http://dx.doi.org/10.1145/1837934.1837956
https://hal.science/hal-04570612
https://hal.science/hal-04570612
https://doi.org/10.1016/0009-2509(89)85014-6
https://doi.org/10.1016/0009-2509(89)85014-6
https://doi.org/10.1016/j.jsc.2014.09.016
https://doi.org/10.1016/j.jsc.2014.09.016


REFERENCES 61

[79] W. Li, C.-M. Yuan, and X.-S. Gao. “Sparse differential resultant for Laurent differential
polynomials”. In: Foundations of Computational Mathematics 15.2 (Feb. 2015), 451–517.

url: http://dx.doi.org/10.1007/s10208-015-9249-9 (cit. on pp. 19, 48).

[80] T. S. Ligon, F. Fröhlich, O. T. Chiş, J. R. Banga, E. Balsa-Canto, and J. Hasenauer. “GenSSI 2.0:
multi-experiment structural identifiability analysis of SBML models”. In: Bioinformatics 34.8

(Nov. 2017), 1421–1423. url: http://dx.doi.org/10.1093/bioinformatics/btx735
(cit. on p. 33).

[81] L. Ljung and T. Glad. “On global identifiability for arbitrary model parametrizations”. In:
Automatica 30.2 (1994), pp. 265–276. url: https://doi.org/10.1016/0005-1098(94)
90029-9 (cit. on pp. 9, 29).

[82] R. S. Malik-Sheriff, M. Glont, T. V. N. Nguyen, K. Tiwari, M. G. Roberts, A. Xavier, M. T. Vu,

J. Men, M. Maire, S. Kananathan, E. L. Fairbanks, J. P. Meyer, C. Arankalle, T. M. Varusai,

V. Knight-Schrijver, L. Li, C. Dueñas-Roca, G. Dass, S. M. Keating, Y. M. Park, N. Buso, N.

Rodriguez, M. Hucka, and H. Hermjakob. “BioModels — 15 years of sharing computational
models in life science”. In: Nucleic Acids Research 48.D1 (Jan. 2020), pp. D407–D415. issn:

0305-1048. url: https://doi.org/10.1093/nar/gkz1055 (cit. on p. 41).

[83] G. Margaria, E. Riccomagno, M. J. Chappell, and H. P. Wynn. “Differential algebra methods
for the study of the structural identifiability of rational function state-space models in the
biosciences”. In: Mathematical Biosciences 174.1 (Nov. 2001), 1–26. url: http://dx.doi.
org/10.1016/S0025-5564(01)00079-7 (cit. on p. 9).

[84] N. Meshkat, C. Kuo, and J. DiStefano. “On finding and using identifiable parameter combi-
nations in nonlinear dynamic systems biology models and COMBOS: a novel web implemen-
tation”. In: PLoS ONE 9.10 (2014), e110261. url: http://dx.doi.org/10.1371/journal.
pone.0110261 (cit. on pp. 29, 31, 33).

[85] H. Miao, X. Xia, A. S. Perelson, and H. Wu. “On identifiability of nonlinear ODE models
and applications in viral dynamics”. In: SIAM Review 53.1 (2011), pp. 3–39. url: https:
//doi.org/10.1137/090757009 (cit. on p. 29).

[86] C. Moog, J. Perraud, P. Bentz, and Q. Vo. “Prime differential ideals in nonlinear rational
control systems”. In: Nonlinear Control Systems Design 1989. Elsevier, 1990, 17–21. isbn:

9780080370224. url: http://dx.doi.org/10.1016/B978-0-08-037022-4.50009-0
(cit. on p. 9).

[87] J. Müller-Quade and R. Steinwandt. “Basic algorithms for rational function fields”. In:
Journal of Symbolic Computation 27.2 (Feb. 1999), 143–170. url: http://dx.doi.org/10.
1006/jsco.1998.0246 (cit. on p. 34).

[88] Y. Ohyama. “Differential relations of theta functions”. In: Osaka Journal of Mathematics 32.2

(1995), pp. 431–450. url: https://projecteuclid.org:443/euclid.ojm/1200786061
(cit. on p. 25).

[89] F. Ollivier. “Le problème de l’identifiabilité structurelle globale: approche th éorique, méthodes
effectives et bornes de complexité”. PhD thesis. École polytechnique, 1990. url: https:
//www.theses.fr/1990EPXX0009 (cit. on pp. 9, 29, 31).

[90] P. J. Olver and J Sivaloganathan. “The structure of null Lagrangians”. In: Nonlinearity 1.2

(May 1988), 389–398. url: http://dx.doi.org/10.1088/0951-7715/1/2/005 (cit. on

p. 50).

http://dx.doi.org/10.1007/s10208-015-9249-9
http://dx.doi.org/10.1093/bioinformatics/btx735
https://doi.org/10.1016/0005-1098(94)90029-9
https://doi.org/10.1016/0005-1098(94)90029-9
https://doi.org/10.1093/nar/gkz1055
http://dx.doi.org/10.1016/S0025-5564(01)00079-7
http://dx.doi.org/10.1016/S0025-5564(01)00079-7
http://dx.doi.org/10.1371/journal.pone.0110261
http://dx.doi.org/10.1371/journal.pone.0110261
https://doi.org/10.1137/090757009
https://doi.org/10.1137/090757009
http://dx.doi.org/10.1016/B978-0-08-037022-4.50009-0
http://dx.doi.org/10.1006/jsco.1998.0246
http://dx.doi.org/10.1006/jsco.1998.0246
https://projecteuclid.org:443/euclid.ojm/1200786061
https://www.theses.fr/1990EPXX0009
https://www.theses.fr/1990EPXX0009
http://dx.doi.org/10.1088/0951-7715/1/2/005


62 REFERENCES

[91] P. J. Olver. Applications of Lie groups to differential equations. Springer New York, 1986.

isbn: 9781468402742. url: http://dx.doi.org/10.1007/978-1-4684-0274-2 (cit. on

p. 9).

[92] P. J. Olver. “Hyperjacobians, determinantal ideals and weak solutions to variational problems”.
In: Proceedings of the Royal Society of Edinburgh: Section A Mathematics 95.3–4 (1983),

317–340. url: http://dx.doi.org/10.1017/S0308210500013020 (cit. on p. 50).

[93] P. J. Olver and C. Shakiban. “Dissipative decomposition of ordinary differential equations”.
In: Proceedings of the Royal Society of Edinburgh: Section A Mathematics 109.3–4 (1988),

297–317. url: http://dx.doi.org/10.1017/S0308210500027785 (cit. on p. 50).

[94] S. E. Otto, G. R. Macchio, and C. W. Rowley. “Learning nonlinear projections for reduced-
order modeling of dynamical systems using constrained autoencoders”. In: Chaos: An Inter-

disciplinary Journal of Nonlinear Science 33.11 (Nov. 2023). url: http://dx.doi.org/10.
1063/5.0169688 (cit. on p. 44).

[95] G. Pogudin. “The primitive element theorem for differential fields with zero derivation on
the base field”. In: Journal of Pure and Applied Algebra 219.9 (2015), pp. 4035–4041. url:

https://dx.doi.org/10.1016/j.jpaa.2015.02.004 (cit. on pp. 11, 25).

[96] G. Pogudin.Differential algebra. lecture notes. 2023. url: https://www.lix.polytechnique.
fr/Labo/Gleb.POGUDIN/files/da_notes.pdf (cit. on p. 15).

[97] G. Pogudin. “Primary differential nil-algebras do exist”. In: Moscow University Mathematics

Bulletin 69.1 (Jan. 2014), 33–36. url: http://dx.doi.org/10.3103/S0027132214010069
(cit. on p. 11).

[98] G. Pogudin. “Prime differential algebras and lie algebras associated to them”. in Russian.

PhD thesis. Moscow State University, 2016. url: http://mech.math.msu.su/~snark/
files/diss/0091diss.pdf (cit. on p. 11).

[99] G. Pogudin. “Wronskian of derivations”. In: Moscow University Mathematics Bulletin 66.1

(Feb. 2011), 47–49. url: http://dx.doi.org/10.3103/S0027132211010104 (cit. on

p. 11).

[100] P. Pohjanpalo. “System identifiability based on the power series expansion of the solution”.
In: Mathematical Biosciences 41.1–2 (1978), pp. 21–33. url: http://dx.doi.org/10.
1016/0025-5564(78)90063-9 (cit. on pp. 29, 33).

[101] M. van der Put and M. F. Singer. Galois theory of linear differential equations. Springer
Berlin Heidelberg, 2003. isbn: 9783642557507. url: http://dx.doi.org/10.1007/978-3-
642-55750-7 (cit. on p. 9).

[102] E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox. “Lift & learn: physics-informed machine
learning for large-scale nonlinear dynamical systems.” In: Physica D: Nonlinear Phenomena

406 (2020), p. 132401. url: https://doi.org/10.1016/j.physd.2020.132401 (cit. on

p. 46).

[103] X. Rey Barreiro and A. F. Villaverde. “Benchmarking tools for a priori identifiability analysis”.
In: Bioinformatics 39.2 (Jan. 2023). Ed. by J. Wren. url: http://dx.doi.org/10.1093/
bioinformatics/btad065 (cit. on p. 10).

[104] J. F. Ritt.Differential algebra. AmericanMathematical Society, 1950. isbn: 978-0-8218-3205-9

(cit. on pp. 9, 16).

http://dx.doi.org/10.1007/978-1-4684-0274-2
http://dx.doi.org/10.1017/S0308210500013020
http://dx.doi.org/10.1017/S0308210500027785
http://dx.doi.org/10.1063/5.0169688
http://dx.doi.org/10.1063/5.0169688
https://dx.doi.org/10.1016/j.jpaa.2015.02.004
https://www.lix.polytechnique.fr/Labo/Gleb.POGUDIN/files/da_notes.pdf
https://www.lix.polytechnique.fr/Labo/Gleb.POGUDIN/files/da_notes.pdf
http://dx.doi.org/10.3103/S0027132214010069
http://mech.math.msu.su/~snark/files/diss/0091diss.pdf
http://mech.math.msu.su/~snark/files/diss/0091diss.pdf
http://dx.doi.org/10.3103/S0027132211010104
http://dx.doi.org/10.1016/0025-5564(78)90063-9
http://dx.doi.org/10.1016/0025-5564(78)90063-9
http://dx.doi.org/10.1007/978-3-642-55750-7
http://dx.doi.org/10.1007/978-3-642-55750-7
https://doi.org/10.1016/j.physd.2020.132401
http://dx.doi.org/10.1093/bioinformatics/btad065
http://dx.doi.org/10.1093/bioinformatics/btad065


REFERENCES 63

[105] J. F. Ritt. Differential equations from the algebraic standpoint. American Mathematical Soci-

ety, 1932. isbn: 978-0821846056. url: https://archive.org/details/differentialequa033050mbp
(cit. on pp. 9, 18, 19).

[106] D. Robertz. Formal algorithmic elimination for PDEs. Springer International Publishing,
2014. isbn: 9783319114453. url: http://dx.doi.org/10.1007/978-3-319-11445-3
(cit. on p. 18).

[107] L. A. Rubel and M. F. Singer. “A differentially algebraic elimination theorem with application
to analog computability in the calculus of variations”. In: Proceedings of the American

Mathematical Society 94.4 (1985), 653–658. url: http://dx.doi.org/10.1090/S0002-
9939-1985-0792278-1 (cit. on p. 50).

[108] S. L. Rueda. “Differential elimination by differential specialization of Sylvester style matrices”.
In: Advances in Applied Mathematics 72 (Jan. 2016), 4–37. url: http://dx.doi.org/10.
1016/j.aam.2015.07.002 (cit. on p. 19).

[109] T. Sauer, T. Berry, D. Ebeigbe, M. M. Norton, A. J. Whalen, and S. J. Schiff. “Identifiability
of infection model parameters early in an epidemic”. In: SIAM Journal on Control and

Optimization 60.2 (Nov. 2021), S27–S48. url: http://dx.doi.org/10.1137/20M1353289
(cit. on p. 36).

[110] A. J. Schaft. “On realization of nonlinear systems described by higher-order differential
equations”. In: Mathematical Systems Theory 19.1 (Dec. 1986), 239–275. url: http://dx.
doi.org/10.1007/BF01704916 (cit. on p. 22).

[111] A. Sedoglavic. “A probabilistic algorithm to test local algebraic observability in polynomial
time”. In: Journal of Symbolic Computation 33.5 (2002), pp. 735–755. url: http://dx.doi.
org/10.1006/jsco.2002.0532 (cit. on p. 29).

[112] A. Seidenberg. “Abstract differential algebra and the analytic case”. In: Proceedings of the
American Mathematical Society 9.1 (1958), 159–164. url: http://dx.doi.org/10.1090/
S0002-9939-1958-0093655-0 (cit. on p. 16).

[113] A. Seidenberg. “An elimination theory for differential algebra”. In: University of California

publications in Mathematics. New Series III.2 (1956), pp. 31–66 (cit. on p. 18).

[114] W. Simmons and A. Platzer. Differential elimination and algebraic invariants of polynomial
dynamical systems. 2023. url: https://arxiv.org/abs/2301.10935 (cit. on p. 9).

[115] M. W. Sneddon, J. R. Faeder, and T. Emonet. “Efficient modeling, simulation and coarse-
graining of biological complexity with NFsim”. In: Nature Methods 8.2 (2010), pp. 177–183.

url: https://doi.org/10.1038/nmeth.1546 (cit. on p. 39).

[116] A. Sommese and C. Wampler. The numerical solution of systems of polynomials arising in
engineering and science. World Scientific, 2005. isbn: 9789812567727 (cit. on p. 49).

[117] E. D. Sontag and Y. Wang. “Input/output equations and realizability”. In: Realization and

Modelling in System Theory. Birkhäuser Boston, 1990, 125–132. url: http://dx.doi.
org/10.1007/978-1-4612-3462-3_12 (cit. on p. 22).

[118] E. D. Sontag. Mathematical control theory. Springer New York, 1998. url: https://doi.
org/10.1007/978-1-4612-0577-7 (cit. on p. 22).

https://archive.org/details/differentialequa033050mbp
http://dx.doi.org/10.1007/978-3-319-11445-3
http://dx.doi.org/10.1090/S0002-9939-1985-0792278-1
http://dx.doi.org/10.1090/S0002-9939-1985-0792278-1
http://dx.doi.org/10.1016/j.aam.2015.07.002
http://dx.doi.org/10.1016/j.aam.2015.07.002
http://dx.doi.org/10.1137/20M1353289
http://dx.doi.org/10.1007/BF01704916
http://dx.doi.org/10.1007/BF01704916
http://dx.doi.org/10.1006/jsco.2002.0532
http://dx.doi.org/10.1006/jsco.2002.0532
http://dx.doi.org/10.1090/S0002-9939-1958-0093655-0
http://dx.doi.org/10.1090/S0002-9939-1958-0093655-0
https://arxiv.org/abs/2301.10935
https://doi.org/10.1038/nmeth.1546
http://dx.doi.org/10.1007/978-1-4612-3462-3_12
http://dx.doi.org/10.1007/978-1-4612-3462-3_12
https://doi.org/10.1007/978-1-4612-0577-7
https://doi.org/10.1007/978-1-4612-0577-7


64 REFERENCES

[119] H. J. Sussmann. “Existence and uniqueness of minimal realizations of nonlinear systems”.
In: Mathematical Systems Theory 10.1 (1976), pp. 263–284. url: https://doi.org/10.
1007/bf01683278 (cit. on p. 23).

[120] A. P. Tran, M. A. Al-Radhawi, I. Kareva, J. Wu, D. J. Waxman, and E. D. Sontag. “Delicate
balances in cancer chemotherapy: modeling immune recruitment and emergence of systemic
drug resistance”. In: Frontiers in Immunology 11 (2020). url: https://doi.org/10.3389/
fimmu.2020.01376 (cit. on p. 10).

[121] N. Verdiere and C. Jauberthie. “Parameter estimation procedure based on input-output
integro-differential polynomials. application to the Hindmarsh-Rose model”. In: 2020 Euro-
pean Control Conference (ECC). IEEE, May 2020, 220–225. url: http://dx.doi.org/10.
23919/ECC51009.2020.9143670 (cit. on p. 49).

[122] A. F. Villaverde, N. D. Evans, M. J. Chappell, and J. R. Banga. “Input-dependent structural
identifiability of nonlinear systems”. In: IEEE Control Systems Letters 3.2 (Apr. 2019),

272–277. url: http://dx.doi.org/10.1109/LCSYS.2018.2868608 (cit. on p. 32).

[123] D.Wang. “EPSILON: a library of software tools for polynomial elimination”. In: Mathematical

Software. 2002. url: https://doi.org/10.1142/9789812777171_0040 (cit. on pp. 9, 18).

[124] Y. Wang and E. D. Sontag. “Algebraic differential equations and rational control systems”.
In: SIAM Journal on Control and Optimization 30.5 (Sept. 1992), 1126–1149. url: http:
//dx.doi.org/10.1137/0330060 (cit. on p. 9).

[125] Y. Wang and E. D. Sontag. “On two definitions of observation spaces”. In: Systems and

Control Letters 13.4 (Nov. 1989), 279–289. url: http://dx.doi.org/10.1016/0167-
6911(89)90116-3 (cit. on p. 30).

https://doi.org/10.1007/bf01683278
https://doi.org/10.1007/bf01683278
https://doi.org/10.3389/fimmu.2020.01376
https://doi.org/10.3389/fimmu.2020.01376
http://dx.doi.org/10.23919/ECC51009.2020.9143670
http://dx.doi.org/10.23919/ECC51009.2020.9143670
http://dx.doi.org/10.1109/LCSYS.2018.2868608
https://doi.org/10.1142/9789812777171_0040
http://dx.doi.org/10.1137/0330060
http://dx.doi.org/10.1137/0330060
http://dx.doi.org/10.1016/0167-6911(89)90116-3
http://dx.doi.org/10.1016/0167-6911(89)90116-3

	Introduction
	Differential and Difference Algebra
	Differential/difference rings and fields
	Differential/difference polynomials
	Differential ideals and their solutions
	Difference ideals and their solutions

	Differential/Difference Elimination
	Differential elimination via characteristic sets
	Bounds for effective differential elimination
	Effective difference elimination
	Practical differential elimination for ODE models
	Anti-elimination
	Lifting solutions back: differential Noether normalization
	Primitive element theorem

	Structural Parameter Identifiability
	Problem statement and the state of the art
	Definitions: via Algebra, Analysis, and Input-output equations
	Taylor series revisited: SIAN algorithm and software
	Computing identifiable functions
	Faster IO-equations: StructuralIdentifiability.jl library
	Identifiable reparametrizations

	Exact Model Reduction
	Linear reductions: problem statement and prior results
	Constrained linear reductions: CLUE package
	Showcasing CLUE and quest for interpretability
	Computing hierarchies of reductions
	Nonlinear reductions: the other side of identifiable reparametrizations

	Quadratization
	Quadratization algorithms for ODEs
	Towards quadratization of PDEs

	Research project
	Fighting expression swell: concise representations and numerical computation
	Transformations for learning
	Symbolic computation and differential algebra for calculus of variations


