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2012-2016 PhD in (abstract) differential algebra
2016-2017 Postdoc at JKU, Linz (with M. Kauers)

e No need to choose between algebra and computation!
e Started working on Elimination

2017-2019 Postdoc at NYU, New York (with H. Hong, A. Ochinnikov, C. Yap)

e First encounter with modeling and control
e Started working on Identifiability

2019-2019 Assistant professor in HSE (Moscow)
2020-now Assistant professor at Ecole Polytechnique

e Started working on Reduction (supported by DIM RFSI) and
Quadratization (supported by CNRS INS2I)

e New developments (including software) in Identifiability
motivate revisiting Elimination (supported by ANR JCJC)



Plan of the talk

1. Elimination

(focus on theory)
2. Parameter identifiability

(focus on algorithms and software)
3. Future directions

(with quadratization sneaking in)
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Elimination: what and why?

General formulation
Given a system f(x,y) =0inx = (x1,..., %), Y= (V1s---,¥Ym)

Find nontrivial g(y) = 0 which hold on every solution

Linear Polynomial Differential
2 2 X'=-y,
Xty ) x“+y ; ¥ = x
x+2y=5 x+y=0
= (y —x)+(x'+y)=0
= 3y =9 = 2y’ =1 (/, J )
= y ' +y=0
(Gaussian elimination) (resultants, GB,...)
(characteristic sets)
Why?

e Get simpler equations

o Remove latent variables
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Difference (discrete-time) equations

Setup
Solution space: two-sided sequences (signals) (...,a_1,a,a1,...) € CZ.

Equations considered: involve arithmetic operations and shift o
ie. o(...,a-1,a0,a1,...) = (..., a0,a1,a2,...)
Example

foio = n+1+anU2(F):U(F)+F

Not an easy setup! (Hrushovski, Point, 2007)

Undecidable: check if a first order statement in this language is true.
(sharp contrast with the differential case!)
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lllustrating example

{x,,+1—x,,+y,, — {o(X)—X—FY N

Xn+2 = Xn + Zn OQ(X):X—I—Z

Take the equations and a shift:

0=(*(X) =X = 2) —o(a(X) = X = Y) = (o(X) = X = V)

=o(Y)+Y—-Z=0

Idea
1. Take several shifts of the original equations

2. Perform polynomial elimination

For differential case, done in (Ovchinnikov, P., Vo, 2019).
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Difference elimination: Results

Theorem (Ovchinnikov, P., Scanlon, 2020)

There is an (explicit) function B(n, d) such that,
for a system of dimension n and degree d:
Difference elimination possible  <=-  Polynomial elimination possible
after B(n, d) shifts

— first algorithm for discrete-time elimination.

Theorem (OPS, 2020)

For a system of dimension n and degree d:
has a solution in C* <= has a solution in CE(™)
—— decidability of existence of a solution.

Idea: 3 solution <= 3 “periodic” solution
but need a correct notion of “periodic” !
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On the frontier of decidability

Corollary (OPS, 2020)
Decidable: check if a system f; = ... = f; = 0 has a solution CZ.

Theorem (P., Scanlon, Wibmer, 2020)

Undecidable:
e check if a system f; = ... = f, = 0 has a solution R%
e check if a system f; =...=f; =0, g # 0 has a solution C*

i.e. radical ideal membership

e check if a system f; = ... = f; = 0 has a solution cr
i.e. two shifts like in PDEs
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Concluding remarks

Summary

e first decidability results for consistency and elimination in
discrete-time

e basis for further results for delay-differential equations and
delay-PDEs in (Li, Ovchinnikov, P., Scanlon, 2020, 2021)

Not the end of the story
e Deciding i =...=f =0 = g =0is important.
Add restrictions to make decidable (e.g. existence of solutions)?
e Known hard cases come from “linear systems with switches".
Study systematically and obtain lower bounds?



Parameter identifiability




With four parameters | can
fit an elephant, and with
five | can make him wiggle
his trunk.

A John von Neumann

from Mayer et al., 2009

10
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Toy examples of non-identifiability

Consider a scalar ODE model: Consider a scalar ODE model:

x'(t) = (a+ b)x(t) x'(t) = (a+ b)x(t) + ab
with unknown parameters a and b. with unknown parameters a and b.
Problem: Given time series for x(t), Problem: Same

find the values of a and b.

Mission impossible: for every ¢ Mission still impossible:

(a0, bo) ~ (a0 — ¢, by + ¢) (a0, bo) ~ (bo, a0)

Can such things naturally occur?

11
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More realistic example

Simple ODE model: Heatmap of log of the minimal L? error
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More realistic example

Simple ODE model: Heatmap of log of the minimal L? error

for (a, b) € [0.1,1.0] x [0.1,0.3]
{x{(t) = —ax;(t) + bxa(t),

x(t) = —bxo(t) -
We have time series for xi: - - 50

t 00(02]|...]10 " o
X: 1011 |...]03 :

! Zoom out:

Want fit a and b to the data

1.0
0
0.8 l
1 )
06 10
- -
04 15
02 e -
0.2

Two perfect fits! L2
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General setup

: : x(t) = state variables
ODE model with rational rhs (t) — e
k = parameters

y(t) = output variables

y(t) = g(k,x(t),u(t)) } —  known

u(t) = input variables

Structural identifiability problem

A parameter k is identifiable if its value can be determined from y(t) and
u(t) for generic values of k and initial conditions

Lack of identifiability = impossibility of reliable estimation

13
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How to check: Taylor series approach

Goes back to Pohjanpalo in the 1970-s.
Idea

k is identifiable <= k can be expressed via y(0), u(0),y’(0),u’(0),...
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x'=x+ a,
{ = a=y'(0)-y(0) v
y=x
Missing pieces Results (Hong, Ovchinnikov, P., Yap, 2020)
o Why correct? e Theorem: Correct!
e How many Taylor e Algorithm to find how many

coefficients to take?

¢ How to check e Randomized algorithm to check

“can be expressed”

efficiently? —> SIAN software ”
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How to check: Input-output equations approach
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Example

Step 1 Eliminate states:

x| = —axy + bxy,
X = —bxa, = y"+(a+b)y’' +aby =0.
y =x1 input-output equation

Step 2 Check if parameter/expression of interest belongs to C(a + b, ab).

Missing pieces
e Why correct?
e How eliminate efficiently?

o How check field membership efficiently?
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Input-output equations: assembling the puzzle

QOutline of the approach
1. Eliminate states

2. Check if the parameter belongs to the field of the coefficients

Missing piece #1: Why is this approach correct?
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Input-output equations: assembling the puzzle

QOutline of the approach
1. Eliminate states

2. Check if the parameter belongs to the field of the coefficients

Missing piece #1: Why is this approach correct?
Answers
e (Hong, Ovchinnikov, P., Yap, 2020) Actually, it is not
(coefficients of the input-output equations may be not identifiable)

e (Ovchinnikov, Pillay, P., Scanlon, 2021)
Correct but for a different problem (multi-experiment identifiability)

e (Dong, Goodbrake, Harrington, P., 2023)
Efficient correctness check = in practice, almost always correct
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Input-output equations: assembling the puzzle

Outline of the approach
1. Eliminate states

2. Check if the parameter belongs to the field of the coefficients

Missing piece #2: How eliminate efficiently?
Answer (Dong, Goodbrake, Harrington, P., 2023)
New differential elimination algorithm tailored to the systems
X' = f(x,u), y = g(x,u):
e change-of-ordering point of view

e ideal membership testing with power series solutions
= outperforms general purpose elimination algorithms by orders

Missing piece #3: How check membership efficiently?

Answer (DGHP, 2023): Randomized algorithm to check -



Voila: STRUCTURALIDENTIFIABILITY.JL

Resulted in JULIA package STRUCTURALIDENTIFIABILITY.JL.

| Model | DAISY | SIAN [ ST |
SIWR model OOM | > 5h. 18s.
SIWR model - 2 OOM | 213s. 0.7s.
Pharmacokinetics >5h. | >5h. 406s.
MAPK pathway - 1 OOM 31ls. | 39.5s.
MAPK pathway - 2 >5h. | >5h. 58s.
MAPK pathway - 3 > 5h. 35s. | 1084s.
SEAIJRC model OOM | >5h. | 131.3s.
Akt pathway 182s. 28s. 5s.
NFxB >5h. | 2018s. > b5h.
Mass-action > 5h. 3s. 0.5s.
SIRS w. forcing OOM 5s. | 30.3s.
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Concluding remarks

Summary
e Algebra in action = two state-of-the-art software tools
e Clarifying foundations gives algorithmic insights

e Pushing further the limits of differential elimination
(and pushing even further ~ upcoming paper with Y. Mukhina)

Not the end of the story

o Software is in the process of continuous development
(including student contributions)

o With nonidentifiability the fun just begins ~~
reparametrization /reduction
(with A. Demin and C. Rackauckas, code is already available)
o Efficient elimination via change of representation
(using Wronskians, integrals, numerical evaluations, etc.)
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Transformation for learning

Scientific Machine Learning

model calibration ~~ learning (a part of) model from data
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Transformation for learning

Scientific Machine Learning

model calibration ~~ learning (a part of) model from data

Use-case #1: structural parameter identifiability

Identifiability assessment as a preprocessing for PINNs.

Fix certain
parameters Not identifiable

Add more data

Systems-biological

Identifiable?

Locally
identifiable
Globally

identifiable

Data acquisition

development

Section 2 Section 2 Section 3

Section 5 Section 4 Section 4

=3

Practical
identifiability
analysis

No

Forecasting

Identifiable?

Systems Biology: Identifiability Analysis and Parameter Identification via
Systems-Biology-Informed Neural Networks, Daneker et al., 2023 21
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Use-case #2: quadratization for model reduction

Model order reduction: replace an ODE model with a smaller one.
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Transformation for learning

Use-case #2: quadratization for model reduction

Model order reduction: replace an ODE model with a smaller one.

e Learning quadratic (degree < 2) reductions is well-understood

e Quadratic reductions are especially natural for quadratic systems
— Lift (how?) & Learn (Qian, Kramer, Peherstorfer, Willcox, 2020)
x = x* y=2 X' =xy,
y' = 3x2x" = 3x% = 3y?

e (Bychkov, P., 2021)
Algorithm for ODEs

e (Bychkov, Issan, P., Kramer, 2024)
Varying-dimension ODEs
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Transformation for learning

Use-case #2: quadratization for model reduction

Model order reduction: replace an ODE model with a smaller one.

e Learning quadratic (degree < 2) reductions is well-understood

e Quadratic reductions are especially natural for quadratic systems

= Lift (how?) & Learn (Qian, Kramer, Peherstorfer, Willcox, 2020)

- x' = xy,
X/ X4 yi=x y
y' = 3x2x" =3x8 = 3y2

o (Bychkov, P., 2021)

Algorithm for ODEs 2 Relative Error
e (Bychkov, Issan, P., Kramer, 2024) ”‘” - f
Varying-dimension ODEs # WWVWM

e (Olivieri, P., Kramer, 2024+)

Algorithm for PDEs
22



Transformation for learning

Scientific Machine Learning
model calibration ~ learning (a part of) model from data
General research question

How to compute “convenient” coordinates for learning?
(e.g., identifiable reparametrizations, quadratizations for PDEs, etc.)
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Calculus of variations

b
Typical problem: Optimize a functional [ F(t,x,x’)dt.

a
Research program
e Perform transformations on the level of functional insead of ODEs.
e Many problems of strong algebraic flavor: null Lagrangians,
homogeneous Lagrangians, inverse problem.
e Fundamental object — variation (“shift by a very small function &").
o Weak variation: 0 =¢*> = (¢/)> = (¢")* = . ..
e Strong variation: only €2 = 0.

Something in the middle?
Based on algebraic version from (Ait El Manssour, P., 2022, 2024)
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All these adventures made possible by

e my teachers

e my postdoc mentors
e my collaborators

e my students

e my colleagues

e and my family

Thank you!
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