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Daniel Robertz RWTH Aachen University

Bernd Sturmfels Max Planck Institute

Jacques-Arthur Weil Université de Limoges



Very simplified workflow

Propose model

Calibrate model

with data

Chapters of the mémoire

1. Introduction

2. Differential and Difference Algebra

3. Differential/Difference

4. Structural Parameter

5. Exact Model

6.

7. Research Project
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Brief scientific bio

2012-2016 PhD in (abstract) differential algebra

2016-2017 Postdoc at JKU, Linz (with M. Kauers)

• No need to choose between algebra and computation!

• Started working on Elimination

2017-2019 Postdoc at NYU, New York (with H. Hong, A. Ochinnikov, C. Yap)

• First encounter with modeling and control

• Started working on Identifiability

2019-2019 Assistant professor in HSE (Moscow)

2020-now Assistant professor at École Polytechnique

• Started working on Reduction (supported by DIM RFSI) and

Quadratization (supported by CNRS INS2I)

• New developments (including software) in Identifiability

motivate revisiting Elimination (supported by ANR JCJC)
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Plan of the talk

1. Elimination

(focus on theory)

2. Parameter identifiability

(focus on algorithms and software)

3. Future directions

(with quadratization sneaking in)
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Elimination: what and why?

General formulation

Given a system f(x, y) = 0 in x = (x1, . . . , xn), y = (y1, . . . , ym)

Find nontrivial g(y) = 0 which hold on every solution

Linear{
2x + y = 1,

x + 2y = 5

=⇒ 3y = 9

(Gaussian elimination)

Polynomial{
x2 + y2 = 1,

x + y = 0

=⇒ 2y2 = 1

(resultants, GB,...)

Differential{
x ′ = −y ,

y ′ = x

=⇒ (y ′ − x)′ + (x ′ + y) = 0

=⇒ y ′′ + y = 0

(characteristic sets)

Why?

• Get simpler equations

• Remove latent variables

4
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Difference (discrete-time) equations

Setup

Solution space: two-sided sequences (signals) (. . . , a−1, a0, a1, . . .) ∈ CZ.

Equations considered: involve arithmetic operations and shift σ

i.e. σ(. . . , a−1, a0, a1, . . .) = (. . . , a0, a1, a2, . . .)

Example

fn+2 = fn+1 + fn ⇝ σ2(F ) = σ(F ) + F

Not an easy setup! (Hrushovski, Point, 2007)

Undecidable: check if a first order statement in this language is true.

(sharp contrast with the differential case!)

5



Difference (discrete-time) equations

Setup

Solution space: two-sided sequences (signals) (. . . , a−1, a0, a1, . . .) ∈ CZ.

Equations considered: involve arithmetic operations and shift σ

i.e. σ(. . . , a−1, a0, a1, . . .) = (. . . , a0, a1, a2, . . .)

Example

fn+2 = fn+1 + fn ⇝ σ2(F ) = σ(F ) + F

Not an easy setup! (Hrushovski, Point, 2007)

Undecidable: check if a first order statement in this language is true.

(sharp contrast with the differential case!)

5



Difference (discrete-time) equations

Setup

Solution space: two-sided sequences (signals) (. . . , a−1, a0, a1, . . .) ∈ CZ.

Equations considered: involve arithmetic operations and shift σ

i.e. σ(. . . , a−1, a0, a1, . . .) = (. . . , a0, a1, a2, . . .)

Example

fn+2 = fn+1 + fn ⇝ σ2(F ) = σ(F ) + F

Not an easy setup! (Hrushovski, Point, 2007)

Undecidable: check if a first order statement in this language is true.

(sharp contrast with the differential case!)

5



Difference (discrete-time) equations

Setup

Solution space: two-sided sequences (signals) (. . . , a−1, a0, a1, . . .) ∈ CZ.

Equations considered: involve arithmetic operations and shift σ

i.e. σ(. . . , a−1, a0, a1, . . .) = (. . . , a0, a1, a2, . . .)

Example

fn+2 = fn+1 + fn ⇝ σ2(F ) = σ(F ) + F

Not an easy setup! (Hrushovski, Point, 2007)

Undecidable: check if a first order statement in this language is true.

(sharp contrast with the differential case!)

5



Difference (discrete-time) equations

Setup

Solution space: two-sided sequences (signals) (. . . , a−1, a0, a1, . . .) ∈ CZ.

Equations considered: involve arithmetic operations and shift σ

i.e. σ(. . . , a−1, a0, a1, . . .) = (. . . , a0, a1, a2, . . .)

Example

fn+2 = fn+1 + fn ⇝ σ2(F ) = σ(F ) + F

Not an easy setup! (Hrushovski, Point, 2007)

Undecidable: check if a first order statement in this language is true.

(sharp contrast with the differential case!)

5



Difference elimination: example

Illustrating examplexn+1 = xn + yn

xn+2 = xn + zn

⇐⇒

σ(X ) = X + Y

σ2(X ) = X + Z

?
=⇒ g(Y ,Z , σ(Y ), σ(Z), . . .) = 0

Take the equations and a shift:

0 = (σ2(X )− X
:
− Z )− σ(σ(X )− X − Y )− (σ(X )− X

:
− Y )

= σ(Y ) + Y − Z = 0

Idea

1. Take several shifts of the original equations

2. Perform polynomial elimination

For differential case, done in (Ovchinnikov, P., Vo, 2019).
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Difference elimination: Results

Theorem (Ovchinnikov, P., Scanlon, 2020)

There is an (explicit) function B(n, d) such that,

for a system of dimension n and degree d :
Difference elimination possible ⇐⇒ Polynomial elimination possible

after B(n, d) shifts

=⇒ first algorithm for discrete-time elimination.

Theorem (OPS, 2020)

For a system of dimension n and degree d :

has a solution in CZ ⇐⇒ has a solution in CB(n,d)

=⇒ decidability of existence of a solution.

Idea: ∃ solution ⇐⇒ ∃ “periodic” solution

but need a correct notion of “periodic” !
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On the frontier of decidability

Corollary (OPS, 2020)

Decidable: check if a system f1 = . . . = fℓ = 0 has a solution CZ.

Theorem (P., Scanlon, Wibmer, 2020)

Undecidable:

• check if a system f1 = . . . = fℓ = 0 has a solution RZ

• check if a system f1 = . . . = fℓ = 0, g ̸= 0 has a solution CZ

i.e. radical ideal membership

• check if a system f1 = . . . = fℓ = 0 has a solution CZ2

i.e. two shifts like in PDEs

8
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i.e. two shifts like in PDEs

8
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Concluding remarks

Summary

• first decidability results for consistency and elimination in

discrete-time

• basis for further results for delay-differential equations and

delay-PDEs in (Li, Ovchinnikov, P., Scanlon, 2020, 2021)

Not the end of the story

• Deciding f1 = . . . = fℓ = 0 =⇒ g = 0 is important.

Add restrictions to make decidable (e.g. existence of solutions)?

• Known hard cases come from “linear systems with switches”.

Study systematically and obtain lower bounds?
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Parameter identifiability



from Mayer et al., 2009

With four parameters I can

fit an elephant, and with

five I can make him wiggle

his trunk.

John von Neumann

10



Toy examples of non-identifiability

Consider a scalar ODE model:

x ′(t) = (a+ b)x(t)

with unknown parameters a and b.

Problem: Given time series for x(t),

find the values of a and b.

Mission impossible: for every c

(a0, b0) ∼ (a0 − c , b0 + c)

Consider a scalar ODE model:

x ′(t) = (a+ b)x(t) + ab

with unknown parameters a and b.

Problem: Same

Mission still impossible:

(a0, b0) ∼ (b0, a0)

Can such things naturally occur?
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More realistic example

Simple ODE model:{
x ′1(t) = −ax1(t) + bx2(t),

x ′2(t) = −bx2(t)

We have time series for x1:

t 0.0 0.2 . . . 1.0

x1 1.0 1.1 . . . 0.3

Want fit a and b to the data

Heatmap of log of the minimal L2 error

for (a, b) ∈ [0.1, 1.0]× [0.1, 0.3]

Zoom out:

Two perfect fits!
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General setup

ODE model with rational rhs{
x′(t) = f(k, x(t),u(t)),

y(t) = g(k, x(t),u(t))

x(t) = state variables

k = parameters

}
− unknown

y(t) = output variables

u(t) = input variables

}
− known

Structural identifiability problem

A parameter k is identifiable if its value can be determined from y(t) and

u(t) for generic values of k and initial conditions

Lack of identifiability =⇒ impossibility of reliable estimation

13
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How to check: Taylor series approach

Goes back to Pohjanpalo in the 1970-s.

Idea

k is identifiable ⇐⇒ k can be expressed via y(0),u(0), y′(0),u′(0), . . .

Example {
x ′ = x + a,

y = x
=⇒ a = y ′(0)− y(0) ✓

Missing pieces

• Why correct?

• How many Taylor

coefficients to take?

• How to check

“can be expressed”

efficiently?

Results (Hong, Ovchinnikov, P., Yap, 2020)

• Theorem: Correct!

• Algorithm to find how many

• Randomized algorithm to check

=⇒ SIAN software

14
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How to check: Input-output equations approach

Goes back to PhD thesis of F. Ollivier (1990).

Example

Step 1 Eliminate states:
x ′1 = −ax1 + bx2,

x ′2 = −bx2,

y = x1

=⇒ y ′′ + (a+ b)y ′ + aby = 0︸ ︷︷ ︸
input-output equation

.

Step 2 Check if parameter/expression of interest belongs to C(a+ b, ab).

Missing pieces

• Why correct?

• How eliminate efficiently?

• How check field membership efficiently?

15
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Input-output equations: assembling the puzzle

Outline of the approach

1. Eliminate states

2. Check if the parameter belongs to the field of the coefficients

Missing piece #1: Why is this approach correct?

Answers

• (Hong, Ovchinnikov, P., Yap, 2020) Actually, it is not

(coefficients of the input-output equations may be not identifiable)

• (Ovchinnikov, Pillay, P., Scanlon, 2021)

Correct but for a different problem (multi-experiment identifiability)

• (Dong, Goodbrake, Harrington, P., 2023)

Efficient correctness check =⇒ in practice, almost always correct
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Input-output equations: assembling the puzzle

Outline of the approach

1. Eliminate states

2. Check if the parameter belongs to the field of the coefficients

Missing piece #2: How eliminate efficiently?

Answer (Dong, Goodbrake, Harrington, P., 2023)

New differential elimination algorithm tailored to the systems

x′ = f (x,u), y = g(x,u):

• change-of-ordering point of view

• ideal membership testing with power series solutions

=⇒ outperforms general purpose elimination algorithms by orders

Missing piece #3: How check membership efficiently?

Answer (DGHP, 2023): Randomized algorithm to check

17
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Voilà: StructuralIdentifiability.jl

Resulted in Julia package StructuralIdentifiability.jl.

Model DAISY SIAN SI.jl

SIWR model OOM > 5 h. 18 s.

SIWR model - 2 OOM 213 s. 0.7 s.

Pharmacokinetics > 5 h. > 5 h. 406 s.

MAPK pathway - 1 OOM 31 s. 39.5 s.

MAPK pathway - 2 > 5 h. > 5 h. 58 s.

MAPK pathway - 3 > 5 h. 35 s. 1084 s.

SEAIJRC model OOM > 5 h. 131.3 s.

Akt pathway 182 s. 28 s. 5 s.

NFκB > 5 h. 2018 s. > 5 h.

Mass-action > 5 h. 3 s. 0.5 s.

SIRS w. forcing OOM 5 s. 30.3 s.

18



Ça marche !
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Concluding remarks

Summary

• Algebra in action =⇒ two state-of-the-art software tools

• Clarifying foundations gives algorithmic insights

• Pushing further the limits of differential elimination

(and pushing even further ⇝ upcoming paper with Y. Mukhina)

Not the end of the story

• Software is in the process of continuous development

(including student contributions)

• With nonidentifiability the fun just begins ⇝

reparametrization/reduction

(with A. Demin and C. Rackauckas, code is already available)

• Efficient elimination via change of representation

(using Wronskians, integrals, numerical evaluations, etc.)
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Research project



Transformation for learning

Scientific Machine Learning

model calibration ⇝ learning (a part of) model from data

Use-case #1: structural parameter identifiability

Identifiability assessment as a preprocessing for PINNs.

Systems Biology: Identifiability Analysis and Parameter Identification via

Systems-Biology-Informed Neural Networks, Daneker et al., 2023
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Transformation for learning

Use-case #2: quadratization for model reduction

Model order reduction: replace an ODE model with a smaller one.

• Learning quadratic (degree ⩽ 2) reductions is well-understood

• Quadratic reductions are especially natural for quadratic systems

=⇒ Lift & Learn (Qian, Kramer, Peherstorfer, Willcox, 2020)

x ′ = x4
y :=x3

====⇒

{
x ′ = xy ,

y ′ = 3x2x ′ = 3x6 = 3y2

• (Bychkov, P., 2021)

Algorithm for ODEs

• (Bychkov, Issan, P., Kramer, 2024)

Varying-dimension ODEs

• (Olivieri, P., Kramer, 2024+)

Algorithm for PDEs
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Transformation for learning

Scientific Machine Learning

model calibration ⇝ learning (a part of) model from data

General research question

How to compute “convenient” coordinates for learning?

(e.g., identifiable reparametrizations, quadratizations for PDEs, etc.)
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Calculus of variations

Typical problem: Optimize a functional
b∫
a

F (t, x , x ′) dt.

Research program

• Perform transformations on the level of functional insead of ODEs.

• Many problems of strong algebraic flavor: null Lagrangians,

homogeneous Lagrangians, inverse problem.

• Fundamental object — variation (“shift by a very small function ε”).

• Weak variation: 0 = ε2 = (ε′)2 = (ε′′)2 = . . .

• Strong variation: only ε2 = 0.

Something in the middle?

Based on algebraic version from (Ait El Manssour, P., 2022, 2024)
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All these adventures made possible by

• my teachers

• my postdoc mentors

• my collaborators

• my students

• my colleagues

• and my family

Thank you!
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