
Some Open Problems in Differential Algebra
Gleb Pogudin, January 24, 2025

This note conatins a discussion of several open problems in differential algebra. The notations
for differential polynomials, rings, and ideals follow the lecture notes [11]. I have a code for all
the computational experiments described below and will be happy to share it, just email gleb.
pogudin@polytechnique.edu.
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1 Differential elimination: support

Background

Differential elimination is a differential analogue of elimination for polynomial systems and Gaus-
sian elimination from linear algebra. It can be stated (and solved) in full generality but here we
will focus on an important special case. Consider a system of differential equations of the form

x′ = f(x),

where x = (x1, . . . , xn) is a tuple of differential indeterminates and f = (f1, . . . , fn) is a tuple
of polynomials from C[x]. Systems of these form describe dynamical systems with polynomial
dynamics and appear often in the literature. One natural elimination task is to eliminate all the
variables except one, say x1, that is, describe a differential ideal

⟨x′
1 − f1(x), . . . , x

′
n − fn(x)⟩(∞) ∩ C[x(∞)

1 ]. (1)

The ring of univariate differential polynomials is “nearly Euclidean” [11, Section 1.3] and, in par-
ticular, the ideal (1) is unqiuely determined by its minimal polynomial (polynomials are compared
first w.r.t. the order and then w.r.t. total degree).

Question 1 (General). Describe and/or compute the minimal polynomial of the elimination
ideal (1).

Problem statement

One interesting specific version of Question 1 is to ask about the support (that is, the set of
monomials with nonzero coefficients) of the minimal polynomial of the ideal (1). If one knows the
support, this can be used in practice, for example, as follows. There are very efficient algorithms for
finding truncated power series solutions of x′ = f(x) (e.g. [2, 12]). If one can estimate the support
of the minimal polynomial for x1, then one can write the minimal polynomial with undetermined
coefficients and, plugging these solutions, obtain a linear system on these coefficients.

Let us formulate two specific questions about the support at the minimal polynomial of (1).

Question 2 (Generic systems). Consider a system x′ = f(x) of dimension n, where each fi is a
generic polynomial of degree d. What is the support of the minimal polynomial for x1 (that is, the
minimal polynomial of the corresponding elimination ideal)?
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Question 3 (2D case). Let n = 2, so the supports of f1 and f2 are subsets in Z2. Then the order
of the minimal polynomial for x1 will not exceed two, so its support will be a subset of Z3. How is
this set (or its convex hull) related to the two original sets in Z2 (or their convex hulls)?

Experimental results

We start with a series of examples connected to both Questions 2 and 3: we will consider the case
of system

x′
1 = f1(x1, x2), x′

2 = f2(x1, x2),

where f1 and f2 are generic polynomials of degrees d1 and d2, respectively. Table 1 below summa-
rizes the results, and one can observe several interesting patterns.

Newton polytope of the minimal polynomial

(d1, d2) Vertices in (x1, x
′
1, x

′′
1)-coordinates Type

(1, d) (for d ⩽ 6) (0, 0, 0), (d, 0, 0), (0, d, 0), (0, 0, 1) tetrahedron

(2, 1) (0, 0, 0), (4, 0, 0), (2, 2, 0), (0, 3, 0), (0, 0, 2) pyramid

(2, 2) (0, 0, 0), (6, 0, 0), (0, 3, 0), (0, 0, 2) tetrahedron

(2, 3) (0, 0, 0), (8, 0, 0), (0, 4, 0), (0, 0, 2) tetrahedron

(2, 4) (0, 0, 0), (10, 0, 0), (0, 5, 0), (0, 0, 2) tetrahedron

(2, 5) (0, 0, 0), (12, 0, 0), (0, 6, 0), (0, 0, 2) tetrahedron

(3, 1) (0, 0, 0), (9, 0, 0), (6, 3, 0), (0, 5, 0), (0, 0, 3) pyramid

(3, 2) (0, 0, 0), (12, 0, 0), (6, 3, 0), (0, 5, 0), (0, 0, 3) pyramid

(3, 3) (0, 0, 0), (15, 0, 0), (0, 5, 0), (0, 0, 3) tetrahedron

(3, 4) (0, 0, 0), (18, 0, 0), (0, 6, 0), (0, 0, 3) tetrahedron

(4, 1) (0, 0, 0), (16, 0, 0), (12, 4, 0), (0, 7, 0), (0, 0, 4) pyramid

(4, 2) (0, 0, 0), (20, 0, 0), (12, 4, 0), (0, 7, 0), (0, 0, 4) pyramid

Table 1: Results for 2D systems

Question 4. Prove the characterization of Newton polytopes for the degree pairs (2, d), (3, d), (4, d)
for any d continuing the patterns from Table 1.

Some basic results for dimension three are collected in Table 2.

(d1, d2, d3) Vertices in (x1, x
′
1, x

′′
1 , x

(3)
1 )-coordinates

(2, 2, 2) (0, 0, 0, 0), (24, 0, 0, 0), (0, 12, 0, 0), (0, 0, 8, 0), (0, 0, 0, 6)

(2, 2, 3),
(2, 3, 2)

(0, 0, 0, 0), (42, 0, 0, 0), (24, 0, 6, 0), (12, 0, 0, 6), (0, 21, 0, 0),
(0, 12, 6, 0) , (0, 6, 0, 6), (0, 0, 12, 0), (0, 0, 0, 8)

Table 2: 3D models

Update (January 24,2025). Questions 1 and 3 have been answered in our joint work with Yulia
Mukhina [10]. The question when the degrees are different in dimension higher than two is still
open. Not to mention supports other that all monomials up to fixed degree!
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2 Degree of the prolongation variety

Background

Consider a differential equation or a system of differential equations, say:

x′ − x2 = 0.

We can transform it into an infinite polynomial system in variables x, x′, x′′, . . . by taking all the
derivatives:

0 = x′ − x2 = x′′ − 2x′x = x(3) − 2(x′)2 − 2xx′′ = . . .

An important property of this infinite polynomial system is that its solutions are in a bijective cor-
respondence with the power series solutions of the original differential system [11, Proposition 2.3].
However, working constructively with the whole infinite-dimensional system is problematic, so one
often works with its “truncations”, that is, polynomial systems defined by only first several deriva-
tives, see, e.g., [5, 8]. In other words, one considers a sequence of varieties corresponding to this
truncation

V(x′−x2) ⊂ A2, V(x′−x2, x′′−2xx′) ⊂ A3, V(x′−x2, x′′−2xx′, x′′−2(x′)2−2xx′′) ⊂ A4, . . .

Understanding the geometry of these varieties may be a key to refining the results which use such
“truncations” and also design new methods (including homotopy-based ones) to deal with the
systems of differential equations.

Problem statement

We consider a system F of differential equations f1 = . . . = fℓ = 0 and introduce the following
varieties

X0(F ) := V(f1, . . . , fℓ),
X1(F ) := V(f1, . . . , fℓ, f ′

1, . . . , f
′
ℓ),

X2(F ) := V(f1, . . . , fℓ, f ′
1, . . . , f

′
ℓ, f

′′
1 , . . . , f

′′
ℓ ),

...

living in appropriate finite-dimensional affine spaces.

Question 5 (General). For an arbitrary differential system, what are the dimension, components,
and degree of the varieties Xi(F ) for i ⩾ 0.

There is an important special case in which the dimension and the number of components are
known. This is the case of polynomial dynamical systems, that is, systems of the form

x′ = p(x),

where x = (x1, . . . , xℓ) is a tuple of differential indeterminates and p = (p1, . . . , pℓ) is a tuple of
polynomials. It turns out that the system and any number of its derivatives form a Gröbner basis
of the ideal they generate in the appropriate polynomial ring [11, Proposition 1.24]. This implies
that, for every i ⩾ 0, the variety Xi(F ) is irreducible and codimXi(F ) = ℓ for every i. So the
remaining question is the one about the degree.

Experimental results

Consider our example system x′−x2 = 0, which is a polynomial dynamical system. One can prove
that degXm(x′ − x2) = m+ 2 for every m ⩾ 0. Furthermore, the same argument shows that, for
an arbitrary polynomial p(x) of degree d, one has degXm(x′ − p(x)) = m+ d.

Situation becomes more interesting if one goes to dimension 2. Consider the following system F1

F1 : x
′
1 = x2

2, x′
2 = x2

1.
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For m ⩽ 10, the following has been verified:

degXm(F1) =

{
(m+ 2)2, if m ≡ 0, 2 (mod 3),

(m+ 2)2 − 2, if m ≡ 1 (mod 3).
(2)

By taking the degree to be larger by one, that is, considering F2:

F2 : x
′
1 = x3

2, x′
2 = x3

1,

we find (for m ⩽ 10)

degXm(F2) =

{
(2m+ 3)2, if m ≡ 0, 3 (mod 4),

(2m+ 3)2 − 8, if m ≡ 1, 2 (mod 4).
(3)

Question 6. Prove (2) and (3).

Gabriela Jeronimo and independently Sebastian Falkensteiner and Rafael Sendra kindly shared
with me the proofs that degXm(F1) does not exceed the number from (2) but the problem of
showing the equality is still open to the best of my knowledge. We also observe that in all the
cases above, the sequence degXm(F ) is a quasi-polynomial (a polynomial with the coefficients
being periodic functions in m with integer period) in m.

Question 7. Is it true that, for a polynomial dynamical system F , degXm(F ) is always a quasi-
polynomial in m? How does this quasi-polynomial depend on the system?

Here are several first numbers degXm(F3) for F3 = {x′
1 = x2

2, x
′
2 = x3

1}:

6, 11, 26, 46, 66, 91, 121, 156, 196, . . .

What would be the quasi-polynomial?
Similar results can be obtained for more general differential-algebraic equations. For example,

here are the values of degXm((x′)2 + x2 − 1):

2, 4, 8, 10, 12, 14, 16, 18, . . .

Note the jump from 4 to 8!

Question 8. For a univariate differential polynomial p ∈ C[x(∞)], what does degXm(p = 0) look
like? For example, can we prove that the sequence above (for p = (x′)2 + x2 − 1) continues as an
arithmetic progression?

3 Homogeneous Lagrangians

Background

A number of problems in the calculus of variations can be stated as finding functions x(t) and y(t)
(subject to some constraint) maximizing/minimizing an integral of the form

t1∫
t0

L(x(t), y(t)) dt, (4)

where L ∈ C(x(∞), y(∞)) is a differential rational function. The function L is then referred to
as the Lagrangian. An important special case is the case when the value of the integral (4) is
invariant under the reparametrization of the time axis. This corresponds to the situation in which
one is looking for a curve {(x(t), y(t)) | t ∈ [t0, t1]} with certain extremal property rather than for
particular functions x(t) and y(t). In this case the Lagrangian L is called homogeneous [9, §8.1].

The homogeneity can be expressed as an algebraic condition on the differential rational func-
tion L. Consider a reparametrization of the time axis t = t(τ). Let use denote by L(t)(x, y) and
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L(τ)(x, y) the value of the differential rational function L on x(t(τ)), y(t(τ)) with the derivatives
taken with repect to t and τ (so, using the chain rule), respectively. Then the homogeneity can be
expressed as the equality of (4) after the substitution t = t(τ) and the same functional applied to
x(t(τ)), y(t(τ)) as functions of τ . This yields

τ1∫
τ0

L(t)(x, y)t′(τ) d τ =

τ1∫
τ0

L(τ)(x, y) d τ.

Since the equality above is expected to hold for all functions x(t), y(t), t(τ) and intervals [τ0, τ1],
we obtain the following condition on L:

L(τ)(x, y) = L(t)(x, y)t′(τ) for every t(τ). (5)

Problem statement

We will now transform the condition (5) to a formal algebraic definition.

Definition 1 (homogeneous Lagrangian). Let L ∈ C(x(∞), y(∞)) be a differential rational function.
We will write it L(∂, x, y) to make the dependence on the derivation explicit. We consider one more
differential indeterminate w and introduce the following derivation ∂w on C(x(∞), y(∞), w(∞)):

∂w(w
(i)) = w(i+1), ∂w(z

(i)) = w′z(i+1) for i ⩾ 0, z ∈ {x, y},

which encodes the chain rule if one considers x and y as “functions in w”.
Then L is called homogeneous Lagrangian if

L(∂w, x, y) = w′L(∂, x, y),

where by L(∂w, x, y) we mean L(x, y), in which every occurence of x(i) or y(i) is replaced by ∂i
w(x)

or ∂i
w(y), respectively.

Example 1. Consider L = x′′y′−x′y′′

(x′)2 , that is, L(∂, x, y) = (∂2x)(∂y)−(∂x)(∂2y)
(∂x)2 . For every z ∈

{x, y}, we have
∂wz = w′z′ and ∂2

wz = w′′z′ + (w′)2z′′.

So we obtain

L(∂w, x, y) =
(w′′x′ + (w′)2x′′)w′y′ − w′x′(w′′y′ + (w′)2y′′)

(w′)2(x′)2
= w′L(∂, x, y),

so L is a homogeneous Lagrangian.

A natural general question then is:

Question 9 (General). Describe the set of all homogeneous Lagrangians.

In order to state more precise questions in this direction, we will extend Definition 1:

Definition 2 (semi-homogeneous Lagrangian). In the notation of Definition 1, L will be called
semi-homogeneous Lagrangian of order h if

L(∂w, x, y) = (w′)hL(∂, x, y).

Then one can study Question 9 using the following lemma.

Lemma 1. Let L ∈ C(x(∞), y(∞)) be a homogeneous Lagrangian. Then there exist P,Q ∈
C[x(∞), y(∞)] such that L = P

Q and P and Q are semi-homogeneous Lagrangians of orders h + 1
and h for some integer h.

Notation 1. For an integer h ⩾ 0, we define Lh to be the space of all semi-homogeneous La-
grangians of order h in C[x(∞), y(∞)].

We observe that, for every (nondifferential) polynomial P (x, y) ∈ C[x, y], we have

Q ∈ Lh =⇒ PQ ∈ Lh

meaning that Lh is a module over C[x, y]. It is not hard to show that this is a free module.

Question 10. What is the rank of Lh as a free module over C[x, y]?
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Experimental results

We computed the rank of Lh for h from 0 to 16, and got the following sequence:

1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 77, 101, 135, 176, 231, . . .

One of the sequences with this beginning in OEIS1 is A000041. Based on this, we can state the
following conjecture: the rank of L is a number of partitions of h+ 1.

4 Integrating differential polynomials

Background

Consider a nonlinear differential equation p(x) = 0, where p(x) ∈ C[x(∞)]. If we take p(x) =
x′′x+ (x′)2, then one can use integration to lower the order of the equation:

0 = x′′x+ (x′)2 = (xx′)′ =⇒ xx′ = c for some c ∈ C.

Such integration can be used to simplify the analysis of the equation both in theory and in practice.
An algorithm for determining if a differential polynomial is integrable (and even a differential
rational function) has been designed in [3].

There are, however, differential polynomials which do not have antiderivatives but allow similar
“integration”. For example, consider p(x) = xx′′ − (x′)2. One can show that it is not a derivative
of any other differential polynomial. However, if we divide it by (x′)2, we get

x′′x− (x′)2

(x′)2
= −

( x

x′

)′
=⇒ x

x′ = c for some c ∈ C.

So we managed to integrate the differential polynomial by using an “integrating factor” 1
(x′)2 . If

we consider p(x) = xx′′+α(x′)2 for α ∈ C, we can see that it may be beneficial to use non-rational
expressions as integrating factors:

(xx′′ + α(x′)2)
(x′)1/α−1

α
=

(
x(x′)1/α

)′
=⇒ x(x′)1/α = c for some c ∈ C. (6)

Problem statement

In general, if we have an equation p(x) = 0, where p(x) ∈ C[x(∞)] is a differential polynomial
of order h > 0, we can multiply the equation by some “functions” in x, x′, . . . , x(h−1) (a generic
solution of the original equation will not annihilate a function of order h − 1) aiming at making
the resulting product to be someone’s derivative. We can formulate a two-part general question.

Question 11 (General).

• Which differential polynomials p(x) ∈ C[x(∞)] can be integrated by using an appropriate
integrating factor?

• What is the class of functions in x, x′, . . . , x(h−1) where these integrating factors should be
sought (e.g., polynomials with arbitrary complex exponents as in the example above)?

Experimental results

In order to use computational methods for experiments, let us restrict ourselves to a finite dimen-
sional space of polynomials

V2 := {p(x) ∈ C[x(∞)] | ord p ⩽ 2, deg p ⩽ 2}.
1http://oeis.org
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We will start with extending the idea of the example (6), that is, determining which polynomials
p(x) ∈ V2 can be represented in the form

(A(x) ·B(x)α)′

B(x)α−1
, (7)

where A(x) and B(x) are polynomials in x and x′ of degree at most one and α is a number. We
can take A(x) = a1x

′ + a0x+ a−1 and B(x) = b1x
′ + b0x+ b−1 and obtain a polynomial map φ2

from the space with coordinates (a−1, a0, a1, b−1, b0, b1, α) to V2 defined by

φ2 : (a−1, a0, a1, b−1, b0, b1, α) 7→
(A(x) ·B(x)α)′

B(x)α−1
∈ V2.

Although φ2 is a polynomial map defined by polynomials of degree three, the Zariski closure of its
image turns out to be a linear subspace of V2 (compare with (6)) spanned by

x′, xx′, xx′′, (x′)2, x′x′′, x′′.

Question 12. Is it possible to explain this linear space structure without carrying out the compu-
tation?

Now we perform the same computation for p(x) being still quadratic but of order at most
three, that is, we study the set of polynomials representable as (7) with A(x) and B(x) being still
of degree at most one but of order at most two. The Zariski image of the corresponding map

φ3 : (a−1, a0, a1, a2, b−1, b0, b1, b2, α) 7→
(A(x) ·B(x)α)′

B(x)α−1
∈ V3 := {p(x) ∈ C[x(∞)] | ord p ⩽ 3,deg p ⩽ 2}

is not longer a linear space. However, the equations defining the image have interesting features.
We introduce the coordinates on V3 by writing any element as

p(x) =
∑

0⩽i⩽j⩽3

ai,jx
(i)x(j) +

3∑
i=0

aix
(i) + a.

The the defining ideal of the closure of the image of φ3 contains, for example, the following
polynomials:∣∣∣∣∣∣∣∣

a1 a0,1 a0,3

a2 a0,2 a1,3

a3 a0,3 a2,3

∣∣∣∣∣∣∣∣ ,
∣∣∣∣∣∣∣∣
a1 a0,3 a0,2 − a1,1

a2 a1,3 0

a3 a2,3 a1,3 − a2,2

∣∣∣∣∣∣∣∣ , and

∣∣∣∣∣∣∣∣
a1 a0,1 a0,2 − a1,1

a2 a0,2 0

a3 a0,3 a1,3 − a2,2

∣∣∣∣∣∣∣∣ .
Question 13.

• Give a complete description of the defining equations of the image of φ3 (or even φd).

• Is it possible to extend the representation (7) so the the image of the analogue of φ3 will be
again a linear space?

Now let us return to the space V2. We have shown that any (technically, almost any) element
of the subspace spanned by x′, xx′, xx′′, (x′)2, x′x′′, x′′ can be integrated. However, the set of
integrable elements of V2 is larger: consider p(x) = x′′ + 1

0 = x′(x′′ + 1) = (1/2(x′)2 + x)′ =⇒ 1/2(x′)2 + x = c for some c ∈ C.

In order to generalize this example, we can search for p(x) ∈ V2 representable as

C(x)′

A(x)
,

where C(x) and A(x) are at most cubic and linear polynomials in x, x′, x′′, respectively. We perform
the corresponding polynomial elimination and find that the closure of the set of such p(x) ∈ V2

consists of the union of the following components:
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• Linear subspace a2,2 = a1 = a0,1 = a0,2 − 2a1,1 = 0;

• A component defined by linear equations a = a2,2 = a0 = a0,0 = 0 and one nonlinear

a1,2a0,1 + a21,1 − 5a1,1a0,2 + 2a20,2 = 0.

Question 14. What is the “meaning” of the last equation? What will the corresponding equations
look like for higher orders/degrees of p(x)?

Question 15. Do the two presented constructions exhaust the list of integrable elements in V2?

5 Quadratization

Background

The quadratization problem is, given a system of ordinary differential equations (ODEs) with
polynomial right-hand side, transform it into a system with at most quadratic right-hand side. For
example, consider a scalar ODE:

x′ = x5. (8)

The right-hand side has degree larger than two but if we introduce a new variable y := x4, then
we can write:

x′ = xy, and y′ = 4x3x′ = 4x4y = 4y2 =⇒

{
x′ = xy,

y′ = 4y2.
(9)

The right-hand sides of (9) are of degree at most two, and every solution of (8) is the x-component
of some solution of (9). Therefore, we have embedded our original system into a system with at
most quadratic right-hand side. This transformation arises in different application areas including
model reduction [6] and synthetic biology [7]. It is known (e.g. [6, Theorem 3]) that a quadratization
always exists, and moreover the new variables can be taken to be monomials in the original ones.
An algorithm for finding a monomial quadratization with the smallest possible number of new
variables has been designed in [4].

It is natural to ask whether one could use fewer variables for quadratization if the new variables
were arbitrary polynomials in the original ones. The answer is yes: consider a scalar equation:

x′ = (x+ 1)100.

It can be quadratized with a single new variable y := (x+ 1)99:{
x′ = y(x+ 1),

y′ = 99(x+ 1)198 = 99y2.

On the other hand, a simple combinatorial argument [1, Section 4] shows that one needs at least
ten new variables if they must be monomials in x.

Problem statement

The discussion above motivates the following general problem statement:

Question 16 (General). For a given ODE system x′ = f(x) with polynomial right-hand side,
determine (or bound) the minimal number of new variables sufficient to embed the system into a
system with at most quadratic right-hand side.

We propose the following specific subproblems.

Question 17. Given an integer d, what is the minimal number of new variables sufficient to
quadratize any scalar equation x′ = p(x), where deg p ⩽ d?
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Question 18. Given integers d1, . . . , dn, what is the minimal number of new variables sufficient
to quadratize any system 

x′
1 = p1(x1, . . . , xn),

...

x′
n = pn(x1, . . . , xn)

,

where deg pi ⩽ di for every 1 ⩽ i ⩽ n?

Experimental results

Question 17 has been studied for small d’s in [1]. The results are

• for d = 3, 4 one new variable is sufficient;

• for d = 5, 6 two new variables are sufficient (and, in general, necessary).

For d = 5, these new variables can always be taken to be powers of x. But this is not the case for
d = 6 which is more mysterious. A general formula for an arbitrary degree six polynomial p(x) is
given in [1, Theorem 3.2], we will show it on a more special case which still highlights the features
of the result. Consider a scalar ODE

x′ = x6 + p4x
4 + p3x

3 + p2x
2 + p1x+ p0.

Then introducing the following two new variables allows embed it into a system of ODEs with at
most quadratic right-hand side:

y1 := x5 +
5p3
8

x2 , y2 := x3.

The coefficient 5/8 is essential but we do not have any good high-level explanation where it could
come from.
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[5] L. D’Alfonso, G. Jeronimo, and P. Solernó. Effective differential Nullstellensatz for ordinary
DAE systems with constant coefficients. Journal of Complexity, 30(5):588–603, 2014. URL
https://doi.org/10.1016/j.jco.2014.01.001.

[6] C. Gu. QLMOR: A projection-based nonlinear model order reduction approach using
quadratic-linear representation of nonlinear systems. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 30(9):1307–1320, 2011. URL https:

//doi.org/10.1109/TCAD.2011.2142184.

9

https://doi.org/10.1137/20s1360578
https://dl.acm.org/doi/10.5555/1283383.1283492
https://doi.org/10.1016/j.jsc.2016.01.002
https://doi.org/10.1007/978-3-030-79987-8_9
https://doi.org/10.1016/j.jco.2014.01.001
https://doi.org/10.1109/TCAD.2011.2142184
https://doi.org/10.1109/TCAD.2011.2142184


[7] M. Hemery, F. Fages, and S. Soliman. On the complexity of quadratization for polynomial
differential equations. In Computational Methods in Systems Biology, pages 120–140. Springer
International Publishing, 2020. URL https://doi.org/10.1007/978-3-030-60327-4_7.

[8] H. Hong, A. Ovchinnikov, G. Pogudin, and C. Yap. Global identifiability of differential
models. Communications on Pure and Applied Mathematics, 73(9):1831–1879, 2020. URL
https://doi.org/10.1002/cpa.21921.

[9] M. Kot. A first course in the calculus of variations. American Mathematical Society, Provi-
dence, Rhode Island, 2014. ISBN 978-1-4704-1495-5.

[10] Y. Mukhina and G. Pogudin. Projecting dynamical systems via a support bound, 2025. URL
https://arxiv.org/abs/2501.13680.

[11] G. Pogudin. Lecture notes on differential algebra. URL http://www.lix.polytechnique.

fr/Labo/Gleb.POGUDIN/files/da_notes.pdf.

[12] J. van der Hoeven. Newton’s method and FFT trading. J. of Symbolic Computation, 45(8):
857–878, 2010. URL https://doi.org/10.1016/j.jsc.2010.03.005.

10

https://doi.org/10.1007/978-3-030-60327-4_7
https://doi.org/10.1002/cpa.21921
https://arxiv.org/abs/2501.13680
http://www.lix.polytechnique.fr/Labo/Gleb.POGUDIN/files/da_notes.pdf
http://www.lix.polytechnique.fr/Labo/Gleb.POGUDIN/files/da_notes.pdf
https://doi.org/10.1016/j.jsc.2010.03.005

	Differential elimination: support
	Degree of the prolongation variety
	Homogeneous Lagrangians
	Integrating differential polynomials
	Quadratization

