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Abstract

Factorizations of the cyclic permutation (1 2 . . . N) into two permutations with
respectively n and m cycles, or, equivalently, unicellular bicolored maps with N
edges and n white and m black vertices, have been enumerated independantly by
Jackson and Adrianov using evaluations of characters of the symmetric group. In
this paper we present a bijection between unicellular partitioned bicolored maps and
couples made of an ordered bicolored tree and a partial permutation, that allows
for a combinatorial derivation of these results.

Our work is closely related to a recent construction of Goulden and Nica for the
celebrated Harer-Zagier formula, and indeed we provide a unified presentation of
both bijections in terms of Eulerian tours in graphs.
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1 Introduction

From a combinatorial point of view, this paper is concerned with factorizations
in the group ΣN of permutations of [N ] = {1, . . . , N}. More precisely we are
interested in counting the number of ways to write the (full cycle) permutation
γN = (1 2 . . . N) as a product γN = αβ of two permutations α and β of ΣN

that have respectively m and n cycles. In view of the graphical interpretation
discussed below, such a factorization is called a unicellular bicolored map with
n white vertices, m black vertices, and N edges.

Email addresses: gilles.schaeffer@lix.polytechnique.fr (Gilles Schaeffer),
ekaterina.vassilieva@lix.polytechnique.fr (Ekaterina Vassilieva).
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Our main result is a bijective proof of the following theorem.

Theorem 1.1 ([8]) The number B(m,n,N) of ways to write the (full cycle)
permutation γN = (1 2 . . . N) as a product of two permutations of ΣN with
respectively m and n cycles, that is, the number of unicellular bicolored maps
with m white vertices, n black vertices, and N edges, satisfies

∑
m,n≥1

B(m,n,N)ymzn = N !
∑

p,q≥1

(
N − 1

p− 1, q − 1

)(
y

p

)(
z

q

)
. (1)

This statement immediately calls for two remarks. First, since the pairs (α, β)
we consider are characterized by the relation β = α−1γN , there is exactly
one factorization for each permutation α of ΣN and, accordingly, setting y =
z = 1 in Formula (1) yields N !. Secondly, setting only z = 1 and using
Vandermonde’s convolution formula, Formula (1) reads

∑
m,n≥1

B(m,n,N)ym = N !
∑
p≥1

(
N − 1

p− 1

)(
y

p

)
= y(y + 1)(y + 2) · · · (y +N − 1),

in agreement with the fact that the number of permutations of ΣN with m
cycles is an unsigned Stirling number of the first kind [11].

The terminology unicellular bicolored maps refers to the fact that pairs of
permutations can be used to encode maps, or ribbon graphs, or to be more
explicit embeddings of graphs in surfaces considered up to homeomorphisms :
detailed description of these encodings as well as examples of their numerous
applications in various branches of mathematics and physics can be found in
the survey [2] and in the book [9].

In particular Harer and Zagier enumerated unicellular maps with a prescribed
number of edges and vertices in order to compute the Euler characteristics of
some moduli spaces. Their result can be stated as follows.

Theorem 1.2 ([7]) The number A(m,N) of ways to write the permutation
γ2N = (1 2 . . . 2N) as a product of a fix point free involution (with N cycles
of length 2) and a permutation with m cycles, also known as the number of
unicellular maps with m vertices and N edges, satisfies

∑
m,N

A(m,N)ym = (2N − 1)!!
∑
p≥1

2p−1

(
N

p− 1

)(
y

p

)
. (2)

At least six proofs of this formula have been proposed in the literature between
1986 and 1999 (see references in [4]). However these proofs rely on computa-
tions with characters of the symmetric group or on matrix integrals, and until
recently no elementary proof was known. A first combinatorial proof was given
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by Lass in [10] using the BEST Theorem on the number of Eulerian tours [11].
Finally a bijection directly proving Formula (2) was proposed by Goulden and
Nica in [4].

A more refined formula than (2) was in fact already given by Walsh and
Lehman in [13] for the number of factorizations (α, β) of γ2N with α a fix point
free involution and β a permutation of cycle type µ, for any fixed partition
µ of 2N . Summing over all µ with m parts yields a (complicated) alternative
formula for A(m,N). In [5], this refined formula was extended to count the
number of factorizations (α, β) of γN with α of cycle type λ and β of cycle
type µ, for any pair (λ, µ) of partitions of N . Again summing over all λ with
m parts and µ with n parts yields a (complicated) formula for B(m,n,N).

However, the much simpler Expression (1) for B(m,n,N) was first obtained
by Jackson in the following general form.

Theorem 1.3 ([8]) The numbers B(m1, . . . ,mk, N) of factorizations of γN

as a product of k permutations with respectively m1, . . . ,mk cycles satisfy

∑
m1,...,mk

B(m1, . . . ,mk, N) zm1
1 . . . zmk

k

= N !Φ
{
z1 · · · zk ((1 + z1) · · · (1 + zk)− z1 · · · zk)

N−1
}

where Φ is the linear operator on polynomials defined by

Φ(z`1
1 · · · z`k

k ) =

(
z1

`1

)
· · ·

(
zk

`k

)
.

Theorem 1.1 is a mere rephrasing of the case k = 2 of this result. The proof
of Jackson is based on evaluations of characters of the symmetric group. A
quite different expression for B(m,n,N) was independently given by Adri-
anov. Upon making explicit the Gauss hypergeometric function that appears
in his statement, his result can be written as follows.

Theorem 1.4 ([1]) The number B(m,n,N) satisfies

∑
m,n≥1

B(m,n,N)ymzn = (N − 1)!
∑
k≥0

yz

k + 1

(
y + k

k

)(
z + k

k

)(
y + z

N − 1− 2k

)
.

Adrianov adapted the strategy developed for Formula (2) by Zagier, as exposed
in [9, Appendix A]. Like Jackson he relies on evalutations of characters of the
symmetric group, and it is not clear how to derive direct combinatorial proof
from their approach.
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In this paper, we propose a new proof of Jackson’s Formula (1) for unicellular
bicolored maps based on a direct combinatorial construction. Our initial pre-
sentation is similar in essence to the construction of Goulden and Nica in [4]
for unicolored maps, though some steps are more involved in our case. Namely
these authors proved that (unicolored) unicellular maps with a vertex parti-
tion are in one-to-one correspondence with couples formed of an ordered tree
and a partial pairing. We show that bicolored unicellular maps with white and
black vertices separately partitioned are in bijection with couples formed of a
bicolored ordered tree and a partial permutation. In order to stress the similar-
ities but also the important differences between our construction and Goulden
and Nica’s, we first state and prove our result using notational conventions
close to theirs.

While our combinatorial approach directly leads to Jackson’s formula (with
k = 2), it does not provides an interpretation of Adrianov’s formula. Instead
we sketch a proof of the equivalence of these two formulas using Vandermonde
convolution formula.

Finally we restate our bijection and Goulden and Nica’s in terms of Eulerian
tours in certain directed graphs associated to unicellular maps. This point of
view reveals a deep connection between these constructions and the BEST
Theorem used by Lass in [10] to prove Formula (2).

Outline of the paper

The ingredients of our combinatorial approach are presented in Section 2. The
bijection is then described (Section 3) and proved to be one-to-one (Section 4).
Next, in Section 5, we show the equivalence of our formula with Adrianov’s.
Finally Section 6 is concerned with a reformulation of both our and Goulden
and Nica’s bijections in terms of Eulerian tours on graphs.

2 Unicellular partitioned bicolored maps, trees and partial permu-
tations

2.1 Definition

Let CC(p, q,N) be the set of triples (π1, π2, α) such that π1 and π2 are parti-
tions of [N ] into p and q blocks and α is a permutation of ΣN such that:

• each block of π1 is a union of cycles of α,
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• and each block of π2 is a union of cycles of β = α−1γN , where γN =
(1 2 . . . N).

Any such triple is called a unicellular partitioned bicolored map with N edges,
and p white and q black blocks.

2.2 The representation of maps as ribbon graphs

We now sketch a graphical representation of unicellular maps using ribbon
graphs. This representation is not used in the first description of our bijection
(Sections 3 and 4) which is phrased entirely in terms of permutations. However
it allows us to make pictures and we believe that it conveys useful insights on
the mechanisms of the bijection. Moreover we will use this representation in
Section 6 to rephrase our bijection.

A ribbon graph is a drawing of a graph in the plane (possibly with edge cross-
ings) such that any vertex v of degree k has a neigborhood homeomorphic to
a disk in which the edges incident to v form a star with k branches. Edges are
allowed to cross each other outside of these neigborhoods but, as we shall see,
such crossings will be irrelevant for our purpose.

The following informal description will be useful to illustrate later construc-
tions. Consider an edge e of a ribbon graph and assume it is oriented. Imagine
then a (flat) ant walking on the right hand side of e in the direction given by
the orientation. The ant ignores irrelevant edge crossings if it meets any, but
when it arrives at a vertex it continues its walk along the next branch of the
star without crossing any edge in the neigborhood of the vertex.

A graph is bicolored if its vertices are colored into two colors and each edge
connects a black vertex to a white one. In this case, the side of the edge which is
on the right when going from the white endpoint to the black one is called the
right hand side of the edge (and the other is the left hand side). In particular
an ant walking as above around a bicolored ribbon graph alternatively visits
right and left hand sides of edges.

A unicellular bicolored map (α, β) with N edges is then represented as a
labelled ribbon graph as follows:

• The ribbon graph has N edges, which carry distinct labels {1, . . . , N}.
• Each cycle of α describes the local organization of edges around a white

vertex: a cycle (a1, . . . , ak) corresponds to a vertex incident to the edges
with label a1, . . . , ak in counterclockwise direction.

• Each cycle of β describes the cyclic organization of the labels of edges around
a black vertex.
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In terms of the ant walk as described above, the fact that αβ = γN implies
that starting on the right hand side of the edge with label 1, the ant visits the
right hand sides of the edges 1, 2, . . . , N in this order.

Finally the condition on a paritioned bicolored maps (π1, π2, α) that the parts
π1 and π2 be union of cycles of α and β immediately translates as follows for
its representation as a labeled ribbon graphs.

• The partition π1 induces a partition of the white vertices into p subsets.
• The partition π2 induces a partition of the black vertices into q subsets.

Example 2.1 Figure (1) gives a ribbon graph representation of the triple
(π1, π2, α) ∈ CC(3, 2, 9), defined by α = (1)(24)(3)(57)(6)(89), β = (1479)(23)(56)(8),

π1 = {π(1)
1 , π

(2)
1 , π

(3)
1 }, π2 = {π(1)

2 , π
(2)
2 } with

π
(1)
1 = {2, 4, 6}, π

(2)
1 = {8, 9}, π

(3)
1 = {1, 3, 5, 7},

π
(1)
2 = {2, 3, 5, 6}, π(2)

2 = {1, 4, 7, 8, 9}

where the numbering of the blocks is arbitrary.
To visualize it better we also assume that each block is associated with some
particular shape: π

(1)
1 with square, π

(2)
1 with circle, π

(3)
1 with triangle, π

(1)
2 with

rhombus and π
(2)
2 with pentagon. Therefore each vertex of our partitioned map

will have a shape corresponding to its block.

1

2

3

9
8

7

6

5

4

Fig. 1. Example of a partitioned bicolored map

Observe that an ant placed on the right hand side of Edge 1 and starting to
walk from its white end point will indeed visit all sides of edges and more
precisely will visit the right hand sides in increasing order.
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2.3 Connection with (non-partitioned) unicellular bicolored maps

Let C(p, q,N) denote the cardinality |CC(p, q,N)| of the set of partitioned
unicellular maps with N edges, p white and q black blocks. Using the Stirling
number of the second kind S(a, b) enumerating the partitions of a set of a
elements into b non-empty, unordered subsets, we have

C(p, q,N) =
∑

m≥p,n≥q

S(m, p)S(n, q)B(m,n,N). (3)

In other terms Stirling numbers govern the change of polynomial bases between
monomials xa and falling factorials (x)b =

∏b−1
i=0(x−i), so that

∑a
b=1 S(a, b) (x)b =

xa (see e.g [12, Theorem??]). The relation above can thus be written

∑
m,n≥1

B(m,n,N)ymzn =
∑

p,q≥1

C(p, q,N) (y)p(z)q, (4)

and in view of Formula (1) our aim is to compute the C(p, q,N).

2.4 Trees and partial permutations

Let BT (p, q) denote the set of ordered rooted bicolored trees with p white
vertices, q black vertices, and a white root. (Throughout, all bicolored trees
are assumed to be ordered and rooted with a white root ). The cardinality of
BT (p, q) (see e.g. Section 2.7.14 of [3]) is given by

|BT (p, q)| = p+ q − 1

pq

(
p+ q − 2

p− 1

)2

. (5)

We also denote by PP (X, Y,A) the set of partial permutations from any sub-
set of X of cardinality A to any subset of Y (of the same cardinality). The
cardinality of this set is given by

|PP (X, Y,A)| =
(
|X|
A

)(
|Y |
A

)
A!. (6)

From now on, for the sake of simplicity, we write PP (M,N,A) for PP (X, Y,A)
when X = [M ] and Y = [N ].
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2.5 Combinatorial interpretation of the main formula

As we have seen, proving Formula (1) boils down in view of Formula (4) to
proving

C(p, q,N)
?
=

N !

p!q!

(
N − 1

p− 1, q − 1

)
. (7)

This formula can be rearranged into

C(p, q,N)
?
=

p+ q − 1

pq

(
p+ q − 2

p− 1

)2


×
[(

N

N + 1− (p+ q)

)(
N − 1

N + 1− (p+ q)

)
(N + 1− (p+ q))!

]
,

so that the formula we actually want to prove is

|CC(p, q,N)| ?
= |BT (p, q)| × |PP (N,N − 1, N + 1− (p+ q))| . (8)

Our strategy to prove Theorem 1.1 will thus be to obtain it as a corollary of
the following result.

Theorem 2.2 There is a bijection

ΘN,p,q : CC(p, q,N) −→BT (p, q)× PP (N,N − 1, N + 1− (p+ q))

(π1, π2, α) 7−→ (t, σ) (9)

between

• unicellular partitioned bicolored maps with N edges, p blocks of white vertices
and q blocks of black vertices,

• and couples formed of a bicolored tree with p white and q black vertices
and a partial permutation between subsets of [N ] and [N − 1] containing
N + 1− (p+ q) elements.

3 A description of ΘN,p,q

In this section, we construct the announced mapping that associates to a triple
(π1, π2, α) ∈ CC(p, q,N) an ordered bicolored tree t in BT (p, q) and a partial
permutation σ in PP (N,N − 1, N + 1− (p+ q)).
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The ordered bicolored tree. Let π
(1)
1 , . . . , π

(p)
1 and π

(1)
2 , . . . , π

(q)
2 be the

blocks of the partitions π1 and π2 respectively, where the indexing of the blocks
is subject only to the condition that 1 ∈ π

(p)
1 . Denote by m

(i)
1 the maximal

element of the block π
(i)
1 (1 ≤ i ≤ p) and by m

(j)
2 the maximal element of

π
(j)
2 (1 ≤ j ≤ q). As already said, the index p must be given to the block of

partition π1 containing the element 1, while the indexation of all other blocks
is arbitrary.

Create a labeled bicolored tree T with p white vertices (labeled 1, . . . , p) and
q black vertices (labeled 1, . . . , q), as follows. The root of T is the white vertex
p. For j = 1, . . . , q, the black vertex j is a descendant of the white vertex
i if β(m

(j)
2 ) belongs to the white block π

(i)
1 . Similarly, for i = 1, . . . , p − 1,

the white vertex i is a descendant of the black vertex j if m
(i)
1 belongs to the

black block π
(j)
2 . If two black vertices j and k are both descendants of a white

vertex i, then j is to the left of k when β(m
(j)
2 ) < β(m

(k)
2 ); if white vertices

i, l are both descendants of a black vertex j, then i is to the left of l when
β−1(m

(i)
1 ) < β−1(m

(l)
1 ).

Lemma 3.1 The labeled bicolored tree T is correctly defined.

PROOF. Let the white vertex i be a descendant of the black vertex j being
in its turn a descendant of the white vertex k. Then m

(i)
1 ∈ π(j)

2 and so we have

m
(i)
1 ≤ m

(j)
2 . Furthermore, β(m

(j)
2 ) ∈ π

(k)
1 and, as white blocks are unions of

disjoined cycles of α, we have αβ(m
(j)
2 ) ∈ π(k)

1 , which implies that γN(m
(j)
2 ) ≤

m
(k)
1 . Now let us consider the two possible cases for m

(j)
2 :

(i) If m
(j)
2 6= N then γN(m

(j)
2 ) = m

(j)
2 + 1 and we have m

(i)
1 < m

(k)
1 .

(ii) If m
(j)
2 = N then γN(m

(j)
2 ) = 1 and we have 1 ∈ π

(k)
1 which means that

i = p.

Thus, we can specify a unique path from any white vertex i to the root vertex
(a similar reasoning also works for a black vertex) which means that the tree
T is well-defined.

2

Remove the labels from T to obtain the bicolored ordered tree t.

Example 3.2 Let us go back to Example 2.1. We can keep the previous num-
bering of the blocks since it satisfies the condition 1 ∈ π

(p)
1 . Since, β(m

(1)
2 ) =

β(6) = 5 ∈ π
(3)
1 and β(m

(2)
2 ) = β(9) = 1 ∈ π

(3)
1 the black rhombus 1 and the

black pentagon 2 are both descendants of the white triangle 3. Moreover, as
β(m

(1)
2 ) < β(m

(2)
2 ) vertex 2 is to the left of vertex 1. Since m

(1)
1 = 6 ∈ π

(1)
2
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1

2

3

9
8

7

6

5

4

3

2 1

2 1

T t

Fig. 2. Construction of the ordered bicolored tree

m
(2)
1 = 9 ∈ π

(2)
2 the white circle 1 is a descendant of the black pentagon 1,

while the white square 2 is a descendant of the black rhombus 2. In this way
we construct first the tree T then, removing the labels, get the tree t (see Fig-
ure 2).

The partial permutation. The construction of the partial permutation
consists of two main steps.

(i) Two relabeling permutations. Consider the reverse-labeled bicolored tree
t′ obtained from t by labeling its vertices as follows: The white vertices are
labeled p, p − 1, . . . , 1 and the black vertices q, q − 1, . . . , 1 in order as they
appear when traversing t from bottom-to-top and right-to-left. (Thus the root
of t′ always has label p.) Then trees T and t′ give two, possibly different,
labellings of t. Suppose (the (black or white) vertex v of t has label i in T and

label j in t′. Then define πj
1 = π

(i)
1 if v is white and πj

2 = π
(i)
2 if v is black. Repeat

this process for all vertices v of t to obtain canonical indexings π1
1, . . . , π

p
1 and

π1
2, . . . , π

q
2 of the blocks of π1 and π2, respectively. The reader can easily see

that πp
1 = π

(p)
1 . Let wi and υj be the strings obtained by writing the elements

of πi
1 and πj

2 in increasing order. Let w = w1 . . . wp and υ = υ1 . . . υq be
concatenations of w1, . . . , wp and υ1, . . . , υq respectively. We define λ ∈ SN by
letting w be the first line and [N ] the second line in the two-line representation.
Similarly, we define ν ∈ SN by letting υ be the first line and [N ] the second
line in the two-line representation.

3

1

2 1

T

2

3

2

1 2

t’

1

Fig. 3. Relabeling of the blocks
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Example 3.3 Let us continue Example 3.2 by constructing relabeling permu-
tations λ and ν. Figure 3 puts the tree T and the reversed-labeled tree t′ side
by side to give a natural illustration of the block relabeling:

π1
1 =π

(2)
1 , π2

1 = π
(1)
1 , π3

1 = π
(3)
1 ,

π1
2 =π

(2)
2 , π2

2 = π
(1)
2 .

The strings wi and υj are given by :

w1 = 89, w2 = 246, w3 = 1357,

υ1 = 14789, υ2 = 2356.

We construct now the relabeling permutations λ and ν.

λ =

 8 9

1 2

∣∣∣∣∣∣∣
2 4 6

3 4 5

∣∣∣∣∣∣∣
1 3 5 7

6 7 8 9

 ν =

 1 4 7 8 9

1 2 3 4 5

∣∣∣∣∣∣∣
2 3 5 6

6 7 8 9


Figures 4 depicts this two new labellings on our example.

1

2

3

9 8

7

6

5

4

8

9

6

3

4

7

5

12

1

2

3

45

6

7

8

9

Fig. 4. Relabelings of the partitioned bicolored map

(ii) A partial permutation. We can now introduce a partial permutation that
gives an insight into both the connexion between the λ and ν relabeling and
the structure of the partitioned bicolored map. Let S be the subset of [N ] con-
taining all the edges of the map that were not used to construct the bicolored
tree. Namely :
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S = [N ] \ {m1
1,m

2
1, . . . ,m

p−1
1 , β(m1

2), . . . , β(mq
2)}. (10)

We define the partial permutation σ on the set [N ] as the partial permuta-
tion β−1|S with its domain relabeled according to λ and its image relabeled
according to ν:

σ = ν ◦ β−1 ◦ λ−1 |λ(S) . (11)

In Lemmas 3.5 and 3.6 we show that σ is a bijection between two subsets of
N + 1− (p+ q) elements and that its image set is included in [N − 1].

1

2

3

9 8

7

6

5

4

8

9

6

3

4

7

5

12

1

2

3

45

6

7

8

9

Fig. 5. Connections through σ between λ and ν relabeling

Example 3.4 In the example previously described the set S is equal to :

S = {2, 3, 4, 7, 8}

The partial permutation σ is defined by :

σ =

 1 3 4 7 9

4 7 1 6 2


The set of vertices that were not used to construct the tree and their connec-
tions to the map through σ can be viewed on Figure 5.

Lemma 3.5 The set S defined above has cardinality N + 1− (p+ q).

PROOF. To prove the assertion of this lemma we will show the equivalent
statement

{m1
1,m

2
1, . . . ,m

p−1
1 } ∩ {β(m1

2), . . . , β(mq
2)} = ∅.

Assume that there exist i ∈ {1, . . . , p− 1} and j ∈ {1, . . . , q}, such that

β(mj
2) = mi

1. (12)
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Then as the blocks of π2 are stable under β we have mi
1 ∈ πj

2 and mi
1 ≤

mj
2. As the blocks of π1 are stable under α, assumption (12) also implies

that αβ(mj
2) = γN(mj

2) ∈ πi
1. Hence, γN(mj

2) ≤ mi
1. Combining these two

inequalities, we have γN(mj
2) ≤ mj

2 which occurs only if mj
2 = N . In this case,

γN(mj
2) = 1 and 1 ∈ πi

1, i.e. i = p which is a contradiction

2

Lemma 3.6 The element N is not in the image of the permutation σ.

PROOF. In view of the construction of the relabeling permutation ν, we
have N = ν(mq

2). But

ν(mq
2) = ν ◦ β−1 ◦ λ−1(λ(β(mq

2))).

Thus, as λ(β(mq
2)) does not belong to λ(S), N does not belong to the image

of the permutation σ.

2

4 A proof that ΘN,p,q is bijective

4.1 Injectivity

Let (t, σ) be the image of some triple (π1, π2, α) ∈ CC(p, q,N) by ΘN,p,q. We
show in a constructive way that (π1, π2, α) is actually uniquely determined by
(t, σ).

First we use the tree t and the integers missing in the two lines of σ to find
the number of elements in each block of π1 and π2, as well as the extension of
σ to the whole set [N ]. By construction of σ, the integers missing in its first
line λ(S) are

λ(m1
1), . . . , λ(mp−1

1 ), λ(β(m1
2)), . . . , λ(β(mq

2)).

By definition of λ we have λ(m1
1) < . . . < λ(mp−1

1 ). Moreover, the maximality
of mi

1 and the fact that λ is increasing on any block of π1 implies λ(mi−1
1 ) <

λ(s) < λ(mi
1) for any s ∈ Si, where Si = {β(m1

2), . . . , β(mq
2)} ∩ πi

1. Thus
to recover the exact order of the elements missing in the first line of σ, we
need only determine the subsets λ(Si) and the relative order of their elements.
To this end, observe that λ(Si) = {λ(β(mj1

2 ), . . . , β(mjk
2 )} where j1, . . . , jk
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are all the descendants of white vertex i in t′. Moreover, vertex ja is to the
left of vertex jb if and only if β(mja

2 ) < β(mjb
2 ), which occurs if and only if

λ(β(mja
2 ) < λ(β(mjb

2 ) since λ is increasing on πi
1. Thus the order of λ(Si) is

naturally induced by the left-right order of the descendants of the white vertex
i in t′.

Consider the set ν ◦ β−1(S) in the second line of σ. The missing elements are

ν(m1
2), . . . , ν(m

q
2), ν(β

−1(m1
1)), . . . , ν(β

−1(mp−1
1 )).

Similarly to the first line of σ, we use the structure of t′, the relation between
ν and t′, as well as the fact that ν(β−1(mi1

1 )) ≤ ν(β−1(mi2
1 )) if i1 and i2 are

descendants of the same black vertex with i1 on the left of i2 to order these
elements. Once the order on both of the sets of missing elements is established,
the missing integers can be uniquely identified. Hence, the extension σ̄ =
ν ◦ β−1 ◦ λ−1 of the partial permutation σ to the whole set [N ] is uniquely
determined since

∀i ∈ [p− 1], σ̄(λ(mi
1)) = ν(β−1(mi

1)), (13)

and ∀j ∈ [q], σ̄(λ(β(mj
2))) = ν(mj

2). (14)

Now, the knowledge of λ(m1
1), . . . , λ(mp−1

1 ) and ν(m1
2), . . . , ν(m

q
2) allows us to

determine the number of elements in each of the blocks of partitions λ(π1) =
λ(π1

1), . . . , λ(πp
1) and ν(π2) = ν(π1

2), . . . , ν(π
q
2). Indeed, the blocks of the above

partitions are intervals:

λ(πi
1) =


[λ(m1

1)], for i = 1,

[λ(mi
1)] \ [λ(mi−1

1 )], for 2 ≤ i ≤ p− 1,

[N ] \ [λ(mp−1
1 )], for i = p,

ν(πi
2) =

 [ν(m1
2)], for i = 1,

[ν(mi
2)] \ [ν(mi−1

2 )] for 2 ≤ i ≤ q.

Hence, λ(π1) and ν(π2) are uniquely determined by (t, σ). But, since π2 is
stable under β, we can use σ̄ to recover λ(π2). Indeed

σ̄−1(ν(π2)) = λ ◦ β ◦ ν−1(ν(π2)) = λ ◦ β(π2) = λ(π2). (15)

In particular, since σ̄ and ν(π2) are uniquely determined, so is λ(π2).

Example 4.1 We give here an illustration of the first steps of the injectivity
proof. Let us suppose that we are given the parameters N = 10, p = 3, q = 2,
the following partial permutation

14



σ =

 3 4 5 6 8 10

4 6 3 1 8 7


and the bicolored ordered tree shown in Figure 6.

Fig. 6. A bicolored tree

Consider the set λ(S) in the first line of σ. The missing elements of λ(S) are
clearly 1, 2, 7, and 9, so we must have

{λ(m1
1), λ(m2

1), λ(β(m1
2), λ(β(m2

2)} = {1, 2, 7, 9}.

¿From the reverse-labeling tree we conclude that

λ(m1
1) = 1, λ(m2

1) = 2, λ(β(m1
2)) = 7, λ(β(m2

2)) = 9.

Consider the set ν ◦ β−1(S) in the second line of σ. The missing elements are

ν(m1
2), ν(m

2
2), ν(β

−1(m1
1)), ν(β

−1(m2
1)).

We have

ν(m1
2) = 2, ν(β−1(m1

1)) = 5, ν(β−1(m2
2)) = 9, ν(m2

2) = 10.

Now we can extend σ to the permutation σ̄ on the set [N ]:

σ̄ =

 1 2 3 4 5 6 7 8 9 10

5 9 4 6 3 1 2 8 10 7

 .

Note, that as λ(m1
1) = 1, λ(m2

1) = 2, ν(m1
2) = 2, ν(m2

2) = 10, we also can
identify the images of white blocks by λ and images of black blocks by ν:

λ(π1
1) = {1}, λ(π2

1) = {2}, λ(π3
1) = {3, 4, 5, 6, 7, 8, 9, 10},

ν(π1
2) = {1, 2}, ν(π2

2) = {3, 4, 5, 6, 7, 8, 9, 10}.

15



Using (15) we obtain the relabeling of partition π2:

λ(π1
2) = {6, 7}, (16)

λ(π2
2) = {1, 2, 3, 4, 5, 8, 9, 10}.

Now let us show that λ and ν are uniquely determined as well. As 1 ∈ πp
1 and

λ is an increasing function on each block of π1, λ(1) is necessarily the least
element of λ(πp

1). Let then λ(πk
2) be the block of λ(π2) such that λ(1) ∈ λ(πk

2).
As ν is an increasing function on each block of π2, necessarily ν(1) is the least
element of ν(πk

2).

Now assume that for a given i in [N−1], λ(1), . . . , λ(i) and ν(1), . . . , ν(i) have
been determined. As π1 is stable under α, necessarily β(i) and i+1 = γN(i) =
α ◦ β(i) belong to the same block of π1. Hence λ(i+ 1) and λ(β(i)) belong to
the same block of λ(π1). But

λ(β(i)) = λ ◦ β ◦ ν−1(ν(i)) = σ̄−1(ν(i)). (17)

As a consequence, λ(i + 1) and σ̄−1(ν(i)) belong to the same block of λ(π1).
Finally, as λ is an increasing function on each block of π1, λ(i+1) is necessarily
the least element of the block of λ(π1) containing σ̄−1(ν(i)) that has not been
used yet to identify λ(1), . . . , λ(i).

Let λ(πl
2) be the block of λ(π2) containing λ(i + 1). Since ν is an increasing

function on each block of π2, ν(i + 1) is uniquely determined as being the
least element of the block ν(πl

2) that has not already been used to identify
ν(1), . . . , ν(i). By iterating the above procedure for all the integers in [N − 1]
we see that λ and ν are uniquely determined.

To end this proof, we remark that

π1 =λ−1(λ(π1)),

π2 = ν−1(ν(π2)),

and α= γN ◦ β−1 = γN ◦ ν−1 ◦ σ̄ ◦ λ.

As a result, at most one triple (π1, π2, α) can be associated with (t, σ) through
ΘN,p,q. Moreover, if such a triple exists, it can be computed using the descrip-
tion of Θ−1

N,p,q given by the above proof.

Example 4.2 We apply the iterative reconstruction of λ and ν to the previous
example. A table of three lines and N columns will be used to sum up the
available information on λ and ν in each step of the reconstruction: the first
line is given by [N ], while the second and third lines represent the relabellings
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by λ and ν. We initialize the procedure by putting 3 = min(λ(π3
1)) at the first

position of the line for λ:

γN : 1 2 3 4 5 6 7 8 9 10

λ : 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

ν : ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

Now, looking at (16) we establish that the element 3 belongs to λ(π2
2). As the

least element of ν(π2
2) is 3, we put 3 in the first position of the third line of

our table:

γN : 1 2 3 4 5 6 7 8 9 10

λ : 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

ν : 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

To establish the next white block we take the image of the last discovered ele-
ment ν(1) by σ̄−1:

σ̄−1(ν(1)) = σ̄−1(3) = 5.

Thus σ̄−1(ν(1)) belongs to λ(π3
1). We then deduce that λ(2) is the least element

of λ(π3
1) which has not been met yet, i.e 4. We write 4 at the second position

of the line for λ:

γN : 1 2 3 4 5 6 7 8 9 10

λ : 3 4 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

ν : 3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

We iterate the process until λ and ν are fully reconstructed :

γN : 1 2 3 4 5 6 7 8 9 10

λ : 3 4 5 1 6 7 8 9 10 2

ν : 3 4 5 6 1 2 7 8 9 10

Once λ and ν are known, we have reconstructed the partitioned map:

π1 = {{4}{10}{1, 2, 3, 5, 6, 7, 8, 9}} ,
π2 = {{5, 6}{1, 2, 3, 4, 7, 8, 9, 10}} ,
α= (13256798)(4)(10).
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The bicolored map represented by this permutation is the unicellular map of
genus 2 shown in Figure 7.

1

3

2

4

6 5

8

7

9
10

Fig. 7. The partitioned bicolored map once reconstructed

4.2 Surjectivity

Let us now proceed by showing that ΘN,p,q is a surjection. Clearly, up to the
reconstruction of λ and ν the first steps of the procedure described in the
previous section can be applied to any couple (t, σ) belonging to BT (p, q) ×
PP (N,N − 1, N − 1 − (p + q)) . Namely we can define the extension σ̄ of σ
to the whole set [N ] as well as the partitions λ(π1), λ(π2) and ν(π2). Then
we use the next lemma to show that the reconstruction of λ and ν can also
always be successfully completed.

Lemma 4.3 Given any couple (t, σ) ∈ BT (p, q)×PP (N,N −1, N −1− (p+
q)), the iterative procedure for the reconstruction of λ and ν can always be
performed and gives valid output in any case.

PROOF. First, we notice there are only two ways the procedure can be
prevented. Either for a given i in [N−1], σ̄−1(ν(i)) belongs to a block of λ(π1)
that has all its elements already used for the construction of λ(1), . . . , λ(i) so
that we cannot define λ(i + 1); or λ(i + 1) belongs to a block of λ(π2) such
that the corresponding block of ν(π2) has all its elements already used for the
construction of ν(1), . . . , ν(i) and we are not able to define ν(i+ 1). We show
by induction that neither of these situations can occur.

Assume that we have already successfully iterated the procedure up to i ≤
N−1. Also assume that we cannot define λ(i+1) for the reason stated above.
Let λ(πk

1) be the block containing σ̄−1(ν(i)). Then:

(i) If λ(πk
1) does not contain λ(1), then |πk

1 | + 1 different integers, including
ν(i), that have been used for the construction of ν have their image under
σ̄−1 in λ(πk

1). This contradicts the fact that σ̄−1 is a bijection.
(ii) If λ(1) belongs to λ(πk

1) (thus k = p), we only know that |πk
1 | different inte-

gers have their image by σ̄−1 in λ(πp
1). However, according to our definition

of σ̄, λ(π1) and λ(π2), if the white vertex in t corresponding to a given block
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πa
1 is the descendant of the black vertex associated with πb

2 then

λ(ma
1) ∈ λ(πb

2). (18)

In other words we cannot have used all the elements of ν(πb
2) for the con-

struction of ν until the maximum element of λ(πa
1) (and therefore all the

elements of λ(πa
1)) has been used for the construction of λ. In a similar way,

if the black vertex associated to πc
2 is the direct descendant of the white one

corresponding to πd
1 , we have

σ̄−1(ν(mc
2)) ∈ λ(πd

1). (19)

Thus all the elements of ν(πc
2) must be used for the reconstruction of ν

before all the elements of λ(πd
1) are used for the reconstruction of λ. To

summarize, all the elements of a block associated to a vertex x (either black
or white) are not used for the construction of λ and ν until all the elements
of the blocks associated with vertices that are descendant of x are used
for the same construction. As πp

1 is associated with the root of t, if all the
elements of λ(πp

1) have already been used for the construction of λ and ν,
it means that all the elements of all the other blocks of λ(π1) and ν(π2)
have been already used as well. The reconstruction is hence completed and
i = N . That is a contradiction with our assumption i ≤ N − 1.

Once λ(i+ 1) is found, we notice that ν(i+ 1) can always be defined. Indeed,
if λ(i + 1) belongs to a block λ(πl

2) such that all the elements of ν(πl
2) have

been already used to construct ν, it would mean that |πl
2|+1 different integers

belong to λ(πl
2), which is a contradiction. Our induction is completed by the

obvious remark that λ(1) and ν(1) can always be defined.

2

For the final step of this proof we need to show that once λ and ν are con-
structed the permutation α defined by

α = γN ◦ ν−1 ◦ σ̄ ◦ λ, (20)

satisfies the two following conditions:

α(π1) = π1 (21)

and
α−1γN(π2) = π2. (22)

Condition (22) comes from the fact that we have defined

λ(π2) = σ̄−1(π2), (23)
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so that,
π2 = λ−1 ◦ σ̄−1 ◦ ν ◦ γ−1

N ◦ γN(π2) (24)

and as a consequence
π2 = α−1 ◦ γN(π2). (25)

Condition (21) can be shown using the fact that for all i in [N ], λ(i) and
σ̄−1 ◦ν ◦γ−1

N (i) belong to the same block of λ(π1). Hence, λ−1 ◦ σ̄−1 ◦ν ◦γ−1
N (i)

and i belong to the same block of π1. Finally, the blocks of π1 are stable under
α−1 and therefore also stable under α.

This concludes the proof that ΘN,p,q is a bijection.

5 The equivalence between Formula (1) and Adrianov’s

In this section we show that Adrianov’s statement in [1] is equivalent to For-
mula (1). Upon making explicit the expansion of the Gauss hypergeometric
function used by Adrianov in his statement, his formula reads:

∑
m,n≥1

B(m,n,N)

(N − 1)!
yn−1zm−1 =

∑
k≥0

(
y+k

k

)(
z+k

k

)(
y+z

N−1−2k

)
k + 1

(26)

Lemma 5.1 below allows us to rewrite this as

∑
m,n≥1

B(m,n,N)

(N − 1)!
yn−1zm−1 =

∑
l,l′,k≥0

2k+l+l′=N−1

(
k+l
k

)(
k+l′

k

)(
y+k
k+l

)(
z+k
k+l′

)
k + 1

(27)

Now multiplying both sides by yz and expanding the last two binominal co-
efficients with Vandermonde’s convolution formula yields

∑
m,n≥1

B(m,n,N)

(N − 1)!
ynzm =

∑
p,q≥1, l,l′,k≥0
2k+l+l′=N−1

(
k+l
k

)(
k+1′

k

)(
k+1
p−l

)(
k+1
q−l′

)
(k + 1)(p− 1)!(q − 1)!

(y)(p)(z)(q) (28)

In view of Formula (4) Adrianov’s statement is thus equivalent to saying that

C(p, q,N)

(N − 1)!
=

∑
l,l′,k≥0

2k+l+l′=N−1

(
k+l
k

)(
k+l′

k

)(
k+1
p−l

)(
k+1
q−l′

)
(k + 1)(p− 1)!(q − 1)!

(29)

or, upon rearranging binomial coefficients,

C(p, q,N)

(N − 1)!
=

∑
k,l,l′≥0

2k+l+l′=N−1

(k + 1)
(

p
l

)(
q
l′

)(
k+l
p−1

)(
k+l′

q−1

)
p!q!

. (30)
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which, in view of Lemma 5.2 below, is equivalent to the Formula (7) we have
proved combinatorially.

Lemma 5.1(
y + k

k

)(
z + k

k

)(
y + z

N − 1− 2k

)
=

∑
l,l′≥0

l+l′=N−1−2k

(
k + l

k

)(
k + l′

k

)(
y + k

k + l

)(
z + k

k + l′

)
.

Proof. The binomial coefficients on the right hand side of the above equation
can be interpreted as multiple derivatives of polynomial functions. Namely,

(
y + k

k

)(
z + k

k

)(
y + z

N − 1− 2k

)
=

{[
(1 + u)y+k

](k) [
(1 + u)z+k

](k)
}(N−1−2k)

k!2(N − 1− 2k)!

∣∣∣∣∣∣∣∣∣
[u=0]

Expanding the formula for the (N − 1− 2k)th derivative of a product gives

(
y+k

k

)(
z+k

k

)(
y+z

N−1−2k

)
=

∑
l,l′≥0

l+l′=N−1−2k

(
N−1−2k

l

) [(1+u)y+k]
(k+l)

[(1+u)z+k]
(k+l′)

k!2(N−1−2k)!

∣∣∣∣∣∣∣∣
[u=0]

.

and the formula follows upon expanding and rearranging factorials. 2

Lemma 5.2

∑
k,l,l′≥0

2k+l+l′=N−1

(k + 1)

(
p

l

)(
q

l′

)(
k + l

p− 1

)(
k + l′

q − 1

)
= N

(
N − 1

p− 1, q − 1

)

Proof. As pointed out by an anonymous referee, this formula can be proved
through a direct combinatorial interpretation. However since we were unable to
use this interpretation to devise a combinatorial proof of Adrianov’s formula,
we content with a simple proof based again on Vandermonde’s convolution.

Consider the left hand side of the equation from the statement of the lemma
and set j = k + l, so that k + l′ = N − 1− j and l′ = N − 1− l − 2(j − l) =
N − 1− 2j + l: it rewrites as

∑
j≥l≥0

(j − l + 1)

(
p

l

)(
q

N − 1− 2j + l

)(
j

p− 1

)(
N − 1− j

q − 1

)

Consider the summand for l > j ≥ 0. If j > N − q the last binomial is 0.
Otherwise N − q− j ≥ 0 and l− j > 0 so that N − 2j + l > q and the second
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binomial is 0 or (j − l+ 1) = 0. In any case, these terms do not contribute so
that the summation can be reset on all j, l ≥ 0 instead of j ≥ l ≥ 0.

Then, using Vandermonde’s convolution, the terms
(

p
l

)(
q

K+l

)
and l

(
p
l

)(
q

K+l

)
can be summed over l to

(
p+q
p+K

)
and p

(
p+q−1
p+K

)
respectively (with K = N − 1−

2j). Hence the sum simplifies to

∑
j≥0

(
(j + 1)

(
p+ q

N − 1− 2j + p

)
− p

(
p+ q − 1

N − 1− 2j + p

))(
j

p− 1

)(
N − 1− j

q − 1

)

or, taking out the factors depending only on p and q and rearranging binomials,

(p+ q − 1)!

(p− 1)!(q − 1)!

∑
j≥0

(
(p+ q)

(
j + 1

N − j − q

)
− p

(
j

N − j − q

)) ( N−j
j−p+1

)
N − j

.

Using a generalized Vandermonde convolution formula [6, Formula 5.62] to

sum
(

j+1
N−j−q

)(
N−j

j−p+1

)
1

N−j
and

(
j

N−j−q

)(
N−j

j−p+1

)
1

N−j
over j into

(
N+1
p+q

)
1

N+1−p
and(

N
p+q−1

)
1

N+1−p
respectively, the result is obtained.

2

6 Eulerian tours and the graphical interpretation of the bijection

In this section we rephrase Goulden and Nica’s bijection as well as ours in
terms of Eulerian tours on directed graphs.

In order to state Goulden and Nica’s bijection we need to give the combinato-
rial definition of unicellular (not necessarily bicolored) maps. Recall that γ2N

denotes the permutation γ2N = (1 2 . . . 2N). A unicellular map M with N
edges is formed of a fix point free involution α and a permutation β of Σ2N

such that αβ = γ2N .

As such, unicellular maps with N edges appear to be a special kind of uni-
cellular bicolored maps with 2N edges (with the extra requirement that α be
a fix-point free involution). For our purpose it will be more useful to observe
that, as their name suggests, unicellular bicolored maps with N edges are in
turn a special kind of unicellular maps with N edges. This is easy to under-
stand if we represent unicellular maps as (half-edge-)labeled ribbon graphs as
follows:

• The elements of [2N ] index the half-edges of M .
• The involution α indicates opposite half-edges: two half-edges i and j in

[2N ] form an edge if α(i) = j.
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ᾱ = (1 10)(2 7)(3 4)(5 6)(8 9)(11 12)

β̄ = (1 7 9)(2 4 6)(3)(5)(8)(10 11)(12)

1

2

3

4

5

6

α = (1 6)(2 3 4)(5)

β = (1 4 5)(2)(3)(6)

Fig. 8. A unicellular bicolored map and the associated unicellular map.

• The cycles of β = αγ2N describe the cyclic organization of half-edges around
each vertex: if B = (b1, . . . , bk) is a cycle of β then for all i = 1, . . . , k, we
let v(bi) represent the vertex to which bi is incident.

Again the condition that αβ = γN implies that a walking ant starting on the
right hand side of the half-edge with label 1 will visit all right hand sides of
half-edges in increasing order.

Then, given a unicellular bicolored map represented as a ribbon graph, it can
be viewed as a unicellular map by simply forgetting the vertex colors and re-
labelling the half-edge in increasing order along a visit of the ant. Formally,
given a unicellular bicolored map (α, β) with αβ = γN , the associated unicel-
lular map (ᾱ, β̄) is given by the relations ᾱ(2i−1) = 2β−1(i), ᾱ(2i) = 2β(i)−1
and β̄ = ᾱγ2N . This correspondence is illustrated by Figure 8.

A directed graph G is formed of a set of vertices V and a set of arcs A with two
mappings, namely or : A → V giving the origin of each arc, and ex : A → V
giving its extremity. Two arcs a1 and a2 are opposite if ex(a1) = or(a2) and
or(a1) = ex(a2). A pairing of opposite arcs is a fix-point free involution φ on
the set of arcs such that or(a) = ex(φ(a)) for all a. A tour in G is a sequence
(a1, . . . , ak) of arcs such that ex(ai) = or(ai+1) for all i and ex(ak) = or(a1).
Equivalently a tour τ = (a1, . . . , ak) can be given by its origin or(a1) = ex(ak),
and a successor function, τ(ai) = ai+1. An Eulerian tour on G is a tour that
visits exactly once each arc of G.

There is a very close relation between unicellular partitioned maps and Eule-
rian tour, as illustrated by Figure 9 and the following lemma.

Lemma 6.1 There is a bijection between

• unicellular maps with N edges and with vertices partitioned into k blocks,
• and triples (G, τ, φ) where G is a directed graph with 2N arcs and k vertices,
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α = (1 10)(2 7)(3 4)(5 6)(8 9)(11 12)

β = (1 7 9)(2 4 6)(3)(5)(8)(10 11)(12)
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φ = (1 10)(2 7)(3 4)(5 6)(8 9)(11 12)

Fig. 9. A unicellular map and the corresponding triple (G, τ, φ).

τ is an Eulerian tour on G, and φ is a pairing of opposite arcs.

Moreover the image of the set of unicellular partitioned bicolored maps is the
set of triples (G, τ, φ) such that G is a bicolored graph.

Proof. Let M be a partitioned map, described by a pair (α, π), with α a fix-
point free involution on [2N ], β = αγ2N , and π = (π(1), . . . , π(k)) a partition
of the vertices of M . The image of M under the bijection is the triple (G, τ, φ)
obtained as follows:

• The graph G has one vertex π̂(i) for each block π(i) of vertices of M .
• The graph G has an arc â with or(â) = π̂(i) and ex(â) = π̂(j) for each half-

edge a of M with v(a) ∈ π(j) and v(α(a)) ∈ π(i) (observe that arcs and
half-edges point in opposite directions).

• The pairing φ associates â and b̂ if b = α(a).
• The tour is τ = (1̂, 2̂, . . . , ˆ2N). In other terms, the tour corresponds to the

ant walk around M . In particular b̂ = τ(â) if b = γ2N(a).

Conversely consider a triple (G, τ, φ) where G is a graph with 2N arcs and
k vertices, τ = (a1, . . . , a2N) is an Eulerian tour on G and φ is a pairing of
opposite arcs of G. A partitioned map M = (α, π) is constructed as follows:

• The half-edge set is {1, . . . , 2N} with each half-arc i corresponding to the
arc ai of the tour.

• The fix-point free involution α corresponds to the pairing φ: α(i) = j if
φ(ai) = aj.

• The vertices of M are described by cycles of β = αγ2N .
• For all i, the two half-edges i and j = β(i) correspond to arcs ai and aj that

have the same extremity in G. Indeed j = αγ2N(i) = α(i+ 1), so that ai+1

and aj are opposite, and ex(ai) = or(ai+1) = ex(aj).
• The partition π has a part πv for each vertex v of G: πv contains all the

vertices of M that are described by cycles of half-edges corresponding to
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Fig. 10. The unicolor construction.

arcs ending in v.

These two constructions are clearly inverse one of the other and they transport
bipartition. 2

Lemma 6.1 allows us to give a graphical description of Goulden and Nica’s
bijection and of ours in terms of Eulerian tours. This description recycles an
ingredient of the BEST theorem, namely the last passage tree associated to
an Eulerian tour τ = (a1, . . . , a2N) on a directed graph G. This is a tree
constructed as follows:

• The vertices of the last passage tree are the vertices of G, and its root is
the origin of a1.

• To each non root vertex v is associated a last passage arc `(v) of G: this
arc is the last arc with origin v in the tour τ . Then the father of the vertex
v in the last passage tree is defined to be the vertex ex(`(v)) at which the
arc `(v) is pointing.

More precisely, to a triple (G, τ, φ) we shall associate a last passage ordered
tree t, which is an ordered version of the last passage tree in which the siblings
of a vertex v are ordered according to the order in which the opposites under
φ of last visiting arcs are encountered on the tour τ :

• Given two siblings u and u′ of v, u < u′ if φ(`(u)) appears before φ(`(u′))
in the tour τ .

Observe that if G is bicolored then so is the tree t.

The last passage ordered tree is the ordered tree constructed by both Goulden
and Nica’s and our bijections. The rest of the two constructions slightly differ.

Proposition 6.2 Triples (G, τ, φ) as in Lemma 6.1 are in bijection with pairs
(t, ψ) where t is an ordered tree with k vertices and ψ is a involution on
{1, . . . , 2N} with 2k fix points.

Proof. The tree t is the last passage ordered tree associated with τ . Let us
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Fig. 11. The bicolored construction.

order the vertices of G by left-to-right breadth first search in t. Then define
a canonical numbering of arcs of G as the order in t on their origin refined
by their order of appearance in the tour τ . The involution ψ associates the
canonical label i of an arc a and the canonical label j of an arc b if a and b
are opposite arcs of G (that is, b = φ(a)) and neither a nor b is a last passage
arc.

This construction, illustrated by Figure 10, is exactly the bijection defined by
Goulden and Nica in [4]. 2

The analogous result for bicolored maps reads as follows.

Proposition 6.3 Triples (G, τ, φ) as in Lemma 6.1 with G bicolored with p
white and q black blocks are in bijection with pairs (t, ψ) where t is an ordered
bicolored tree with p white and q black vertices and ξ is a partial permutation
in PP (N,N − 1, N + 1− (p+ q)).

Proof. The construction is similar to the previous one: the tree is the last
passage ordered tree associated with τ , and its black and white vertices are
ordered separately by left-to-right reverse breadth first search. Then arcs with
a black origin are canonically numbered using the order on black vertices
refined by their order of appearance in the tour, while arcs with a white origin
are canonically numbered using the order on white vertices, again refined by
their order of appearance in the tour. Finally the partial permutation ξ maps
the canonical label i of an arc a with white origin onto the label j of an arc b
with black origin if b = φ(a), and neither a nor b is a last passage arc.

This construction, illustrated by Figure 11, is exactly the bijection of the
previous pages. (In particular one can check that the ordering of siblings of
vertices in t is consistent between the two descriptions.) 2

In this reformulation it appears that the two constructions satisfy the fol-
lowing relation. To any unicellular bicolored partitioned map with N edges is
associated an ordered tree τ , a partial involution ψ (upon forgetting the colors
and applying Goulden and Nica’s construction), and a partial permutation ξ
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(applying our construction): then ψ maps even elements of {1, . . . , 2N} onto
odd ones, and, for all i ∈ {1, . . . , N} such that the arc 2i− 1 and its opposite
are not last passage arcs, 2ξ(i) = ψ(2i− 1).

It should be observed also that the use of breadth first search is irrelevant
for the construction: any canonical order on the vertices of t such that each
vertex is visited after its siblings would do the job. On the contrary, the order
between siblings (with respect to the order of the opposite to the last passage
arcs in the tour) is crucial to recover properly the missing elements.
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