
Dissetions, orientations, and trees,with appliations to optimal mesh enodingand to random samplingÉRIC FUSY and GILLES SCHAEFFERLIX, Éole polytehnique, FraneandDOMINIQUE POULALHONLIAFA, Université Paris 7, FraneWe present a bijetion between some quadrangular dissetions of an hexagon and unrooted binarytrees, with interesting onsequenes for enumeration, mesh ompression and graph sampling.Our bijetion yields an e�ient uniform random sampler for 3-onneted planar graphs, whihturns out to be determinant for the quadrati omplexity of the urrent best known uniformrandom sampler for labelled planar graphs [Fusy, Analysis of Algorithms 2005℄.It also provides an enoding for the set P(n) of n-edge 3-onneted planar graphs that mathesthe entropy bound 1n log2 jP(n)j = 2+ o(1) bits per edge (bpe). This solves a theoretial problemreently raised in mesh ompression, as these graphs abstrat the ombinatorial part of meshes withspherial topology. We also ahieve the optimal parametri rate 1n log2 jP(n; i; j)j bpe for graphsof P(n) with i verties and j faes, mathing in partiular the optimal rate for triangulations.Our enoding relies on a linear time algorithm to ompute an orientation assoiated to theminimal Shnyder wood of a 3-onneted planar map. This algorithm is of independent interest,and it is for instane a key ingredient in a reent straight line drawing algorithm for 3-onnetedplanar graphs [Bonihon et al., Graph Drawing 2005℄.Categories and Subjet Desriptors: G.2.1 [Disrete Mathematis℄: Combinatorial algorithmsGeneral Terms: AlgorithmsAdditional Key Words and Phrases: Bijetion, Counting, Coding, Random generation1. INTRODUCTIONOne origin of this work an be traed bak to an artile of Ed Bender in the Amer-ian Mathematial Monthly [Bender 1987℄, where he asked for a simple explanationof the remarkable asymptoti formulajP(n; i; j)j � 13524ijn�2i� 2j + 2��2j � 2i+ 2 � (1)for the ardinality of the set of 3-onneted (unlabelled) planar graphs with i ver-ties, j faes and n = i+ j � 2 edges, n going to in�nity. By a theorem of Whitney[1933℄, these graphs have essentially a unique embedding on the sphere up to home-omorphisms, so that their study amounts to that of rooted 3-onneted maps, wherea map is a graph embedded in the plane and rooted means with a marked orientededge. ACM Journal Name, Vol. V, No. N, Month 20YY, Pages 1�0??.



2 � Éri Fusy et al.1.1 Graphs, dissetions and treesAnother known property of 3-onneted planar graphs with n edges is the fat thatthey are in diret one-to-one orrespondene with dissetions of the sphere into nquadrangles that have no non-faial 4-yle. The heart of our paper lies in a furtherone-to-one orrespondene.Theorem 1.1. There is a one-to-one orrespondene between unrooted binarytrees with n nodes and unrooted quadrangular dissetions of an hexagon with ninterior verties and no non-faial 4-yle.The mapping from binary trees to dissetions, whih we all the losure, is easilydesribed and resembles onstrutions that were reently proposed for simpler kindsof maps [Shae�er 1997; Bouttier et al. 2002; Poulalhon and Shae�er 2006℄. Theproof that the mapping is a bijetion is instead rather sophistiated, relying onnew properties of onstrained orientations [Ossona de Mendez 1994℄, related toShnyder woods of triangulations and 3-onneted planar maps [Shnyder 1990;di Battista et al. 1999; Felsner 2001℄ .Conversely, the reonstrution of the tree from the dissetion relies on a lineartime algorithm to ompute the minimal Shnyder woods of a 3-onneted map(or equivalently, the minimal �0-orientation of the assoiated derived map, seeSetion 9). This problem is of independant interest and our algorithm has forexample appliations in the graph drawing ontext [Bonihon et al. 2007℄. It isakin to Kant's anonial ordering [Kant 1996; Chuang et al. 1998; Bonihon etal. 2003; Castelli-Aleardi and Devillers 2004℄, but again the proof of orretness isquite involved.Theorem 1.1 leads diretly to the impliit representation of the numbers jP 0nj�ounting rooted 3-onneted maps with n edges� due to Tutte [1963℄), and itsre�nement as disussed in Setion 5 yields that of jP 0ij j the number of rooted 3-onneted maps with i verties and j faes (due to Mullin and Shellenberg [1968℄)from whih Formula (1) follows. It partially explains the ombinatoris of the o-urrene of the ross produt of binomials, sine these are typial of binary treeenumerations. Let us mention that the one-to-one orrespondene speializes par-tiularly niely to ount plane triangulations (i.e., 3-onneted maps with all faesof degree 3), leading to the �rst bijetive derivation of the ounting formula for un-rooted plane triangulations with i verties, originally found by Brown [1964℄ usingalgebrai methods.1.2 Random samplingA seond byprodut of Theorem 1.1 is an e�ient uniform random sampler forrooted 3-onneted maps, i.e., an algorithm that, given n, outputs a random elementin the set P 0n of rooted 3-onneted maps with n edges with equal hanes for allelements. The same priniples yield a uniform sampler for P 0ij .The uniform random generation of lasses of maps like triangulations or 3-onneted graphs was �rst onsidered in mathematial physis (see referenes in[Ambjørn et al. 1994; Poulalhon and Shae�er 2006℄), and various types of ran-dom planar graphs are ommonly used for testing graph drawing algorithms (see[de Fraysseix et al.℄).ACM Journal Name, Vol. V, No. N, Month 20YY.



Dissetions and trees � 3The best previously known algorithm [Shae�er 1999℄ had expeted omplexityO(n5=3) for P 0n, and was muh less e�ient for P 0ij , having even exponential om-plexity for i=j or j=i tending to 2 (due to Euler's formula these ratio are boundedabove by 2 for 3-onneted maps). In Setion 6, we show that our generator for P 0nor P 0ij performs in linear time exept if i=j or j=i tends to 2 where it beomes atmost ubi.From the theoretial point of view, it is also desirable to work with the uniformdistribution on planar graphs. However, random (labelled) planar graphs appear tobe hallenging mathematial objets [Osthus et al. 2003; MDiarmid et al. 2005℄.A Markov hain onverging to the uniform distribution on planar graphs with iverties was given by Denise et al. [1996℄, but it resists known approahes for per-fet sampling [Wilson 2004℄, and has unknown mixing time. As opposed to this, areursive sheme to sample planar graphs was proposed by Bodirsky et al. [2003℄,with amortized omplexity O(n6:5). This result is based on a reursive deompo-sition of planar graphs: a planar graph an be deomposed into a tree-struturewhose nodes are oupied by rooted 3-onneted maps. Generating a planar graphredues to omputing branhing probabilities so as to generate the deompositiontree with suitable probability; then a random rooted 3-onneted map is generatedfor eah node of the deomposition tree. Bodirsky et al. [2003℄ use the so-alledreursive method [Nijenhuis and Wilf 1978; Flajolet et al. 1994; Wilson 1997℄ totake advantage of the reursive deomposition of planar graphs. Our new randomgenerator for rooted 3-onneted maps redues their amortized ost to O(n3). Fi-nally a new uniform random generator for planar graphs was reently developpedby one of the authors [Fusy 2005℄, that avoids the expensive preproessing ompu-tations of [Bodirsky et al. 2003℄. The reursive sheme is similar to the one usedin [Bodirsky et al. 2003℄, but the method to translate it to a random generatorrelies on Boltzmann samplers, a new general framework for the random generationreently developed in [Duhon et al. 2004℄. Thanks to our random generator forrooted 3-onneted maps, the algorithm of [Fusy 2005℄ has a time-omplexity ofO(n2) for exat size uniform sampling and even performs in linear time for approx-imate size uniform sampling.1.3 Suint enodingA third byprodut of Theorem 1.1 is the possibility to enode in linear time a 3-onneted planar graph with n edges by a binary tree with n nodes. In turn thetree an be enoded by a balaned parenthesis word of 2n bits. This ode is optimalin the information theoreti sense: the entropy per edge of this lass of graphs, i.e.,the quantity 1n log2 jP(n)j, tends to 2 when n goes to in�nity, so that a ode forP(n) annot give a better guarantee on the ompression rate.Appliations alling for ompat storage and fast transmission of 3D geometrialmeshes have reently motivated a huge literature on ompression, in partiular forthe ombinatorial part of the meshes. The �rst ompression algorithms dealt onlywith triangular faes [Rossigna 1999; Touma and Gotsman 1998℄, but many meshesinlude larger faes, so that polygonal meshes have beome prominent (see [Alliezand Gotsman 2003℄ for a reent survey).The question of optimality of oders was raised in relation with exeption odesprodued by several heuristis when dealing with meshes with spherial topologyACM Journal Name, Vol. V, No. N, Month 20YY.



4 � Éri Fusy et al.[Gotsman 2003; Khodakovsky et al. 2002℄. Sine these meshes are exatly triangu-lations (for triangular meshes) and 3-onneted planar graphs (for polyhedral ones),the oders in [Poulalhon and Shae�er 2006℄ and in the present paper respetivelyprove that traversal based algorithms an ahieve optimality.On the other hand, in the ontext of suint data strutures, almost optimalalgorithms have been proposed [He et al. 2000; Lu 2002℄, that are based on separatortheorems. However these algorithms are not truly optimal (they get " lose to theentropy but at the ost of an unontrolled inrease of the onstants in the linearomplexity). Moreover, although they rely on a sophistiated reursive struture,they do not support e�ient adjaeny requests.As opposed to that, our algorithm shares with [He et al. 1999; Bonihon et al.2003℄ the property that it produes essentially the ode of a spanning tree. Morepreisely it is just the balaned parenthesis ode of a binary tree, and adjaenies ofthe initial dissetion that are not present in the tree an be reovered from the odeby a simple variation on the interpretation of the symbols. Adjaeny queries anthus be dealt with in time proportional to the degree of verties [Castelli-Aleardiet al. 2006℄ using the approah of [Munro and Raman 1997; He et al. 1999℄.Finally we show that the ode an be modi�ed to be optimal on the lassP(n; i; j).Sine the entropy of this lass is stritly smaller than that of P(n) as soon asji� n=2j � n1=2, the resulting parametri oder is more e�ient in this range. Inpartiular in the ase j = 2i� 4 our new algorithm speializes to an optimal oderfor triangulations.1.4 Outline of the paperThe paper starts with two setions of preliminaries: de�nitions of the maps and treesinvolved (Setion 2), and some basi orrespondenes between them (Setion 3).Then omes our main result (Setion 4), the mapping between binary trees andsome dissetions of the hexagon by quadrangular faes. The fat that this mappingis a bijetion follows from the existene and uniqueness of a ertain tri-orientation ofour dissetions. The proof of this auxiliary theorem, whih requires the introdutionof the so-alled derived maps and their �0-orientations, is delayed to Setion 8, thatis, after the three setions dediated to appliations of our main result: in thesesetions we suessively disuss ounting (Setion 5), sampling (Setion 6) andoding (Setion 7) rooted 3-onneted maps. The third appliation leads us toour seond important result: in Setion 9 we present a linear time algorithm toompute the minimal �0-orientation of the derived map of a 3-onneted planarmap (whih also orresponds to the minimal Shnyder woods alluded to above).Finally, Setion 10 is dediated to the orretness proof of this orientation algorithm.Figure 1 summarizes the onnetions between the di�erent families of objets weonsider.2. DEFINITIONS2.1 Planar mapsA planar map is a proper embedding of an unlabelled onneted graph in the plane,where proper means that edges are smooth simple ars that do not meet but attheir endpoints. A planar map is said to be rooted if one edge of the outer fae,ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 1. Relations between involved objets.alled the root-edge, is marked and oriented suh that the outer fae lays on itsright. The origin of the root-edge is alled root-vertex. Verties and edges are saidto be outer or inner depending on whether they are inident to the outer fae ornot.A planar map is 3-onneted if it has at least 4 edges and an not be disonnetedby the removal of two verties. The �rst 3-onneted planar map is the tetrahedron,whih has 6 edges. We denote by P 0n (respetively P 0ij) the set of rooted 3-onnetedplanar maps with n edges (resp. i verties and j faes). A 3-onneted planar mapis outer-triangular if its outer fae is triangular.2.2 Plane trees, and half-edgesPlane trees are planar maps with a single fae �the outer one. A vertex is alleda leaf if it has degree 1, and node otherwise. Edges inident to a leaf are alledstems, and the other are alled entire edges. Observe that plane trees are unrootedtrees.Binary trees are plane trees whose nodes have degree 3. By onvention we shallrequire that a rooted binary tree has a root-edge that is a stem. The root-edge ofa rooted binary tree thus onnets a node, alled the root-node, to a leaf, alledthe root-leaf. With this de�nition of rooted binary tree, upon drawing the tree in atop down manner starting with the root-leaf, every node (inluding the root-node)has a father, a left son and a right son. This (very minor) variation on the usualde�nition of rooted binary trees will be onvenient later on. For n � 1, we denoterespetively by Bn and B0n the sets of binary and rooted binary trees with n nodes(they have n+ 2 leaves, as proved by indution on n). These rooted trees are wellknown to be ounted by the Catalan numbers: jB0nj = 1n+1�2nn �.The verties of a binary tree an be greedily biolored �say in blak or white�so that adjaent verties have distint olors. The bioloration is unique up to thehoie of the olor of the �rst node. As a onsequene, rooted biolored binarytrees are either blak-rooted or white-rooted, depending on the olor of the rootACM Journal Name, Vol. V, No. N, Month 20YY.



6 � Éri Fusy et al.node. The sets of blak-rooted (resp. white-rooted) binary trees with i blak nodesand j white nodes is denoted by B�ij (resp. by BÆij); and the total set of rootedbiolored binary trees with i blak nodes and j white nodes is denoted by B0ij .It will be onvenient to view eah entire edge of a tree as a pair of opposite half-edges �eah one inident to one extremity of the edge� and to view eah stem asa single half-edge �inident to the node holding the stem. More generally we shallonsider maps that have entire edges (made of two half-edges) and stems (made ofonly one half-edge). It is then also natural to assoiate one fae to eah half-edge,say, the fae on its right. In the ase of trees, there is only the outer fae, so thatall half-edges get the same assoiated fae.2.3 Quadrangulations and dissetionsA quadrangulation is a planar map whose faes (inluding the outer one) havedegree 4. A dissetion of the hexagon by quadrangular faes is a planar map whoseouter fae has degree 6 and inner faes have degree 4.Cyles that do not delimit a fae are said to be separating. A quadrangulation ora dissetion of the hexagon by quadrangular faes is said to be irreduible if it has atleast 4 faes and has no separating 4-yle. The �rst irreduible quadrangulationis the ube, whih has 6 faes. We denote by Q0n the set of rooted irreduiblequadrangulations with n faes, inluding the outer one. Euler's relation ensuresthat these quadrangulations have n+ 2 verties. We denote by Dn (D0n) the set of(rooted, respetively) irreduible dissetions of the hexagon with n inner verties.These have n + 2 quadrangular faes, aording to Euler's relation. From nowon, irreduible dissetions of the hexagon by quadrangular faes will simply bealled irreduible dissetions. The lasses of rooted irreduible quadrangulationsand of rooted irreduible dissetions are respetively denoted by Q0 = [nQ0n andD0 = [nD0n.As faes of dissetions and quadrangulations have even degree, the verties ofthese maps an be greedily biolored, say, in blak and white, so that eah edgeonnets a blak vertex to a white one. Suh a bioloration is unique up to thehoie of the olors. We denote by Q0ij the set of rooted biolored irreduiblequadrangulations with i blak verties and j white verties and suh that the root-vertex is blak; and by D0ij the set of rooted biolored irreduible dissetions withi blak inner verties and j white inner verties and suh that the root-vertex isblak.A biolored irreduible dissetion is omplete if the three outer white verties ofthe hexagon have degree exatly 2. Hene, these three verties are inident to twoadjaent edges on the hexagon.3. CORRESPONDENCES BETWEEN FAMILIES OF PLANAR MAPSThis setion realls a folklore bijetion between irreduible quadrangulations and3-onneted maps, hereafter alled angular mapping, see [Mullin and Shellenberg1968℄, and its adaptation to outer-triangular 3-onneted maps.3.1 3-onneted maps and irreduible quadrangulationsLet us �rst reall how the angular mapping works. Given a rooted quadrangulationQ 2 Q0n endowed with its vertex bioloration, let M be the rooted map obtainedACM Journal Name, Vol. V, No. N, Month 20YY.



Dissetions and trees � 7
(a) A quadrangulation (b) with its blak diagonals () gives a planar map.Fig. 2. The angular mapping: from a rooted irreduible quadrangulation to a rooted 3-onnetedplanar map.by linking, for eah fae f of Q (even the outer fae), the two diagonally opposedblak verties of f ; the root of M is hosen to be the edge orresponding to theouter fae of Q, oriented so thatM and Q have same root-vertex, see Figure 2. Themap M is often alled the primal map of Q. A similar onstrution using whiteverties instead of blak ones would give its dual map (i.e., the map with a vertexin eah fae of M and edge-set orresponding to the adjaenies between vertiesand faes of M).The onstrution of the primal map is easily invertible. Given any rooted mapM , the inverse onstrution onsists in adding a vertex alled a fae-vertex in eahfae (even the outer one) of M and linking a vertex v and a fae-vertex vf by anedge if v is inident to the fae f orresponding to vf . Keeping only these fae-vertex inidene edges yields a quadrangulation. The root is hosen as the edgethat follows the root of M in ounter-lokwise order around its origin.The following theorem is a lassial result in the theory of maps.Theorem 3.1 (Angular mapping). The angular mapping is a bijetion be-tween P 0n and Q0n and more preisely a bijetion between P 0ij and Q0ij .3.2 Outer-triangular 3-onneted maps and biolored omplete irreduible dissetionsThe same priniple yields a bijetion, also alled angular mapping, between outer-triangular 3-onneted maps and biolored omplete irreduible dissetions, whihwill prove very useful in Setions 7 and 8. This mapping is very similar to theangular mapping: given a omplete dissetion D, assoiate to D the map M ob-tained by linking the two blak verties of eah inner fae of D by a new edge, seeFigure 3. The map M is alled the primal map of D.Theorem 3.2 (Angular mapping with border). The angular mapping, for-mulated for omplete dissetions, is a bijetion between biolored omplete irre-duible dissetions with i blak verties and j white verties and outer-triangular3-onneted maps with i verties and j � 3 inner faes.Proof. The proof follows similar lines as that of Theorem 3.1, see [Mullin andShellenberg 1968℄. ACM Journal Name, Vol. V, No. N, Month 20YY.



8 � Éri Fusy et al.
(a) A dissetion, (b) blak diagonals, () the 3-onneted map, (d) the derived map.Fig. 3. The angular mapping with border: from a biolored omplete irreduible dissetion (a) toan outer-triangular 3-onneted map (). The ommon derived map is shown in (d).

3.3 Derived mapsIn its version for omplete dissetions, the angular mapping an also be formulatedusing the onept of derived map, whih will be very useful throughout this artile(in partiular when dealing with orientations).Let M be an outer-triangular 3-onneted map, and let M� be the map obtainedfrom the dual of M by removing the dual vertex orresponding to the outer fae ofM . Then the derived map M 0 of M is the superimposition of M and M�, whereeah outer vertex reeives an additional half-edge direted toward the outer fae.For example, Figure 3(d) shows the derived map of the map given in Figure 3().The mapM is alled the primal map of M 0 and the map M� is alled the dual mapof M 0. Observe that the superimposition of M and M� reates a vertex of degree 4for eah edge e of M , due to the intersetion of e with its dual edge. These vertiesof M 0 are alled edge-verties. An edge of M 0 either orresponds to an half-edge ofM when it onnets an edge-vertex and a primal vertex, or to an half-edge of M�when it onnets an edge-vertex and a dual vertex.Similarly, one de�nes derived maps of omplete irreduible dissetions. Given abiolored omplete irreduible dissetionD, the derived mapM 0 of D is onstrutedas follows; for eah inner fae f of D, link the two blak verties inident to f bya primal edge, and the two white ones by a dual edge. These two edges, whihare the two diagonals of f , interset at a new vertex alled an edge-vertex. Thederived map is then obtained by keeping the primal and dual edges and all vertiesexept the three outer white ones and their inident edges. Finally, for the sakeof regularity, eah of the six outer verties of M 0 reeives an additional half-edgedireted toward the outer fae. For example, the derived map of the dissetion ofFigure 3(a) is shown in Figure 3(d). Blak verties are alled primal verties andwhite verties are alled dual verties of the derived mapM 0. The submapM (M�)of M 0 onsisting of the primal verties and primal edges (resp. the dual vertiesand dual edges) is alled the primal map (resp. the dual map) of the derived map.Clearly, M has a triangular outer fae; and, by onstrution, a biolored ompleteirreduible dissetion and its primal map have the same derived map.ACM Journal Name, Vol. V, No. N, Month 20YY.



Dissetions and trees � 9
(a) A binary tree, (b) a loal losure, () and the partial losure.Fig. 4. The partial losure.4. BIJECTION BETWEEN BINARY TREES AND IRREDUCIBLE DISSECTIONS4.1 Closure mapping: from trees to dissetionsLoal and partial losure. Given a map with entire edges and stems (for instanea tree), we de�ne a loal losure operation, whih is based on a ounter-lokwisewalk around the map: this walk alongside the boundary of the outer map visitsa suession of stems and entire edges, or more preisely, a sequene of half-edgeshaving the outer fae on their right-hand side. When a stem is immediately followedin this walk by three entire edges, its loal losure onsists in the reation of anopposite half-edge for this stem, whih is attahed to farthest endpoint of the thirdentire edge: this amounts to ompleting the stem into an entire edge, so as to reate�or lose� a quadrangular fae. This operation is illustrated in Figure 4(b).Given a binary tree T , the loal losure an be performed greedily until no moreloal losure is possible. Eah loal losure reates a new entire edge, maybe makinga new loal losure possible. It is easy to see that the �nal map, alled the partiallosure of T , does not depend on the order of the loal losures. Indeed, a yliparenthesis word is assoiated to the ounter-lokwise boundary of the tree, withan opening parenthesis of weight 3 for a stem and a losing parenthesis for a side ofentire edge; then the future loal losures orrespond to mathings of the parenthesisword. An example of partial losure is shown in Figure 4().Complete losure. Let us now omplete the partial losure operation to obtain adissetion of the hexagon with quadrangular faes. An outer entire half-edge is anhalf-edge belonging to an entire edge and inident to the outer fae. Observe thata binary tree T with n nodes has n + 2 stems and 2n� 2 outer entire half-edges.Eah loal losure dereases by 1 the number of stems and by 2 the number ofouter entire half-edges. Hene, if k denotes the number of (unmathed) stems inthe partial losure of T , there are 2k � 6 outer entire half-edges. Moreover, stemsdelimit intervals of inner half-edges on the ontour of the outer fae; these intervalshave length at most 2, otherwise a loal losure would be possible. Let r be thenumber of suh intervals of length 1 and s be the number of suh intervals of length 0(that is, the number of nodes inident to two unmathed stems). Then r and s arelearly related by the relation r + 2s = 6.The omplete losure onsists in ompleting all unmathed stems with half-edgesinident to verties of the hexagon in the unique way (up to rotation of the hexagon)that reates only quadrangular bounded faes. Figure 5(a) illustrates the ompletelosure for the ase (r = 2; s = 2), and a partiular example is given in Figure 5(b).ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) Generi ase when r = 2 and s = 2. (b) Case of the binary tree of Figure 4(a).Fig. 5. The omplete losure.Lemma 4.1. The losure of a binary tree is an irreduible dissetion of thehexagon.Proof. Assume that there exists a separating 4-yle C in the losure of T . Letm � 1 be the number of verties in the interior of C. Then there are 2m edges inthe interior of C aording to Euler's relation. Let v be a vertex of T that belongs tothe interior of C after the losure. Consider the orientation of edges of T away fromv (only for the sake of this proof). Then nodes of T have outdegree 2, exept v,whih has outdegree 3. This orientation naturally indues an orientation of edges ofthe losure-dissetion with the same property (exept that verties of the hexagonhave outdegree 0). Hene there are at least 2m + 1 edges in the interior of C, aontradition.4.2 Tri-orientations and openingTri-orientations. In order to de�ne the mapping inverse to the losure, we need abetter desription of the struture indued on the losure map by the original tree.Let us onsider orientations of the half-edges of a map (in ontrast to the usualnotion of orientation, where edges are oriented). An half-edge is said to be inwardif it is oriented toward its origin and outward if it is oriented out of its origin. Ifa map is endowed with an orientation of its half-edges, the outdegree of a vertexv is naturally de�ned as the number of its inident half-edges oriented outward.The (unique) tri-orientation of a binary tree is de�ned as the orientation of itshalf-edges suh that any node has outdegree 3, see Figure 6(a) for an example. Atri-orientation of a dissetion is an orientation of its inner half-edges (i.e., half-edges belonging to inner edges) suh that outer and inner verties have respetivelyoutdegree 0 and 3, and suh that two half-edges of a same inner edge an not bothbe oriented inward, see Figure 6(b). An edge is said to be simply oriented if its twohalf-edges have same diretion (that is, one is oriented inward and the other oneoutward), and bi-oriented if they are both oriented outward.Let D be an irreduible dissetion endowed with a tri-orientation. A lokwiseiruit of D is a simple yle C onsisting of edges that are either bi-oriented orsimply oriented with the interior of C on their right.ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) A tri-oriented binary tree, (b) and its tri-oriented losure.Fig. 6. Examples of tri-orientations.Lemma 4.2. Let D be an irreduible dissetion with n inner verties. Then atri-orientation of D has n� 1 bi-oriented edges and n+ 2 simply oriented edges.If a tri-orientation of a dissetion has no lokwise iruit, then its bi-orientededges form a tree spanning the inner verties of the dissetion.Proof. Let s and r denote the numbers of simply and bi-oriented edges of D.Aording to Euler's relation (using the degrees of the faes), D has 2n+ 1 inneredges, i.e., 2n + 1 = r + s. Moreover, as all inner verties have outdegree 3,3n = 2r + s. Hene r = n� 1 and s = n+ 2.If the tri-orientation has no lokwise iruit, the subgraph H indued by the bi-oriented edges has r = n�1 edges, no yle (otherwise the yle ould be traversedlokwise, as all its edges are bi-oriented), and is inident to at most n verties,whih are the inner verties of D. Aording to a lassial result of graph theory,H is a tree spanning the n inner verties of D.Closure-tri-orientation of a dissetion. Let D be a dissetion obtained as the losureof a binary tree T . The tri-orientation of T learly indues via the losure a tri-orientation of D, alled losure-tri-orientation. On this tri-orientation, bi-orientededges orrespond to inner edges of the original binary tree, see Figure 6(b).Lemma 4.3. A losure-tri-orientation has no lokwise iruit.Proof. Sine verties of the hexagon have outdegree 0, they an not belong toany iruit. Hene lokwise iruits may only be reated during a loal losure.However losure edges are simply oriented with the outer fae on their right, henemay only reate ounterlokwise iruits.This property is indeed quite strong: the following theorem ensures that theproperty of having no lokwise iruit haraterizes the losure-tri-orientation andthat a tri-orientation without lokwise iruit exists for any irreduible dissetion.The proof of this theorem is delayed to Setion 8.Theorem 4.4. Any irreduible dissetion has a unique tri-orientation withoutlokwise iruit. ACM Journal Name, Vol. V, No. N, Month 20YY.



12 � Éri Fusy et al.Reovering the tree: the opening mapping. Lemma 4.2 and the present setion giveall neessary elements to desribe the inverse mapping of the losure, whih isalled the opening : let D be an irreduible dissetion endowed with its (unique byTheorem 4.4) tri-orientation without lokwise iruit. The opening of D is thebinary tree obtained from D by deleting outer verties, outer edges, and all inwardhalf-edges.4.3 The losure is a bijetionIn this setion, we show that the opening is inverse to the losure. By onstrutionof the opening, the following lemma is straightforward:Lemma 4.5. Let D be an irreduible dissetion obtained as the losure of a binarytree T . Then the opening of D is T .Conversely, the following also holds:Lemma 4.6. Let T be a binary tree obtained as the opening of an irreduibledissetion D. Then the losure of T is D.Proof. The proof relies on the de�nition of an order for removing inward half-edges. Start with the half-edges inident to outer verties (that are all orientedinward): this learly inverses the ompletion step of the losure. Eah furtherremoval must orrespond to a loal losure, that is, the removed half-edge musthave the outer fae on its right.Let Mk be the submap of the dissetion indued by remaining half-edges afterk removals. Then Mk overs the n inner verties, and, as long as some inwardhalf-edge remains, it has at least n entire edges (see Lemma 4.2). Hene, there isat least one yle, and a simple one C an be extrated from the boundary of theouter fae ofMk. Sine there is no lokwise iruit, at least one edge of C is simplyoriented with the interior of C on its left; the orresponding inward half-edge anbe seleted for the next removal.Assuming Theorem 4.4, the bijetive result follows from Lemmas 4.5 and 4.6:Theorem 4.7. For eah n � 1, the losure mapping is a bijetion between theset Bn of binary trees with n nodes and the set Dn of irreduible dissetions with ninner verties.For eah integer pair (i; j) with i + j � 1, the losure mapping is a bijetionbetween the set Bij of biolored binary trees with i blak nodes and j white nodes,and the set Dij of biolored irreduible dissetions with i blak inner verties and jwhite inner verties.The inverse mapping of the losure is the opening.We an state three analogous versions of Theorem 4.7 for rooted objets:Theorem 4.8. The losure mapping indues the following orrespondenes be-tween sets of rooted objets:B0n � f1; : : : ; 6g � D0n � f1; : : : ; n+ 2g;B0ij � f1; 2; 3g � D0ij � f1; : : : ; i+ j + 2g;B�ij � f1; 2; 3g � D0ij � f1; : : : ; 2i� j + 1g:ACM Journal Name, Vol. V, No. N, Month 20YY.



Dissetions and trees � 13Proof. We de�ne a bi-rooted irreduible dissetion as a rooted irreduible disse-tion endowed with its tri-orientation without lokwise iruit and where a simplyoriented edge is marked. We write D00n for the set of bi-rooted irreduible disse-tions with n inner verties. Opening and rerooting on the stem orresponding tothe marked edge de�nes a surjetion from D00n onto B0n, for whih eah element of B0nhas learly six preimages, sine the dissetion ould have been rooted at any edgeof the hexagon. Moreover, erasing the mark learly de�nes a surjetion from D00nto D0n, for whih eah element of D0n has n+2 preimages aording to Lemma 4.2.Hene, the losure de�nes a (n + 2)-to-6 mapping between B0n and D0n. The proofof the (i+ j + 2)-to-3 orrespondene between B0ij and D0ij is the same.The (2i� j+1)-to-3 orrespondene between B�ij and D0ij indued by the losurean be proved similarly, with the di�erene that the marked simply oriented edgehas to have a blak vertex as origin. Then the result follows from the fat thatan objet of D0ij endowed with its tri-orientation without lokwise iruit has(2i� j + 1) simply oriented edges whose origin is a blak vertex.Let us mention that the (i + j + 2)-to-3 orrespondene between B0ij and D0ij is akey ingredient to the planar graph generators presented in [Fusy 2005℄.The oe�ient jB0nj is well-known to be the n-th Catalan number 1n+1�2nn �, andre�nements of the standard proofs yield jB�ij j = 12j+1�2j+1i ��2ij �, as detailed belowin Setion 4.5. Theorem 4.8 thus implies the following enumerative results:Corollary 4.9. The oe�ients ounting rooted irreduible dissetions have thefollowing expressions,jD0nj = 6n+ 2 jB0nj = 6(n+ 2)(n+ 1)�2nn �; (2)jD0ij j = 32i� j + 1 jB�ij j = 3(2i+ 1)(2j + 1)�2j + 1i ��2i+ 1j �: (3)These enumerative results have already been obtained by Mullin and Shellenberg[1968℄ using algebrai methods. Our method provides a diret bijetive proof.Notie that the ardinality of D0n is 12S(n; 2) where S(n;m) = (2n)!(2m)!n!m!(n+m)! is then-th super-Catalan number of order m. (These numbers are disussed by Gessel[1992℄.) Our bijetion gives an interpretation of these numbers for m = 2.4.4 Speialization to triangulationsA nie feature of the losure mapping is that it speializes to a bijetion betweenplane triangulations and a simple subfamily of binary trees. In this way, we get the�rst bijetive proof for the formula giving the number of unrooted plane triangu-lations with n verties, found by Brown [1964℄, and reover the ounting formulafor rooted triangulations, already obtained by Tutte [1962℄ and by Poulalhon andShae�er [2006℄ using a di�erent bijetion.Theorem 4.10. The losure mapping is a bijetion between the set Tn of (un-rooted) plane triangulations with n inner verties and the set Sn of biolored binarytrees with n blak nodes and no stem (i.e., leaf) inident to a blak node.ACM Journal Name, Vol. V, No. N, Month 20YY.



14 � Éri Fusy et al.The losure mapping indues the following orrespondene between the set T 0n ofrooted triangulations with n inner verties and the set S 0n of trees in Sn rooted at astem: S 0n � f1; 2; 3g � T 0n � f1; : : : ; 3n+ 3g:Proof. Plane triangulations are exatly 3-onneted planar maps where all faeshave degree 3. Hene, the angular mapping with border (Theorem 3.2) indues abijetion between Tn and the set of omplete biolored irreduible dissetions withn inner blak verties and all inner white verties of degree 3. In a tri-orientation,the indegree of eah inner white vertex v is deg(v) � 3 and the indegree of eahouter white vertex v is deg(v) � 2, hene the dissetions onsidered here have noingoing half-edge inident to a white vertex. Hene the opening of the dissetion(by removing ingoing half-edges) is a binary tree with no stem inident to a blaknode. Conversely, starting from suh a binary tree, the half-edges reated duringthe losure mapping are opposite to a stem. As all stems are inident to whiteverties, the half-edges reated are inident to blak verties. Hene the degree ofeah white vertex does not inrease during the losure mapping, i.e., remains equalto 3 for inner white verties and equal to 2 for outer white verties. This onludesthe proof of the bijetion Sn � Tn.The bijetion S 0n � f1; 2; 3g � T 0n � f1; : : : ; 3n + 3g follows easily (see the proofof Theorem 4.8), using the fat that a tree of Sn has 3n+ 3 leaves.This bijetion, illustrated in Figure 7, makes it possible to ount plane unrootedand rooted triangulations, as the subfamily of binary trees involved is easily enu-merated.Corollary 4.11. For n � 0, the number of rooted triangulations with n innerverties is jT 0nj = 2 (4n+ 1)!(n+ 1)!(3n+ 2)! :The number of unrooted plane triangulations with n inner verties isjTnj = 23 (4n+ 1)!(n+ 1)!(3n+ 2)! if n � 2 mod 3;jTnj = 23 (4n+ 1)!(n+ 1)!(3n+ 2)! + 43 (4k + 1)!k!(3k + 2)! if n � 1 mod 3 [n = 3k + 1℄;jTnj = 23 (4n+ 1)!(n+ 1)!(3n+ 2)! + 23 (4k)!k!(3k + 1)! if n � 0 mod 3 [n = 3k℄:Proof. Let S 0 = [nS 0n be the lass of rooted binary trees with no leaf inidentto a blak node and let R0 = [nR0n be the lass of rooted binary trees wherethe root leaf is inident to a blak node and all other leaves are inident to whitenodes. Let S(x) and R(x) be the generating funtions of S 0 and R0 with respetto the number of blak nodes. Clearly the two subtrees pending from the (white)root node of a tree of S 0 are either empty or in R0. Hene S(x) = (1 + R(x))2.Similarly, a tree in R0 deomposes at the root node into two trees in S 0, so thatACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) (b)

() (d)Fig. 7. The bijetion between triangulations and biolored binary trees with no leaf inident to ablak node.R(x) = xS(x)2. Hene, R(x) = x(1 + R(x))4 is equal to the generating funtionof quaternary trees, and S(x) = (1 + R(x))2 is equal to the generating funtionof pairs of quaternary trees (the empty tree being allowed). Using a Lukaiewizenoding and the yli lemma, the number of pairs of quaternary trees with atotal of n nodes is easily shown to be 24n+2 (4n+2)!n!(3n+2)! . This expression of jS 0nj andthe (3n+ 3)-to-3 orrespondene between S 0n and T 0n yield the expression of jT 0nj.Let us now prove the formula for jTnj = jSnj. Clearly, the only possible symmetryfor a biolored binary tree is a rotation of order 3. Let Ssymn be the set of trees of Snwith a rotation symmetry and let Sasyn be the set of trees of Sn with no symmetry.Let S 0asyn and S 0symn be the sets of trees of Sasyn and Ssymn that are rooted at a leaf.It is easily shown that a tree of Sn has 3n + 3 leaves. Clearly the tree gives riseto 3n+ 3 rooted trees if it is asymmetri and gives rise to n + 1 rooted trees if itis symmetri. Hene jSasyn j = jS 0asyn j=(3n+ 3) and jSsymn j = jS 0symn j=(n+ 1). UsingACM Journal Name, Vol. V, No. N, Month 20YY.



16 � Éri Fusy et al.
Æ = 1 Æ = 1 Æ = �1 Æ = �1Æ = 3 (a) A�Æ, (b) A�, () AÆ.Fig. 8. The three alphabets for words assoiated to biolored binary trees.jSnj = jSasyn j+ jSsymn j and jS 0nj = jS 0asyn j+ jS 0symn j, we obtainjSnj = 13n+ 3 jS 0nj+ 23 jSsymn j:The entre of rotation of a tree in Ssymn is either a blak node, in whih asen = 3k + 1 for some integer k � 0, or is a white node, in whih ase n = 3k forsome integer k � 0. In the �rst ase, a tree � 2 Ssymn is obtained by attahing toa blak node 3 opies of a tree in S 0k. Hene jSsym3k+1j = jS 0kj = 2 (4k+1)!k!(3k+2)! . In theseond ase, a tree � 2 Ssymn is obtained by attahing to a white node 3 opies of atree in R0k. Hene jSsym3k j = jR0kj = (4k)!k!(3k+1)! . The result follows.4.5 Counting, oding and sampling rooted biolored binary trees4.5.1 From a biolored tree to a pair of words. There exist general methods toenode a family of trees spei�ed by several parameters. This setion makes suhmethods expliit for the family of biolored binary trees. Let T be a blak-rootedbiolored binary tree with i blak nodes and j white nodes. Doing a depth-�rsttraversal of T from left to right, we obtain a word w�Æ of length (2j + 1) on thealphabet A�Æ represented in Figure 8(a), see Figure 9 for an example, the mappingbeing denoted by 	. Classially, the sum of the weights of the letters of any stritpre�x of w�Æ is nonnegative and the sum of the weights of the letters of w�Æ is equalto -1. In addition, w�Æ is the unique word in its yli equivalene-lass that hasthese two properties.The seond step is to map w�Æ to a pair (w�; wÆ) := �(w�Æ) of words suh that:� w� is a word of length (2j+1) on the alphabet A� shown in Figure 8(b) withi blak-node-letters.� wÆ is a word of length 2i on the alphabet AÆ shown in Figure 8() with jwhite-node-letters.Figure 9 illustrates the mapping � on an example.4.5.2 Inverse mapping: from a pair of words to a tree. Conversely, let (w�; wÆ) bea pair of words suh that w� is of length (2j + 1) on A� and has i blak-node-letters, and wÆ is of length 2i on AÆ and has j white-node-letters. First, to the pair(w�; wÆ) we assoiate a word ew�Æ of length (2j + 1) on A�Æ by doing the inverse ofthe mapping � shown in the right part of Figure 9. The word ew�Æ has the propertythat the sum of the weights of its letters is equal to -1. There is a unique wordw�Æ in the yli equivalene-lass of ew�Æ suh that the sum of the weights of theletters of any strit pre�x is nonnegative. We assoiate to w�Æ the binary tree ofB�ij obtained by doing the inverse of the mapping 	 shown in Figure 9.ACM Journal Name, Vol. V, No. N, Month 20YY.



Dissetions and trees � 17
Φ

Ψ w�Æ =w� =wÆ =Fig. 9. A biolored rooted binary tree, and the orresponding words w�Æ, w�, and wÆ.This method allows us to sample uniformly objets of B�ij in linear time andensures that jB�ij j = 12j + 1�2j + 1i ��2ij �: (4)5. APPLICATION: COUNTING ROOTED 3-CONNECTED MAPS5.1 Generating funtions of rooted dissetionsEven if the ounting formulas obtained in Corollary 4.9 are simple, it proves use-ful to have an expression of the orresponding generating funtions. Indeed, thedeomposition-method we develop is suitably handled by generating funtions.Let r1(x�; xÆ) := P jB�ij jxi�xjÆ and r2(x�; xÆ) := P jBÆij jxi�xjÆ be the series ofblak-rooted and white-rooted biolored binary trees. By deomposition at theroot, r1(x�; xÆ) and r2(x�; xÆ) are the solutions of the system:� r1(x�; xÆ) = x� (1 + r2(x�; xÆ))2 ;r2(x�; xÆ) = xÆ (1 + r1(x�; xÆ))2 : (5)De�ne an edge-marked biolored binary tree as a biolored binary tree with amarked inner edge. Let �Bij be the set of edge-marked biolored binary trees withi blak nodes and j white nodes. Cutting the marked edge of suh a tree yieldsa pair made of a blak-rooted and a white-rooted binary tree. As a onsequene,the generating funtion ounting edge-marked biolored binary trees is r1 � r2, i.e.,r1 � r2 =Pij j �Bij jxi�xjÆ.Let us onsider bi-rooted objets as in the proof of Theorem 4.8; sine any objetof Bij has (2i � j + 1) white leaves (onneted to a blak node) and (2j � i + 1)blak leaves (onneted to a white node),jBÆij j = 2j � i+ 12i� j + 1 jB�ij j:Similarly, ounting in two ways the objets of B�ij having a marked edge yieldsj �Bij j = i+ j � 12i� j + 1 jB�ij j:ACM Journal Name, Vol. V, No. N, Month 20YY.



18 � Éri Fusy et al.Thus, we have jB�ij j+ jBÆij j � j �Bij j = 32i�j+1 jB�ij j = jD0ij j (using (3)), so thatXi;j jD0ij jxi�xjÆ = r1(x�; xÆ) + r2(x�; xÆ)� r1(x�; xÆ)r2(x�; xÆ): (6)Substituting x� and xÆ by x, we obtain:Xn jD0njxn = 2r(x) � r(x)2; (7)where r(x) = x (1 + r(x))2 is the generating funtion of binary trees aording tothe number of inner nodes.5.2 Generating funtion of rooted 3-onneted mapsInjetion from Q0 to D0. Let us onsider the mapping � de�ned on rooted quad-rangulations by the removal of the root-edge and rerooting on the next edge inounterlokwise order around the root-vertex; � is learly injetive, and for anyquadrangulation Q, �(Q) has only quadrangular faes but the outer one, whih ishexagonal. In addition, �(Q) an not have more separating 4-yles than Q. Henethe restrition of � to Q0 is an injetion from Q0 to D0, more preisely from Q0n toD0n�4 and from Q0ij to D0i�3;j�3.It is however not a bijetion, sine the inverse edge-adding operation �, per-formed on an irreduible dissetion, an reate a separating 4-yle on the obtainedquadrangulation. Preisely, given D a rooted irreduible dissetion �with s theroot-vertex and t the vertex of the hexagon opposite to s� a path of length 3 be-tween s and t is alled a deomposition path. The two paths of edges of the hexagononneting s to t are alled outer deomposition paths, and the other ones, if any,are alled inner deomposition paths of D.Observe that inner deomposition paths of D are in one-to-one orrespondenewith separating 4-yles of the quadrangulation �(D) (i.e., the quadrangulationobtained from D by adding a root-edge between s and t oriented out of s).A rooted irreduible dissetion without inner deomposition path is said to beundeomposable. The orresponding lass is denoted by U 0. The disussion ondeomposition paths yields the following result.Lemma 5.1. Denote by U 0n the set of rooted undeomposable dissetions with ninner verties and by U 0ij the set of rooted undeomposable dissetions with i innerblak verties and j inner white verties. Then U 0n�4 is in bijetion with P 0n andU 0i�3;j�3 is in bijetion with P 0ij .Proof. A rooted irreduible quadrangulation is mapped by � to a rooted dis-setion suh that the inverse edge-adding operation � does not reate a separating4-yle, i.e., an undeomposable dissetion. Moreover, Euler's relation ensures thatthe image of a quadrangulation with n faes has n�4 inner verties. By injetivity,� is bijetive to its image, i.e., � is a bijetion between Q0n and U 0n�4; and a bijetionbetween Q0ij and U 0i�3;j�3. The result follows, as Q0n and Q0ij are respetively inbijetion with P 0n and P 0ij via the angular mapping (Theorem 3.1).Thanks to Lemma 5.1, enumerating rooted 3-onneted maps redues to enumer-ating rooted undeomposable dissetions.ACM Journal Name, Vol. V, No. N, Month 20YY.
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t
s =) w = tsUsts; where U =Fig. 10. Example of deomposition of a rooted irreduible dissetion and of its assoiated deom-position word.Deomposition of rooted irreduible dissetions. Sine irreduible dissetions do nothave multiple edges nor yles of odd length, deomposition paths satisfy the fol-lowing properties:Lemma 5.2. Let D be a rooted irreduible dissetion, and let P1 and P2 be twodi�erent deomposition paths of D. Then:� either P1 \ P2 = fs; tg, in whih ase P1 and P2 are said to be internallydisjoint;� or there exists one inner vertex v suh that P1 \ P2 = fsg [ ftg [ fvg, inwhih ase P1 and P2 are said to be upper or lower joint whether v is adjaent tos or t.Lemma 5.2 implies in partiular that two deomposition paths an not ross eahother. Hene the deomposition paths of an irreduible dissetion D follow a left-to-right order, from the outer deomposition path ontaining the root �alled leftouter path� to the other outer deomposition path �alled right outer path.Lemma 5.3. Let D be a rooted irreduible dissetion, and let P1 and P2 be twoupper joint (resp. lower joint) deomposition paths of D. Then the interior of thearea delimited by P1 and P2 onsists of a unique fae inident to t (resp. to s).Proof. Follows from the fat that the interior of eah 4-yle of D is a fae.Deomposition word of an irreduible dissetion. Let D 2 D0 and let fP0; : : : ;P`gbe the sequene of deomposition paths of D ordered from left to right. Let usonsider the alphabet A = fsg[ ftg[ U 0; the deomposition word of D is the wordw = w1 : : : w` of length ` on A suh that, for any 1 � i � `: if Pi�1 and Pi areupper joint, then wi = s; if Pi�1 and Pi are lower joint, then wi = t; if Pi�1 andPi are internally disjoint, then wi = U , where U is the undeomposable dissetiondelimited by Pi�1 and Pi, rooted at the �rst edge of Pi�1 and with s as root-vertex,see Figure 10. This enoding is injetive, an easy onsequene of Lemma 5.3.Charaterization of deomposition words of elements of D0. The fat that D has noseparating 4-yle easily implies that its deomposition word has no fator ss nortt, and these are the only forbidden fators. Moreover, as a dissetion has at leastone inner vertex, a deomposition word an neither be the empty word, nor theone-letter words s and t, nor the two-letter words st and ts. It is easily seen thatall other words enode irreduible dissetions of the hexagon.This leads to the following equation linking the generating funtions D(x) andU(x) ounting D0 and U 0 aording to the number of inner verties,ACM Journal Name, Vol. V, No. N, Month 20YY.



20 � Éri Fusy et al.x2D(x) + 2x2 + 2x+ 1 = �1 + 2x1� x� � 11� x2U(x)�1 + 2x1�x� : (8)Similarly, let D(x�; xÆ) :=P jD0ij jxi�xjÆ and U(x�; xÆ) :=P jU 0ij jxi�xjÆ. Then theharaterization of the oding words givesx�xÆD(x�; xÆ) + 2x�xÆ + x� + xÆ + 1= (1 + x�) � 11� xÆx� � (1 + xÆ) � 11� x�xÆU(x�; xÆ)(1 + x�) 11�xÆx� (1 + xÆ) : (9)Theorem 5.4. Let P 0n be the number of rooted 3-onneted maps with n edgesand P 0ij the number of rooted 3-onneted maps with i verties and j faes. ThenXn jP 0n+2jxn = 1� x1 + x � 11 + 2x+ 2x2 + x2(2r(x) � r(x)2) ;where r(x) = x (1 + r(x))2, andXi;j jP 0i+2;j+2jxi�xjÆ= 1� x�xÆ(1 + x�)(1 + xÆ) � 11 + x� + xÆ + 2x�xÆ + x�xÆ(r1 + r2 � r1r2) ; (10)where � r1(x�; xÆ) = x� (1 + r2(x�; xÆ))2r2(x�; xÆ) = xÆ (1 + r1(x�; xÆ))2 .Proof. Lemma 5.1 ensures that Pn jP 0n+2jxn = x2U(x) and, more preisely,Pi;j jP 0i+2;j+2jxi�xjÆ = x�xÆU(x�; xÆ). Moreover, Equations (8) and Equation (9)yield expressions of x2U(x) and x�xÆU(x�; xÆ) respetively in terms of D(x) andD(x�; xÆ). In these expressions, replae D(x) and D(x�; xÆ) by their respetiveexpression in terms of r and of r1 and r2, as given by Equations (6) and (7).6. APPLICATION: SAMPLING ROOTED 3-CONNECTED MAPS6.1 Sampling rooted 3-onneted maps with n edgesTheorem 4.8 (�rst identity) ensures that the following algorithm samples rooted3-onneted maps with n edges uniformly at random:(1) Sample an objet T 2 B0n�4 uniformly (e.g. using parenthesis words).(2) Perform the losure of T to obtain an irreduible dissetion D with (n � 4)verties. Choose randomly one of the six edges of the hexagon of D to arrythe root. If D is not undeomposable, then rejet and restart.(3) Connet by a new edge e the root-vertex of D to the opposite outer vertex.Take e as root edge, with the same root-vertex as in D. This gives a rootedirreduible quadrangulation Q with n faes.(4) Return the rooted 3-onneted map in P 0n assoiated to Q by the angularmapping.ACM Journal Name, Vol. V, No. N, Month 20YY.



Dissetions and trees � 21Proposition 6.1. The suess probability of the sampler at eah trial is equalto jP 0nj=jD0n�4j, whih satis�es jP 0njjD0n�4j !n!1 2836 :Hene, the number of rejetions follows a geometri law whose mean is asymptoti-ally  = 36=28. As the losure mapping has linear-time omplexity, the samplingalgorithm has expeted linear-time omplexity.Proof. Aording to Setion 4.3, jD0nj = 6n+2 jB0nj = 6(2n)!(n+2)!n! . Stirling formulayields jD0n�4j � 3128p� 4nn5=2 . Moreover, aording to [Tutte 1963℄, jP 0nj � 235p� 4nn5=2 .This yields the limit of jP 0nj=jD0n�4j.6.2 Sampling rooted 3-onneted maps with i verties and j faesSimilarly, Theorem 4.8 (third identity), ensures that the following algorithm sam-ples rooted 3-onneted maps with i verties and j faes uniformly at random:(1) Sample an objet T 2 B�i�3;j�3 uniformly at random. A simple method isdesribed in Setion 4.5.2.(2) Perform the losure of T to obtain an irreduible dissetion D with (i � 3)inner blak verties and (j � 3) inner white verties. Choose randomly theroot-vertex among the three blak verties of the hexagon. If the dissetion isnot undeomposable, then rejet and restart.(3) Connet by a new edge e the root-vertex of D to the opposite outer vertex.Take e as root edge, with the same root-vertex as in D. This gives a rootedirreduible quadrangulation Q with i blak verties and j white verties.(4) Return the rooted 3-onneted map in P 0ij assoiated to Q by the angularmapping.Proposition 6.2. The suess probability of the sampler at eah trial is equalto jP 0ij j=jD0i�3;j�3j. Let � 2℄1=2; 2[; if i and j are orrelated by ij ! � as i ! 1,then jP 0ij jjD0i�3;j�3j � 2836 (2� �)2(2�� 1)2�2 =: 1� :Hene, when ij ! �, the number of rejetions follows a geometri law whose mean isasymptotially �. Under these onditions, the sampling algorithm has an expetedlinear-time omplexity, the linearity fator being asymptotially proportional to �.Moreover, in the worst ase of triangulations where j = 2i� 4, the mean numberof rejetions is quadrati, so that the sampling omplexity is ubi.Proof. These asymptoti results are easy onsequenes of the expression of jD0ij jobtained in Corollary 4.9 and of the asymptoti result jP 0ij j � 13522ij �2i�2j+2 ��2j�2i+2 �given in [Bender 1987℄.7. APPLICATION: CODING 3-CONNECTED MAPSThis setion introdues an algorithm, derived from the inverse of the losure map-ping, to enode a 3-onneted map. Preisely, the algorithm enodes an outer-ACM Journal Name, Vol. V, No. N, Month 20YY.
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(e) (f)Fig. 11. Exeution of the enoding algorithm on an example.triangular 3-onneted map, but it is then easily extended to enode any 3-onnetedmap. Indeed, if the outer fae of G is not triangular, �x three onseutive vertiesv, v0 and v00 inident to the outer fae of G and link v and v00 by an edge to obtainan outer-triangular 3-onneted planar map eG; the oding of G is obtained as theoding of eG plus one bit indiating if an edge-addition has been done.7.1 Desription of the oding algorithmLet G be an outer-triangular 3-onneted map and let G0 be its derived map, asde�ned in Setion 3.2. The oding algorithm relies on the following steps, illustratedACM Journal Name, Vol. V, No. N, Month 20YY.



Dissetions and trees � 23in Figure 11.7.1.1 Compute a partiular orientation of the derived map G0 (Fig. 11(b)-()). The�rst step of the algorithm is to ompute a spei� orientation X0 of the edges ofthe derived map G0, suh that X0 has no lokwise iruit, eah primal or dualvertex has outdegree 3 and eah edge-vertex has outdegree 1. Suh an orientationof G0 exists and is unique, as we will see in Theorem 8.1. A linear time algorithmto ompute X0 is given in Setion 9.7.1.2 Compute the irreduible dissetion D assoiated to G (Fig. 11(d)). Considerthe biolored omplete irreduible dissetion D assoiated to G by the bijetionpresented in Setion 3.2 (and reformulated in Setion 3.3), i.e., the dissetion havingthe same derived map asG. Notie thatD has n inner faes if G has n edges. Hene,aording to Euler's relation, D has n�2 inner verties. Similarly, if G has i vertiesand j inner faes, then D has i blak verties and j + 3 white verties.7.1.3 Compute the tri-orientation of D without lokwise iruit (Fig. 11(d)). Weorient eah half-edge h of D belonging to an inner edge as follows: h is diretedinward if its inident vertex belongs to the hexagon; otherwise, h reeives the ori-entation of the w-following edge of G0. As shown in Setion 8 (more preisely inLemma 8.13, omposed with the orrespondene of Figure 13), this proess yieldsthe unique tri-orientation of D without lokwise iruit.7.1.4 Open the dissetionD into a binary tree T (Fig. 11(f)). One the tri-orientationwithout lokwise iruit is omputed, D is opened into a binary tree T , by deletingouter verties, outer edges, and all ingoing half-edges (see Setion 4.2).7.1.5 Enode the tree T . First, hoose an arbitrary leaf of T , root T at this leaf,and enode the obtained rooted binary tree using a parenthesis word (also alledDyk word). The opening of a 3-onneted map with n edges is a binary tree withn� 2 inner nodes, yielding an enoding Dyk word of length 2(n� 2).Similarly, the opening of a 3-onneted map with i verties and j inner faes isa blak-rooted biolored binary tree with i� 3 blak nodes and j white nodes. Ablak-rooted biolored binary trees with a given number of blak and white nodesis enoded by a pair of words, as explained in Setion 4.5.1. Then the two wordsan be asymptotially optimally enoded in linear time, aording to [Bonihon etal. 2003, Lem.7℄.Theorem 7.1. The oding algorithm has linear-time omplexity and is asymp-totially optimal: the number of bits per edge of the ode of a map in P 0n (resp. inP 0ij) is asymptotially equal to the binary entropy per edge, de�ned as 1n log2(jP 0nj)(resp. 1i+j�2 log2(jP 0ij j)).Proof. It is lear that the enoding algorithm has linear-time omplexity, pro-vided the algorithm omputing the onstrained orientation without lokwise iruitof the derived map has linear-time omplexity (whih will be proved in Setion 9and Setion 10).Aording to Corollary 4.9, Proposition 6.1 and 6.2, jB0nj=jP 0nj and jB�ij j=jP 0ij jare bounded by �xed polynomials. Hene, the entropy per edge of B0n and P 0n areasymptotially equal, and the binary entropy per edge of B�ij and P 0ij are asymp-ACM Journal Name, Vol. V, No. N, Month 20YY.



24 � Éri Fusy et al.totially equal. As the enoding of objets of B0n (B�ij) using parenthesis words isasymptotially optimal, the enoding of objets of P 0n (P 0ij , respetively) is alsoasymptotially optimal.8. PROOF OF THEOREM 4.4This setion is devoted to the proof of Theorem 4.4, whih states that eah irre-duible dissetion has a unique tri-orientation without lokwise iruit.8.1 �-orientations and outline of the proofDe�nition. Let G = (V;E) be a planar map. Consider a funtion � : V ! N. An�-orientation of G is an orientation of the edges of G suh that the outdegree ofeah vertex v of G is �(v). If an �-orientation exists, then the funtion � is said tobe feasible for G.Existene and uniqueness of �-orientations. The following results are proved in [Fel-sner 2004℄ (the �rst point had already been proved in [Ossona de Mendez 1994℄):Theorem 8.1 ([Felsner 2004℄). Given a planar map G and a feasible fun-tion �, there exists a unique �-orientation of G without lokwise iruit. This�-orientation is alled the minimal 1 �-orientation of G.Given the derived map of an outer-triangular 3-onneted planar map, the fun-tion �0 suh that �0(v) = 3 for all primal and dual verties and �0(v) = 1 for alledge-verties is a feasible funtion.Theorem 8.1 ensures uniqueness of the orientation without lokwise iruit of agraph with presribed outdegree for eah vertex. However, this property does notdiretly imply uniqueness in Theorem 4.4, beause a tri-orientation has bi-orientededges.To use Theorem 8.1, we work with the derived map G0 of an irreduible disse-tion D, as de�ned in Setion 3.3. We have de�ned derived maps only for a subset ofirreduible dissetions, namely for biolored omplete irreduible dissetions (reallthat these are biolored dissetions suh that the 3 outer white verties have de-gree 2). As a onsequene, a �rst step toward proving Theorem 4.4 is to redue itsproof to the proof of existene and uniqueness of a so-alled omplete-tri-orientation(a slight adaptation of the de�nition of tri-orientation) without lokwise iruit forany biolored omplete irreduible dissetion.We prove that a omplete-tri-orientation without lokwise iruit of a bioloredomplete irreduible dissetion D is transposed injetively into an �0-orientationwithout lokwise iruit of its derived map G0. By injetivity and by uniquenessof the �0-orientation without lokwise iruit of G0, this implies uniqueness of atri-orientation without lokwise iruit for D.The �nal step will be to prove that an �0-orientation without lokwise iruit ofG0 is transposed into a omplete-tri-orientation without lokwise iruit of D. Byexistene of an �0-orientation without lokwise iruit for G0 (Theorem 8.1), thisimplies the existene of a omplete-tri-orientation without lokwise iruit of D.1The term minimal refers to the fat that the set of all �-orientations of G forms a distributivelattie, the ��ip� operation being a iruit reversion.ACM Journal Name, Vol. V, No. N, Month 20YY.



Dissetions and trees � 258.2 Redution to the ase of biolored omplete dissetionsIntrodution. The aim of this setion is to redue the proof of Theorem 4.4 to thelass of omplete biolored irreduible dissetions. We state the following propo-sition where the term �omplete-tri-orientation�, to be de�ned later, is a slightadaptation of the notion of tri-orientation.Proposition 8.2. The existene and uniqueness of a omplete-tri-orientationwithout lokwise iruit for any biolored omplete irreduible dissetion impliesthe existene and uniqueness of a tri-orientation without lokwise iruit for anyirreduible dissetion, i.e., implies Theorem 4.4.The rest of this subsetion is devoted to the proof of Proposition 8.2. The proofis done in two steps. First, redue the proof of Theorem 4.4 to the existene anduniqueness of a tri-orientation without lokwise iruit for any biolored ompleteirreduible dissetion. Then, prove that this redues to the existene and uniquenessof a omplete-tri-orientation without lokwise iruit for any biolored ompleteirreduible dissetion.Completion of a biolored irreduible dissetion. For any biolored irreduible dis-setion D, we de�ne its ompleted dissetion D as follows . For eah white vertexv of the hexagon, we denote by el(v) (er(v)) the outer edge starting from v withthe interior of the hexagon on the left (right, respetively) and denote by l(v) andr(v) the neighbours of v inident to el(v) and to er(v). We perform the followingoperation: if v has degree at least 3, a new white vertex v0 is reated outside of thehexagon and is linked to l(v) and to r(v) by two new edges el(v0) and er(v0), seeFigure 12. The vertex v0 is said to over the vertex v.The dissetion obtained is a biolored dissetion of the hexagon suh that thethree white verties of the hexagon have two inident edges, see the transitionbetween Figure 13(a) and Figure 13(b) (ignore here the orientation of edges).Lemma 8.3. The ompletion D of a biolored irreduible dissetion D is a bi-olored omplete irreduible dissetion.Proof. The outer white verties of D have degree 2 by onstrution. Hene,we just have to prove that D is irreduible. As D is irreduible, if a separating4-yle C appears in D when the ompletion is performed, then it must ontain awhite vertex v0 of the hexagon of D added during the ompletion, so as to overan outer white vertex v of degree greater than 2. Two edges of C are the edgesel(v0) and er(v0) inident to v0 in D. The two other edges �1 and �2 of C form apath of length 2 onneting the verties l(v) and r(v) and passing by the interiorof D (otherwise, C would enlose a fae). As D is irreduible, the 4-yle C0 ofD onsisting of the edges el(v), er(v), �1 and �2 delimits a fae. Hene el(v) ander(v) are inident to the same inner fae of D, whih implies that v has degree 2, aontradition.Tri-orientations. Let D be a biolored irreduible dissetion and let D be its om-pleted biolored dissetion. We de�ne a mapping � from the tri-orientations of Dto the tri-orientations of D. Given a tri-orientation Y of D, we remove the edgesthat have been added to obtain D from D, erase the orientation of the edges ofACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 12. From a tri-orientation X of D without lokwise iruit, onstrution of a tri-orientationY of D without lokwise iruit suh that �(Y ) = X.the hexagon of D, and orient inward all inner half-edges inident to an outer ver-tex of D. We obtain thus a tri-orientation �(Y ) of D, see the transition betweenFigure 13(b) and Figure 13(a).Lemma 8.4. Let Y be a tri-orientation of D without lokwise iruit. Thenthe tri-orientation �(Y ) of D has no lokwise iruit.For eah tri-orientation X of D without lokwise iruit, there exists a tri-orientation Y of D without lokwise iruit suh that �(Y ) = X.Proof. The �rst point is trivial, as the tri-orientation �(Y ) is just obtained byremoving some edges and some orientations of half-edges.For the seond point, the preimage Y is onstruted as follows. Consider eahwhite vertex v of the hexagon of D whih has degree at least 3. Let (h1; : : : ; hm)(m � 3) be the series of half-edges inident to v in D in ounter-lokwise orderaround v, with h1 and h2 belonging respetively to the edges er(v) and el(v). Asm � 3, the vertex v gives rise to a overing vertex v0 with two inident edges el(v0)and er(v0) suh that the edges el(v), er(v), el(v0) and er(v0) form a new fae f . Theedges el(v) and er(v) beome inner edges of D when v0 is added, and have thus tobe direted.We orient the two half-edges of el(v) and er(v) respetively toward l(v) andtoward r(v), see Figure 12. The vertex v reeives thus two outgoing half-edges, andwe have to give to v a third outgoing half-edge. The suitable hoie to avoid theappearane of a lokwise iruit is to orient h3 outward, see Figure 12. Indeed,assume a ontrario that a simple lokwise iruit C is reated. Then the iruitmust pass by v. It goes into v using one of the half-edges hi direted toward v, i.e.,i � 4. Moreover, it must go out of v using the half-edge h3 (indeed, if the iruituses h1 or h2 to go out of v, then it reahes an outer vertex, whih has outdegree0). Hene, the interior of the lokwise iruit C must ontain all faes inidentto v that are on the right of v when we traverse v from hi and go out using h3.Hene, the interior of C must ontain the new fae f of D, see Figure 12. But fis inident to outer edges of D, hene the lokwise iruit C must pass by outeredges of D, whih are not oriented, a ontradition. Thus, we have onstruteda tri-orientation Y of D without lokwise iruit and suh that �(Y ) = X . Anexample of this onstrution an be seen as the transition between Figure 13(a)and Figure 13(b).Lemma 8.5. The existene and uniqueness of a tri-orientation without lok-wise iruit for any biolored omplete irreduible dissetion implies the existeneACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) (b) ()Fig. 13. A biolored irreduible dissetion D endowed with a tri-orientation X without lokwiseiruit (Figure a). The assoiated ompleted dissetion D (the two added white verties aresurrounded) endowed with the tri-orientation Y suh that �(Y ) = X (Figure b). The dissetionD endowed with the omplete-tri-orientation Z suh that 	(Z) = Y (Figure ).and uniqueness of a tri-orientation without lokwise iruit for any irreduibledissetion, i.e., implies Theorem 4.4.Proof. This is a lear onsequene of Lemma 8.3 and Lemma 8.4.Complete-tri-orientations. A omplete-tri-orientation of a biolored omplete irre-duible dissetion D is an orientation of the half-edges of D that satis�es the fol-lowing onditions (very similar to the onditions of a tri-orientation): all blakverties and all inner white verties of D have outdegree 3, the three white vertiesof the hexagon have outdegree 0, and the two half-edges of an edge of D an notboth be oriented inward. The di�erene with the de�nition of tri-orientation isthat the half-edges of the hexagon are oriented, with presribed outdegree for theouter verties. Similarly as in a tri-orientation, edges of D are distinguished intosimply-oriented edges and bi-oriented edges.Lemma 8.6. Let D 2 Dn be a biolored omplete irreduible dissetion endowedwith a omplete-tri-orientation without lokwise iruit. Then the subgraph T ofD onsisting of the bi-oriented edges of D is a tree inident to all verties of Dexept the three outer white verties.Proof. We reason similarly as in Lemma 4.2. Let r and s be the numbers of bi-oriented and simply oriented edges of D. From Euler's relation (using the degreesof the faes of D), D has 2n + 7 edges, i.e., r + s = 2n + 7. In addition, the ninner verties and the three blak (resp. white) verties of the hexagon of D haveoutdegree 3 (resp. 0). Hene, 2r + s = 3(n+ 3). Thus, r = n + 2 and s = n + 5.Hene, the subgraph T has n+2 edges, has no yle (otherwise, a lokwise iruitof D would exist), and is inident to at most (n+ 3) verties, whih are the innerverties and the three outer blak verties of D. A lassial result of graph theoryensures that T is a tree spanning these (n+ 3) verties.Lemma 8.7. Let D 2 Dn be a biolored omplete irreduible dissetion endowedwith a omplete-tri-orientation Z without lokwise iruit. Then, for eah outerblak vertex v of D, the unique outgoing inner half-edge inident to v belongs to abi-oriented edge. ACM Journal Name, Vol. V, No. N, Month 20YY.



28 � Éri Fusy et al.Proof. The subgraph T onsisting of the bi-oriented edges of D is a tree span-ning all verties of D exept the three outer white verties. Hene, there is abi-oriented edge e inident to eah blak vertex v of the hexagon and this edgeonsitutes the third outgoing edge of v.Let D be a biolored omplete irreduible dissetion and Z be a omplete-tri-orientation of D without lokwise iruit. We assoiate to Z a tri-orientation	(Z)as follows: erase the orientation of the edges of the hexagon of D; for eah blakvertex v of the hexagon, hange the orientation of the unique outgoing inner half-edge h of v. Aording to Lemma 8.7, h belongs to a bi-oriented edge e, so thatthe hange of orientation of h turns e into an edge simply oriented toward v. Thus,the obtained orientation 	(Z) is a tri-orientation.Lemma 8.8. Let D be a biolored omplete irreduible dissetion. Let Z be aomplete-tri-orientation of D without lokwise iruit. Then the tri-orientation	(Z) of D has no lokwise iruit.For eah tri-orientation Y of D without lokwise iruit, there exists a omplete-tri-orientation Z of D without lokwise iruit suh that 	(Z) = Y .Proof. The �rst point is trivial. For the seond point, we reason similarly as inLemma 8.4. For eah blak vertex v of the hexagon of D, let (h1; : : : ; hm) (m � 3)be the sequene of half-edges of D inident to v in ounter-lokwise order aroundv, with h1 and h2 belonging to the two outer edges er(v) and el(v) of D that areinident to v. To onstrut the preimage Z of Y , we make the edges el(v) and er(v)simply oriented toward their inident white vertex. The third outgoing half-edge ishosen to be h3, whih is the �leftmost� inner half-edge of v. An argument similar asin the proof of the seond point of Lemma 8.4 ensures that this hoie is judiious toavoid the reation of a lokwise iruit. An example of this onstrution is shownin Figure 13(b)-().Finally, Proposition 8.2 follows diretly from Lemma 8.5 and Lemma 8.8.Proposition 8.5 redues the proof of Theorem 4.4 to proving the existene anduniqueness of a omplete-tri-orientation without w iruit for any biolored om-plete irreduible dissetion. From now on, we will work with these dissetions.8.3 Transposition rules for orientationsLet D be a biolored omplete irreduible dissetion and let G0 be the derived mapof D. We assoiate to a omplete-tri-orientation of D an orientation of the edgesof G0 of D as follows, see Figure 14: eah edge e = (v; v0) �with v the primal/dualvertex and v0 the edge-vertex� reeives the diretion of the half-edge of D followinge in w order around v.Lemma 8.9. Let D be a biolored omplete irreduible dissetion endowed witha omplete-tri-orientation without lokwise iruit. Then the orientation of thederived map G0 of D obtained using the transposition rules has the following prop-erties:�eah primal or dual vertex of G0 has outdegree 3.�eah edge-vertex of G0 has outdegree 1.ACM Journal Name, Vol. V, No. N, Month 20YY.
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(a) (b) ()Fig. 14. The onstrution of the derived map of a biolored omplete irreduible dissetion. Thedissetion is endowed with a omplete-tri-orientation without lokwise iruit, and the derivedmap is endowed with the orientation obtained using the transposition rules for orientations.In other words, the orientation of G0 obtained by applying the transposition rules isan �0-orientation.Proof. The �rst point is trivial. For the seond point, let f be an inner faeof D and vf the assoiated edge-vertex of G0 (we reall that vf is the intersetionof the two diagonals of f). The transposition rules for orientation ensures thatthe outdegree of vf in G0 is the number nf of inward half-edges of D inident tof . Hene, to prove that eah edge-vertex of G0 has outdegree 1, we have to provethat nf = 1 for eah inner fae f of D. Observe that nf is a positive number,otherwise the ontour of f would be a lokwise iruit. Let n be the number ofinner verties of D. Euler's relation implies that D has (n + 2) inner faes and(4n+14) half-edges. By de�nition of a omplete-tri-orientation, 3(n+3) half-edgesare outgoing. Hene, (n + 5) half-edges are ingoing. Among these (n + 5) ingoinghalf-edges, exatly three are inident to the outer fae (see Figure 13()). Hene, Dhas (n+ 2) half-edges inident to an inner fae, so that Pf nf = n+ 2. As Pf nfis a sum of (n + 2) positive numbers adding to (n + 2), the pigeonhole's prinipleensures that nf = 1 for eah inner fae f of D.8.4 Uniqueness of a tri-orientation without lokwise iruitThe following lemma is the ompanion of Lemma 8.9 and is ruial to establishthe uniqueness of a tri-orientation without lokwise iruit for any irreduibledissetion.Lemma 8.10. Let D be a biolored omplete irreduible dissetion endowed witha omplete-tri-orientation Z without lokwise iruit. Let G0 be the derived mapof D. Then the �0-orientation X of G0 obtained from Z by the transposition ruleshas no lokwise iruit.Proof. Assume that X has a lokwise iruit C. Eah edge of G0 onnets anedge-vertex and a vertex of the original dissetion D. Hene, the iruit C onsistsof a sequene of pairs (e; e) of onseutive edges of G0 suh that e goes from a vertexv of the dissetion toward an edge-vertex v0 of G0 and e goes from v0 toward a vertexv of the dissetion. Let (e01; : : : ; e0m) be the sequene of edges of G0 between e andACM Journal Name, Vol. V, No. N, Month 20YY.
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ev e vv1v0C eev v0 v 7�!Fig. 15. An oriented path of edges of the dissetion an be assoiated to eah pair (e; e) ofonseutive edges of C sharing an edge-vertex.

7�!

Fig. 16. A simple lokwise iruit an be extrated from an oriented path enlosing a boundedsimply onneted region on its right.e in lokwise order around v0, so that e01 = e; and e0m = e and let (v1; : : : ; vm) betheir respetive extremities, so that v1 = v and vm = v. Notie that 2 � m � 4.As eah edge-vertex has outdegree 1 in X and as e0m is going out of v0, the edgese01; : : : ; e0m�1 are direted toward v0. Hene, the transposition rules for orientationsensure that the edges (vi; vi+1), for 1 � i � m � 1, are all bi-oriented or orientedfrom vi to vi+1 in the omplete-tri-orientation Z of D. Hene, we an go from vto v passing by the exterior of C and using only edges of D, see Figure 15 for anexample, where m = 3.Conatenating the paths of edges ofD assoiated to eah pair (e; e) of C, we obtaina losed oriented path of edges of D enlosing the interior of C on its right. Clearly,a simple lokwise iruit an be extrated from this losed path, see Figure 16. Asthe omplete-tri-orientation Z has no lokwise iruit, this yields a ontradition.Proposition 8.11. Eah irreduible dissetion has at most one tri-orientationwithout lokwise iruit.Proof. Let D be a biolored omplete irreduible dissetion and G0 its derivedmap. A �rst important remark is that the transposition rules for orientations learlyde�ne an injetive mapping. In addition, Lemma 8.10 ensures that the image of aomplete-tri-orientation of D without lokwise iruit is an �0-orientation of G0without lokwise iruit. Hene, injetivity of the mapping and uniqueness of an�0-orientation without lokwise iruit of G0 (Theorem 8.1) ensure that D has atmost one omplete-tri-orientation without lokwise iruit. Hene, Proposition 8.2implies that eah irreduible dissetion has at most one tri-orientation withoutlokwise iruit.ACM Journal Name, Vol. V, No. N, Month 20YY.
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e e7�!Fig. 17. The ase where the two half-edges of e are oriented inward implies that the boundary ofthe assoiated fae of G0 is a lokwise iruit.8.5 Existene of a tri-orientation without lokwise iruitInverse of the transposition rules. Let D be a biolored omplete irreduible disse-tion and G0 its derived map. Given an �0-orientation of G0, we assoiate to thisorientation an orientation of the half-edges of D by performing the inverse of thetransposition rules: eah half-edge h of D reeives the orientation of the edge of G0that follows h in lokwise order around its inident vertex, see Figure 14(b).Lemma 8.12. Let D be an irreduible dissetion and G0 the derived map of D,endowed with its minimal �0-orientation. Then the inverse of the transpositionrules for orientations yields a omplete-tri-orientation of D.Proof. The inverse of the transposition rules is learly suh that a vertex has thesame outdegree in the orientation of D as in the �0-orientation of G0. Hene, eahvertex of D has outdegree 3 exept the 3 outer white verties that have outdegree 0,see Figure 14(b).To prove that the orientation of D is a omplete-tri-orientation, it remains toshow that the two half-edges of an edge e of D an not both be oriented inward.Assume a ontrario that there exists suh an edge e. The transposition rules fororientation and the fat that eah edge-vertex of G0 has outdegree 1 imply that theboundary of the fae fe of G0 assoiated to e is a lokwise iruit, see Figure 17.This yields a ontradition with the minimality of the �0-orientation.Lemma 8.13. Let D be a biolored omplete irreduible dissetion and let G0 beits derived map. Then the omplete-tri-orientation of D assoiated with the minimal�0-orientation of G0 has no w iruit.Proof. Let X be the minimal �0-orientation of G0 and let Z be the assoiatedomplete-tri-orientation of D. Assume that Z has a lokwise iruit C. For eahvertex v on C, we denote by hv the half-edge of C starting from v with the interiorof C on its right, and we denote by ev the edge of G0 that follows hv in lokwiseorder around v. As C is a lokwise iruit for Z, hv is going out of v. Hene,by de�nition of the transposition rules, ev is going out of v. Observe that, in theinterior of C, ev is the most ounter-lokwise edge of G0 inident to v.We use this observation to build iteratively a lokwise iruit of X , yielding aontradition. First we state the following result proved in [Felsner 2004℄: �for eahvertex v 2 G0 there exists a simple oriented path Pv in G0, alled the straight pathof v, whih starts at v and ends at a vertex inident to the outer fae of G0". Letv0 be a vertex on C, and Pv0 be the straight path starting at ev0 for the orientationX . Then Pv0 has to reah C at a vertex v1 di�erent from v0. Denote by P1 thepart of Pv0 between v0 and v1, by �1 the part of the lokwise iruit C between v1ACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 18. The presene of a lokwise iruit in Z implies the presene of a lokwise iruit in X.and v0, and by C1 the yle enlosed by the onatenation of P1 and �1. Let Pv1be the straight path starting at ev1 . The fat that ev1 is the most ounterlokwiseinident edge of v1 in the interior of C ensures that Pv1 starts in the interior of C1.Then, the path Pv1 has to reah C1 at a vertex v2 6= v1. We denote by P2 the partof the path Pv1 between v1 and v2. If v2 belongs to P1, then the onatenationof the part of P1 between v2 and v1 and of the part of P2 between v1 and v2 is alokwise iruit, a ontradition. Hene, v2 is on �1 stritly between v1 and v0.We denote by P 2 the onatenation of P1 and P2, and by �2 the part of C goingfrom v2 to v0. As v2 is stritly between v1 and v0, �2 is stritly inluded in �1.Finally, we denote by C2 the yle made of the onatenation of P 2 and �2. Hene,similarly as for the path Pv1 , the straight path Pv2 starting at ev2 must start in theinterior of C2.Then we ontinue iteratively, see Figure 18. At eah step k, we onsider thestraight path Pvk starting at evk . This path starts in the interior of the yleCk, and reahes Ck at another vertex vk+1. This vertex vk+1 an not belong toP k := P1 [ : : : [ Pk, otherwise a lokwise iruit of X would be reated. Hene,vk+1 is on C stritly between vk and v0. In partiular the path �k+1 going fromvk+1 to v0 on C, is stritly inluded in the path �k going from vk to v0 on C, i.e.,�k shrinks stritly at eah step. Thus, there must be a step k0 when Pvk0 reahesCk0 at a vertex on P k0 , reating a lokwise iruit of X , a ontradition.Proposition 8.14. For eah irreduible dissetion, there exists a tri-orientationwithout lokwise iruit.Proof. Lemma 8.13 ensures that eah biolored omplete irreduible dissetionD has a omplete-tri-orientation Z without lokwise iruit; and Proposition 8.2ensures that the existene of a omplete-tri-orientation without lokwise iruitfor any biolored omplete irreduible dissetion implies the existene of a tri-orientation without lokwise iruit for any irreduible dissetion.Finally, Theorem 4.4 follows from Proposition 8.11 and Proposition 8.14.9. COMPUTING THE MINIMAL �0-ORIENTATION OF A DERIVED MAPWe desribe in this setion a linear-time algorithm to ompute the minimal �0-orientation of the derived map of an outer-triangular 3-onneted plane graph.ACM Journal Name, Vol. V, No. N, Month 20YY.



Dissetions and trees � 33This result is ruial for the enoding algorithm of Setion 7 to have linear timeomplexity (see the transition between Figure 11(b) and Figure 11()).As disussed in [Felsner 2004℄, given a 3-onneted map G and its derived mapG0, an �0-orientations of G0 orresponds to a so-alled Shnyder wood of G. TheseShnyder woods of 3-onneted maps are the right generalisations of Shnyderwoods of triangulations [Shnyder 1990℄. Quite naturally, our algorithm is a gen-eralization of the algorithm to ompute the minimal Shnyder wood of a trian-gulation [Brehm 2000℄. The ideas for the extension to 3-onneted maps havealready been introdued by [Kant 1996℄ and [di Battista et al. 1999℄. The algo-rithm of [di Battista et al. 1999℄ outputs a Shnyder wood of a 3-onneted map;whih an be subsequently made minimal by iterated iruit reversions with a linearoverall omplexity, as easily follows from ideas presented in [Khuller et al. 1993℄.Our algorithm relies on similar priniples, suitably modi�ed so as to ouput diretlythe minimal Shnyder wood (i.e., the Shnyder wood assoiated with the minimal�0-orientation), also in linear time. In itself our algorithm for 3-onneted mapsis only slightly more involved than the algorithm for triangulations, as opposed tothe orretness proof, whih is muh harder (see the disussion at the beginningof Setion 10). Beause of this we give a rather proof-oriented desription of thealgorithm.Our algorithm is also of independent interest in onnetion with Shnyder woods,and it has appliations in the ontext of graph drawing. Indeed, the minimalShnyder wood orientation is also a key ingredient for the straight-line drawingalgorithm presented in [Bonihon et al. 2007℄. This algorithm relies on operations ofedge-deletion, embedding of the obtained graph, and then embedding of the deletededges. The grid size is guaranteed to be bounded by (n� 2)� (n� 2) �equallingat least Shnyder's algorithm [Shnyder 1990℄� provided the Shnyder wood usedis the one assoiated to the minimal �0-orientation. An implementation of thisdrawing algorithm inluding our orientation algorithm has been made available byBonihon in [de Fraysseix et al. ℄.9.1 Priniple of the algorithmLet G be an outer-triangular 3-onneted planar graph and let G0 be its derivedmap and G� its dual map. We denote by a1, a2 and a3 the outer verties of G inlokwise order. We desribe here a linear-time iterative algorithm to ompute theminimal �0-orientation of G0. The idea is to maintain a simple yle of edges of G;at eah step k, the yle, denoted by Ck, is shrinked by hoosing a so-alled eligiblevertex v on Ck, and by removing from the interior of Ck all faes inident to v. Theeligible vertex is always di�erent from a2 and a3, so that the edge (a2; a3), alledbase-edge, is always on Ck. The edges of G0 easing to be on Ck or in the interior ofCk are oriented so that the following invariants remain satis�ed.Orientation invariants:� For eah edge e of G outside Ck, the 4 edges of G0 inident to the edge-vertexve assoiated to e have been oriented at a step j < k and ve has outdegree 1.� All other edges of G0 are not yet oriented.Moreover, the edges that orrespond to half-edges of G also reeive a label inf1; 2; 3g, so that the following invariants for labels remain satis�ed:ACM Journal Name, Vol. V, No. N, Month 20YY.
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2 3()Fig. 19. The invariants for the labels of the half-edges of G maintained during the algorithm.Labelling invariants:� At eah step k, every vertex v of G outside of Ck has one outgoing half-edgefor eah label 1, 2 and 3 and these outgoing edges appear in lokwise order aroundv. In addition, all edges between the outgoing edges with labels i and i + 1 areinoming with label i� 1, see Figure 19(a).� Let v be a vertex of G on Ck having at least one inident edge of G0 outside ofGk. Then exatly one of these edges, denoted by e01, is going out of v. In additionit has label 1. The edges of G0 inident to v and between e01 and its left neighbouron Ck are inoming with label 2; and the edges inident to v in G0 between e01 andits right neighbour on Ck are inoming with label 3, see Figure 19(b).� For eah edge e of G outside of Gk, let e0 be the unique outgoing edge of itsassoiated edge-vertex ve. Two ases an our:� If e0 is an half-edge of G then the two edges of G0 inident to ve and formingthe edge e are identially labelled. This orresponds to the ase where e is �simplyoriented�.� If e0 is an half-edge of G�, we denote by 1 � i � 3 the label of the edgeof G0 following e0 in lokwise order around ve. Then the edge of G0 followinge0 in ounter-lokwise order around ve is labelled i + 1, see Figure 19(). Thisorresponds to the ase where e is �bi-oriented�.Atually, the labels are not needed to ompute the orientation, but they will bevery useful to prove that the algorithm outputs the minimal �0-orientation. Theselabels are in fat the ones of the Shnyder woods of G, as disussed in [Felsner2004℄.In the following, we write Gk for the submap of G obtained by removing allverties and edges outside of Ck (at step k). In addition, we order the verties ofCk from left to right aording to the order indued by the path Cknfa2; a3g, witha3 as left extremity and a2 as right extremity. In other words, a vertex v 2 Ck ison the left of a vertex v0 2 Ck if the path of Ck going from v to v0 without passingby the edge (a2; a3) has the interior of Ck on its right.9.2 Desription of the main iterationLet us now desribe the k-th step of the algorithm, during whih the yle Ck isshrinked so that the invariants for orientation and labelling remain satis�ed. Thedesription requires some de�nitions.De�nitions. A vertex of Ck is said to be ative if it is inident to at least one edge ofGnGk. Otherwise, the vertex is passive. By onvention, before the �rst step of theACM Journal Name, Vol. V, No. N, Month 20YY.



Dissetions and trees � 35algorithm, the vertex a1 is onsidered as ative and its inident half-edge diretedtoward the outer fae is labelled 1.For eah pair of verties (v1; v2) of Ck �with v1 is on the left of v2�, the path onCk going from v1 to v2 without passing by the edge (a2; a3) is denoted by [v1; v2℄.We also write ℄v1; v2[ for [v1; v2℄ deprived from the endverties v1 and v2.A pair (v1; v2) of verties of Ck is separating if there exists an inner fae f of Gksuh that v1 and v2 are inident to f but the edges of [v1; v2℄ are not all inidentto f . Suh a fae is alled a separating fae and the triple (v1; v2; f) is alled aseparator. The (losed) area delimited by the path [v1; v2℄ and by the path of edgesof f going from v1 to v2 with the interior of f on its right is alled the separatedarea of (v1; v2; f) and is denoted by Sep(v1; v2; f).A vertex v on Ck is said to be bloked if it belongs to a separating pair. It iseasily heked that a vertex is bloked i� it is inident to a separating fae of Gk . Inpartiular, a non bloked vertex does not belong to any separating pair of verties.By onvention, the verties a2 and a3 are always onsidered as bloked. A vertexv on Ck is eligible if it is ative and not bloked.Finally, for eah vertex v of Ck, we de�ne its left-onnetion vertex left(v) asthe leftmost vertex on Ck suh that the verties of ℄left(v); v[ all have degree 2 inGk. The path [left(v); v℄ is alled the left-hain of v and the �rst edge of [left(v); v℄is alled the left-onnetion edge of v. Similarly, we de�ne the right-onnetionvertex, the right-hain, and the right-onnetion edge of v. Notie that all vertiesof ℄left(v); v[ and of ℄v; right(v)[ are ative, as eah vertex of a 3-onneted graphhas degree at least 3.Operations at step k. First, we hoose the rightmost eligible vertex of Ck and we allv(k) this vertex. (We will prove in Lemma 9.2 that there always exists an eligiblevertex on Ck as long as Gk is not redued to the edge (a2; a3).) Notie that thiseligible vertex an not be a2 nor a3 beause a2 and a3 are bloked.We denote by f1; : : : ; fm the bounded faes of Gk inident to v(k) from right toleft, and by e1; : : : ; em+1 the edges of Gk inident to v(k) from right to left. Hene,for eah 1 � i � m, fi orresponds to the setor between ei and ei+1.An important remark is that the right-hain of v(k) is redued to one edge.Indeed, if there exists a vertex v in ℄v(k); right(v(k))[, then v is ative, as disussedabove. In addition, v is inident to only one inner fae of Gk, namely f1. As f1is inident to v(k) and as v(k) is non bloked, f1 is not separating. Hene v is notbloked. Thus v is eligible and is on the right of v(k), in ontradition with the fatthat v(k) is the rightmost eligible vertex on Ck.We label and orient the edges of G0 inident to the edge-verties on the left-hainof v(k) and on the edges e1; : : : em, see Figure 20:� Inner edges: For eah edge ei with 2 � i � m, we denote by vei theorresponding edge-vertex of G0. Orient the two edges of G0 forming ei toward v(k)and give label 1 to these two edges. Orient the two other inident edges of veitoward vei , so that vei has outdegree 1.� Left-hain: For eah edge e of the left-hain of v(k) �traversed from v(k)to left(v(k))� di�erent from the left-onnetion edge, bi-orient e and give label 3(resp. label 2) to the �rst (resp. seond) traversed half-edge. Choose the uniqueACM Journal Name, Vol. V, No. N, Month 20YY.



36 � Éri Fusy et al.v(k)1 1 1 12 1221 3 33 (a)
v(k)1 1 1 12 13223 3 3 (b)v(k)11 1 1 1 12 232323 ()
v(k) 21 1 1 123223 3 3 (d)Fig. 20. The operations performed at step k of the algorithm, whether left(v(k)) and right(v(k))are passive-passive (Fig. a) or ative-passive (Fig. b) or passive-ative (Fig. ) or ative-ative(Fig. d). Ative verties are surrounded.outgoing edge of the edge-vertex ve assoiated to e to be the edge going out of etoward the interior of Ck� Left-onnetion edge: If left(v(k)) is passive, bi-orient the left-onnetionedge e of v(k), give label 1 to the half-edge inident to left(v(k)) and label 3 to theother half-edge, and hoose the unique outgoing edge of the edge-vertex ve to bethe edge going out of ve toward the exterior of Ck. If left(v(k)) is ative, label 3and orient toward left(v(k)) the two edges of G0 forming e, and orient the two dualedges inident to ve toward ve.� Right-onnetion edge: The edge e1, whih is the right-onnetion edge ofv(k), is treated symmetrially as the left-onnetion edge. If right(v(k)) is passive,bi-orient e1, give label 1 to the half-edge inident to right(v(k)) and label 2 to theother half-edge, and hoose the unique outgoing edge of the edge-vertex ve1 to bethe edge going out of ve1 toward the exterior of Ck. If right(v(k)) is ative, label 2and orient toward right(v(k)) the two edges of G0 forming e1, and orient the twodual edges inident to ve1 toward ve1 .After these operations, all faes inident to v(k) are removed from the interiorof Ck, produing a (shrinked) yle Ck+1. As a2 and a3 are bloked on Ck, Ck+1still ontains the edge (a2; a3). In addition, if Ck+1 is not redued to (a2; a3), theproperty of 3-onnetivity of G and the fat that the hosen vertex v(k) is notinident to any separating fae easily ensure that Ck+1 is a simple yle, i.e., it doesnot ontain any separating vertex.It is also easy to get onvined from Figure 19 and Figure 20 that the operationsperformed at step k maintain the invariants of orientation and labelling.The purpose of the next two lemmas is to prove that the algorithm terminates.Lemma 9.1. Let (v1; v2; f) be a separator on Ck. Then there exists an eligiblevertex in ℄v1; v2[.Proof. Consider the (non empty) set of separators whose separated area isinluded or equal to the separated area of (v1; v2; f), and let (v01; v02; f 0) be suh aACM Journal Name, Vol. V, No. N, Month 20YY.



Dissetions and trees � 37separator minimal w.r.t. the inlusion of the separated areas. Observe that v01 andv02 are in [v1; v2℄.Assume that no vertex of ℄v01; v02[ is ative. Then the removal of v01 and v02disonnets Sep(v01; v02; f) from GnSep(v01; v02; f). This is in ontradition with 3-onnetivity of G, beause these two sets are easily proved to ontain at least onevertex di�erent from v01 and v02.Hene, there exists an ative vertex v in ℄v01; v02[, also in ℄v1; v2[. If v was inidentto a separating fae, this fae would be inluded in the separated area of (v01; v02; f 0),whih is impossible by minimality of (v01; v02; f 0). Hene, the ative vertex v is notbloked, i.e., is eligible.Lemma 9.2. As long as Ck is not redued to (a2; a3), there exists an eligiblevertex on Ck.Proof. Assume that there exists no separating pair of verties on Ck. In thisase, an ative vertex on Ck di�erent from a2 and a3 is eligible. Hene we justhave to prove the existene of suh a vertex. At the �rst step of the algorithm,there exists an ative vertex on C1nfa2; a3g beause a1 is ative by onvention. Atany other step, there exists an ative vertex on Cknfa2; a3g, otherwise the removalof a2 and a3 would disonnet Gknfa2; a3g from GnGk, in ontradition with the3-onnetivity of G.If there exists at least one separator (v1; v2; f), Lemma 9.1 ensures that thereexists an eligible vertex v in ℄v1; v2[.Last step of the algorithm. Lemma 9.2 implies that, at the end of the iterations,only the edge e = (a2; a3) remains. To omplete the orientation, bi-orient e andlabel 3 (resp. label 2) the half-edge of e whose origin is a2 (resp. a3); the outgoingedge of the edge-vertex ve (assoiated to e) is hosen to be the edge going out of vetoward the outer fae. We also label respetively 2 and 3 the half-edges inident toa2 and a3 and direted toward the outer fae.Figure 21 illustrates the exeution of the algorithm on an example, where theedges of Ck are blak and bolder. In addition, the ative verties are surroundedand the rightmost eligible vertex v(k) is doubly surrounded.Theorem 9.3. The algorithm outputs the minimal �0-orientation of the derivedmap.Setion 10 is dediated to the proof of this theorem.Remark. As stated in Theorem 9.3, our orientation algorithm outputs a partiular�0-orientation, namely the minimal one. The absene of lokwise iruit is dueto the fat that among all eligible verties, the rightmost one is hosen at eahstep. The algorithm is easily adapted to other hoies of eligible verties: the onlydi�erene is that the right-onnetion hain of the hosen eligible vertex mightnot be redued to an edge, in whih ase it must be dealt with in a symmetriway as the left-onnetion hain (that is, 2 beomes 3 and left beomes right in thedesription of edge labelling and orientation). This yields a �generi� algorithm thatan produe any �0-orientations of G0. Indeed, given a partiular �0-orientation Xof G0, it is easy to ompute a senario (i.e., a suitable hoie of the eligible vertexACM Journal Name, Vol. V, No. N, Month 20YY.
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Fig. 21. The exeution of the algorithm of orientation on an example.ACM Journal Name, Vol. V, No. N, Month 20YY.



Dissetions and trees � 39at eah step) that outputs X . Suh a senario orresponds to a so-alled anonialordering for treating the verties, see [Kant 1996℄.Implementation. Following [Kant 1996℄ (see also [Brehm 2000℄ for the ase of trian-gulations), an e�ient implementation is obtained by maintaining, for eah vertexv 2 Ck, the number s(v) of separating faes inident to v. Thus, a vertex is blokedi� s(v) > 0. Notie that a fae f is separating i� the numbers v(f) and e(f) ofverties and edges (exept (a2; a3)) of f belonging to Ck satisfy v(f) > e(f) + 1.Thus, it is easy to test if a fae is separating, so that the parameters s(f) are alsoeasily maintained. The data struture we use is the half-edge struture, whih al-lows us to navigate e�iently on the graph. The pointer is initially on a1, whihis the rightmost eligible vertex at the �rst step. During the exeution, one thevertex v(k) is treated, the pointer is moved to v the right neighbour of v(k) on Ck.The ruial point is that, if v is bloked, then no vertex on the right of v an beeligible (beause of the nested struture of separating faes). Thus, in this ase,the pointer is moved to the left until an eligible vertex is enountered. Notie alsothat v is ative after v(k) is treated. Thus, if v is not bloked, then v is eligibleat step k + 1. In this ase, the nested struture of separating faes ensures thatthe rightmost eligible vertex at step k + 1, if not v, is either the right-onnetionvertex r(v) of v, or the left neighbour of r(v) on Ck+1 (in the ase where r(v) is noteligible). Notie that, in the ase where v is not bloked, the pointer is moved tothe right but the edges traversed will be immediately treated (i.e., removed fromCk+1) at step k + 1. This ensures that an edge an be traversed at most twie bythe pointer: one from right to left and subsequently one from left to right. Thus,the omplexity is linear.10. PROOF OF THEOREM 9.3Let G be an outer-triangular 3-onneted map, and let X0 be the orientation of thederived map G0 omputed by the orientation algorithm. This setion is dediatedto proving that X0 is the minimal �0-orientation of G0.Our proof is inspired by the proof by Brehm [2000℄ that ensures that, for a trian-gulation, the hoie of the rightmost eligible vertex at eah step yields the Shnyderwoods without lokwise iruit. The argument is the following: the presene ofa lokwise iruit implies the presene of an �inlusion-minimal� lokwise iruitwhih is, in the ase of a triangulation, a 3-yle (x; y; z). Then the lokwise ori-entation of (x; y; z) determines unambiguously (up to rotation) the labels of the 3edges of (x; y; z). These labels determine an order of treatment of the 3 verties x,y and z that is not ompatible with the fat that the eligible vertex hosen at eahstep is the rightmost one.In the general ase of 3-onneted maps, whih we onsider here, the proof ismore involved but follows the same lines. This time there is a �nite set of minimalpatterns (for a triangulation this set is restrited to the triangle), suh that aminimal lokwise iruit C in the orientation X0 of the derived map G0 an onlyorrespond to one of these patterns (the list is shown in Figure 26). A ommonharateristi is that the presene of a lokwise iruit C for eah of these patternsimplies the presene of three paths P1, P2, P3 of edges of G whose onatenationforms a simple yle in G (in the ase of a triangulation, the three paths are reduedACM Journal Name, Vol. V, No. N, Month 20YY.
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2−3 or 22 or 33

2 1 2 1 1 1 3 1 32Fig. 22. The dual vertex of a fae f has one outgoing edge onneted to the lower path of f .to one edge). In addition, the fat that C is lokwise determines unambiguously thelabels and orientations of the edges of P1, P2 and P3. Writing v1, v2 and v3 for therespetive origins of these three paths, our proof (as in the ase of triangulations,but with quite an amount of tehnial details) relies on the fat that the labels ofP1, P2, P3 imply an order for proessing fv1; v2; v3g that is not ompatible withthe fat that the eligible vertex hosen at eah step is the rightmost one.10.1 The algorithm outputs an �0-orientationBy onstrution of the orientation, eah primal vertex of the derived map G0 has oneoutgoing edge in eah label 1, 2 and 3, hene it has outdegree 3. By onstrutionalso, eah edge-vertex of G0 has outdegree 1. Hene, to prove that X0 is an �0-orientation, it just remains to prove that eah dual vertex of G0 has outdegree 3in X0.Let f be an inner fae of G and vf the orresponding dual vertex in G�. Let k bethe step during whih f is merged with the outer fae of G. At this step, a sequeneof onseutive edges of f has been removed. This path of removed onseutive edgesis alled the upper path of f . The path of edges of f that are not in the upper pathof f is alled the lower path of f . By onstrution of the orientation (see Figure 20),exatly two edges of G0 onneting vf to an edge-vertex of the upper path of f aregoing out of vf : these are the edge-verties orresponding to the two extremal edgesof the upper path.Hene it just remains to prove that exatly one edge of G0 onneting vf to anedge-vertex of the lower path of f is going out of vf . First, observe that the lowerpath P of f is a non empty path of edges on Ck+1, suh that the two extremitiesvl and vr of the path are ative and all verties of ℄vl; vr[ are passive on Ck+1, seeFigure 20. The fat that exatly one edge of G0 onneting vf to an edge-vertex ofP is going out of vf is a diret onsequene of the following lemma, see Figure 22.Lemma 10.1. At a step k of the algorithm, let v1 and v2 be two ative vertieson Ck suh that all verties of ℄v1; v2[ are passive. Then the path [v1; v2℄ on Ck ispartitioned into� a (possibly empty) path [v1; v℄ whose edges are bi-oriented in the �nally om-puted orientation X0, the left half-edge having label 2 and the right half-edge label 1,� an edge e = [v; v0℄ either simply oriented with label 2 from v to v0, or simplyoriented with label 3 from v0 to v, or bi-oriented, with label 2 on the half-edgeinident to v and label 3 on the half-edge inident to v0,� a (possibly empty) path [v0; v2℄ suh that, eah edge of [v0; v2℄ is bi-oriented,with label 1 on the left half-edge and label 3 on the right half-edge.ACM Journal Name, Vol. V, No. N, Month 20YY.
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P

vprev0 v(k)f v(a) Pv0 v(k) vf vpre(b)Fig. 23. The two possible on�gurations related to the next ative vertex on the right of v(k).Proof. The proof is by indution on the length L of [v1; v2℄. Assume that L = 1.Then [v1; v2℄ is redued to an edge. If v1 is removed at an earlier step than v2, thenthe edge (v1; v2) is simply oriented with label 2 from v1 to v2. If v2 is removed atan earlier step than v1, then the edge (v1; v2) is simply oriented with label 3 fromv2 to v1. If v1 and v2 are removed at the same step, then (v1; v2) is bi-oriented,with label 2 on v1's side and label 3 on v2's side, see Figure 20.Assume that L > 1. Observe that the outer path [v1; v2℄ remains unhanged aslong as none of v1 or v2 is removed. This remark follows from the fat that allverties of ℄v1; v2[ are passive, so that no vertex of [v1; v2℄ an be treated as long asnone of v1 or v2 is treated.Then, two ases an arise: if v1 is removed before v2, the right neighbour v of v1beomes ative and the edge (v1; v) is bi-oriented, with label 2 on v1's side and label1 on v's side, see Figure 20. Similarly if v2 is removed before v1, the left neighourv of v2 beomes ative and the edge (v; v2) is bi-oriented with label 3 on v2's sideand label 1 on v's side.The result follows by indution on L, with a reursive all to the path [v; v2℄ inthe �rst ase and to the path [v1; v℄ in the seond ase.10.2 The algorithm outputs the minimal �0-orientation of the derived map10.2.1 De�nitions and preliminary lemmas.Maximal bilabelled paths. Let v be a vertex of G. For 1 � i � 3, the i-path of v isthe unique path P iv = (v0; : : : ; vm) of edges of G starting at v and suh that eahedge (vp; vp+1) is the outgoing edge of vp with label i (i.e., the edge of G ontainingthe outgoing half-edge of vp with label i). Ayliity properties of Shnyder woodsensure that P iv ends at the outer vertex ai, see [Felsner 2004℄. For 1 � i � 3 and1 � j � 3 with i 6= j, we de�ne the maximal i� j path starting at v as follows. Letl � m be the maximal index suh that the subpath (v0; : : : ; vl) of P iv only onsistsof bi-oriented edges with labels i� j. Then the maximal i� j path starting at v isde�ned to be the path (v0; : : : ; vl) and is denoted by P i�jv .At a step k � 2, let v(k) be the hosen vertex, i.e., the rightmost eligible vertexon Ck. First, observe that there exists an ative vertex on the right of v(k). Indeed,the rightmost vertex a2 is ative as soon as k � 2. In addition a2 is non eligibleon Ck beause it is bloked, so that a2 is di�erent from v(k). Hene, a2 is an ativevertex on the right of v(k).We de�ne the next ative vertex on the right of v(k) as the unique vertex v onthe right of v(k) on Ck suh that all verties of ℄v(k); v[ are passive.Lemma 10.2. At a step k � 2, let v(k) be the hosen vertex. Let v be the nextACM Journal Name, Vol. V, No. N, Month 20YY.
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P Pv0 fB v(k)Gk vv3�2 fv3�2v0 v v(k0)fGk = Gk0Fig. 24. The path between v and v3�2 will onsist of bi-oriented edges bilabelled 3-2.ative vertex on the right of v(k). Let vpre be the left neighbour of v on Ck. Then,in the orientation X0 �nally omputed, eah edge of [v(k); vpre℄ is bi-oriented, withlabel 2 on its left side and label 1 on its right side. The edge e = (vpre; v) is eithersimply oriented with label 2 from vpre to v or bi-oriented, with label 2 on vpre'sside and label 3 on v's side. In other words, P 2�1v(k) = [v(k); vpre℄ and the outgoingedge of vpre with label 2 is (vpre; v).Proof. To prove this lemma, using the result of Lemma 10.1, we just have toprove that (vpre; v) is neither bi-oriented with label 1 on vpre's side and label 3 onv's side, nor simply oriented with label 3 from v to vpre, see Figure 22.First, as the ative vertex v is on the right of v(k), it an not be eligible, so thatv is bloked. As a onsequene there exists a vertex v0 and a fae f suh that(v; v0; f) is a separator. Lemma 9.1 ensures that there exists an eligible vertex in℄v0; v[. Hene the vertex v0 is on the left of v(k) on Ck, otherwise v(k) would not bethe rightmost eligible vertex. Let P be the path on the boundary of f going fromv to v0 with f on its left. Two ases an arise:(1) the �rst edge of P is di�erent from (v; vpre), so that vpre is above P , seeFigure 23(a). Clearly, v remains bloked as long as all verties above P have notbeen treated. Hene, vpre will be treated at an earlier step that v. As v is ative,it implies (see Figure 20) that (vpre; v) is simply oriented with label 2 from vpreto v.(2) the �rst edge of P is (v; vpre), see Figure 23(b). Observe that vpre an notbe equal to v0. Indeed v is on the right of v(k), so that vpre is on the right orequal to v(k), whereas v0 is on the left of v(k). Hene, P has length greater than 1.As a onsequene, when f will ease to be separating, vpre will only be inidentto f . Figure 20 ensures that, when suh a vertex is treated, the edge onnetingthis vertex to its right neighbour is always bi-oriented and bi-labelled 2-3, whihonludes the proof.Lemma 10.3. At a step k � 2, let v(k) be the rightmost eligible vertex and v thenext ative vertex on the right of v(k). Let v3�2 be the extremity of P 3�2v in X0 ande the outgoing edge of v3�2 with label 3. If e is bi-oriented, it is bi-labelled 3-1 andwe de�ne v1 = v3�2. Otherwise e is simply oriented, we de�ne v1 as the extremityof e.Then v1 belongs to Ck and is on the left of v(k).Proof. First, observe that eah vertex v00 suh that the pair fv00; vg is separatingis on the left of v(k), otherwise, Lemma 9.1 ensures that there exists an eligiblevertex in ℄v00; v[, in ontradition with the fat that v(k) is the rightmost eligiblevertex.ACM Journal Name, Vol. V, No. N, Month 20YY.



Dissetions and trees � 43Observe also that the set S of separators (v00; v; f) involving v and endowed withthe inlusion-relation for the separated areas is not only a partial order but a totalorder. In partiular, for two separators (v001 ; v; f1) and (v002 ; v; f2), if v001 is on the leftof v002 , then the separated area of (v002 ; v; f1) is stritly inluded in the separated areaof (v001 ; v; f2). In addition, S is non empty beause v is the next ative vertex onthe right of v(k), hene v is bloked.Let (v0; v; f) be the maximal separator for the totally ordered set S. Then theseparated area of (v0; v; f) ontains all separating faes inident to v exept f . LetP be the path of edges on the boundary of f going from v to v0 with the interior off on its left, and let B be the separated area of (v0; v; f). Let fGk be the submapof G obtained by removing B from Gk, and let fCk be the boundary of fGk .We laim that f is not separating in fGk. Otherwise, there would exist a vertex v2on the right of v suh that (v; v2; f) is a separator or there would exist a vertex v3on the left of v0 suh that (v3; v0; f) is a separator: the �rst ase is in ontraditionwith the fat that all separators fv; v2g involving v are suh that v is on the right ofv2. The seond ase is in ontradition with the fat that (v0; v; f) is the maximalseparator involving v.We laim that only verties of B will be removed from step k on, until all vertiesof B are removed. Indeed, all separating faes inident to verties on the right ofv are faes of fGk, hene they will remain separating as long as not all verties ofB are removed. As all verties on the right of v are either bloked or passive, itis easy to see indutively that all these verties will keep the same status until allverties of B are removed.Let k0 be the �rst step where all verties of B have been removed. Then Gk0 =fGk. Hene f is not separating anymore on Ck0 , but all other faes of fGk that areseparating at step k are still separating at step k0. We have seen that the separatingfaes inident to v at step k are the fae f and faes in B. In addition, all faes ofGk0 , exept f , have kept their separating-status between step k and step k0. Henev is eligible on Ck0 , and the rightmost eligible vertex v(k0) at step k0 is a vertexinident to f . It is either v or a vertex of f on the right of v (on Ck0) suh that[v; v(k0)℄ only onsists of edges inident to f (otherwise f would be separating), seeFigure 24, where v(k0) is the right neighbour of v.Moreover, the left-onnetion vertex of v(k0) is v0. Otherwise there would be avertex of f on fCk and on the left of v0. This vertex would also be on Ck (beauseonly verties of B are removed to obtain fGk from Gk), in ontradition with thefat that (v0; v; f) is the maximal separator of Ck involving v.Then two ases an arise whether v0 is passive or ative on Ck0 :(1) v0 is passive on Ck0 . Then v0 is not inident to any edge of GnGk0 . Inpartiular v0 is not inident to any edge of BnGk0 . Hene the right neighbour ofv0 on Ck0 and on Ck are the same vertex, that is, the vertex v1 preeding v0 on P .Observe that v1 is on the left of v(k) on Ck, indeed, v1 an not be equal to v(k) atstep k beause v1 is inident to f , whih is separating at this step. By de�nition ofv1 and by onstrution of the orientation (see Figure 20), P 3�2v(k0) is equal to [v1; v(k0)℄taken from right to left, and (v1; v0) is bi-oriented bi-labelled 3 � 1 from v1 to v0.As v 2 [v1; v(k0)℄ at step k0, [v; v(k0)℄ � [v1; v(k0)℄, so that P 3�2v is equal to [v; v(k0)℄taken from right to left. As (v1; v0) is bi-oriented bi-labelled 3 � 1 from v1 to v0,ACM Journal Name, Vol. V, No. N, Month 20YY.
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e0next

v0 = v(k)e0ve f12 33v (a) fv = v(k)
v0 2 21 3 v(b)Fig. 25. Con�guration of a fae f of G0 whose boundary is a lokwise iruit and suh that theoutgoing edge of the unique primal vertex of f has label 1 (Fig. a) and label 3 (Fig. b).this onludes the proof for the �rst ase (i.e., v1 = v3�2).(2) v0 is ative on Ck0 . In this ase, upon taking v1 to be the vertex v0, a similarargument as for the previous paragraph applies: indeed v1 is a vertex on Ck on theleft of v(k), and P 3�2v is the path on Ck0 going from v to the right neighbour of v1on Ck0 , and the edge onneting the right neighbour of v1 to v1 is simply orientedwith label 3 toward v1 (see Figure 20).Lemma 10.4. The verties a1, a2 and a3 an not belong to any lokwise iruit.Proof. Let us onsider a1 (the ases of a2 and a3 an be dealt with identially).The outgoing edge of a1 with label 1 is direted toward the outer fae. The outgoingedges of a1 with labels 2 and 3 onnet respetively a1 to two edge-verties whoseunique outgoing edge is direted toward the outer fae. Hene eah direted pathstarting at a1 �nishes immediately in the outer fae.10.2.2 Possible on�gurations for a minimal lokwise iruit of X0Lemma 10.5. Let f be an inner fae of G0. Then the boundary of f is not alokwise iruit in X0.Proof. Assume that the ontour of f is a lokwise iruit. We reall that theontour of f has two edge-verties, one dual vertex, and one primal vertex v. Leti be the label of the edge e0 of f going out of v. The edge e0 is the �rst half-edgeof an edge e of G. We denote by ve the edge-vertex of G0 assoiated to e and by v0the vertex of G suh that e = (v; v0). As the ontour of f is a lokwise iruit, theunique outgoing edge of ve follows the edge (ve; v) in w order around ve. Hene,aording to Figure 19(), the edge e is bi-oriented and the seond half-edge of ehas label i + 1. We denote by enext the edge of G following e in lokwise orderaround v. The edge e0next of G0 following e0 in lokwise order around v is the edgeof f direted toward v. Hene, the rules of labelling (Figure 19(a)) ensure that e0nexthas label i� 1. As e0next is the seond half-edge of enext, this ensures that enext issimply oriented with label i� 1 toward v.We now deal separately with the three possible ases i = 1; 2; 3:� Case i = 1: The edge e is bi-labelled 1-2 from v to v0 and enext is simplyoriented with label 3 toward v, see Figure 25(a). Let k be the step of the algorithmduring whih the vertex v0 is treated. Figure 20 ensures that, if v0 is not equalto the rightmost eligible vertex v(k), then the outgoing edge with label 2 of v0 isbi-oriented with label 3 on the other half-edge, whih is not the ase here. Henev0 = v(k).ACM Journal Name, Vol. V, No. N, Month 20YY.



Dissetions and trees � 45In addition, as (v0; v) is bi-labelled 2-1 from v0 to v, the vertex v is passive on Ck.Hene, writing ev! for the edge of Ck whose left extremity is v, there is no edge ofGnGk between e and ev! in lokwise order around v, so that ev! = enext.We laim that k � 2. Otherwise v0 would be equal to a1. As e = (v; v0) is bi-labelled1-2 from v to v0, v would be equal to a2. But aording to Lemma 10.4, a2 an notbelong to any lokwise iruit.Hene k � 2 and we an use Lemma 10.2. In partiular, this lemma ensures thatev! is the outgoing edge of v with label 2. We obtain here a ontradition withthe fat that enext is going toward v with label 3 and ev! = enext.� Case i = 2: The edge e is bi-labelled 2-3 from v to v0 and enext is simplyoriented with label 1 toward v. Let k be the step during whih v is treated. Byonstrution of the orientation (see Figure 20), at step k the vertex v belongsto ℄left(v(k)); v(k)[ and enext is the outgoing edge of v with label 3. This is inontradition with the fat that enext is simply oriented toward v with label 1.� Case i = 3: The edge e is bi-labelled 3-1 from v to v0 and enext is simplyoriented with label 2 toward v, see Figure 25(b). Let v be the origin of enext and letk be the step during whih v is removed from Gk. As enext is simply oriented withlabel 2 from v to v, we have v = v(k) and v = right(v(k)). Lemma 10.2 ensures thatv is the next ative vertex on the right of v(k) on Ck. In addition, k � 2, otherwisev(k) = a1, in ontradition with the fat that the outgoing edge of a1 with label2 is bi-oriented. Hene, we an use Lemma 10.3: here, the next ative vertex onthe right of v(k) is v and the path P 3�2v is empty beause the outgoing edge withlabel 3 of v is bi-labelled 3-1. Hene the vertex denoted by v1 in the statement ofLemma 10.3 is here v. Lemma 10.3 ensures that v is a vertex of Ck on the left ofv(k), in ontradition with the fat that v is the right neighbour of v(k) on Ck.Lemma 10.6 [Felsner 2004℄. The possible on�gurations of an essential ir-uit of X0 are illustrated in Figure 26, where n(3)e (resp. n(4)e ) denotes the numbersof edge-verties on the iruit that have respetively 3 (resp. 4) inident edges onor inside the iruit.Proof. Felsner [2004, Lem.17℄ shows that an essential iruit C of an �0-orientationhas no edge in its interior whose origin is on C. In addition, if C is not the bound-ary of a fae, he shows that all edge-verties have either one inident edge or twoinident edges inside C, whih implies that the length of C is 6, 8, 10, or 12. Theonly possible on�gurations are those listed in Figure 26. As X0 has no lokwiseiruit of length 4 aording to Lemma 10.5, this onludes the proof.10.2.3 No on�guration of Figure 26 an be a lokwise iruit in X0. We haverestrited the number of possible on�gurations for a lokwise iruit of X0 tothe list represented in Figure 26. In this setion, we desribe a method ensuringthat the presene of a lokwise iruit for eah on�guration of Figure 26 yields aontradition. The method relies on Lemma 10.2, Lemma 10.3, and on the followinglemma:Lemma 10.7. At a step k, let v and v0 be two verties on Ck suh that v is on theleft of v0. Assume that there exists a path P = (v0; : : : ; vl) of edges of G suh thatv0 = v, vl = v0, and for eah 0 � i � l � 1, the edge (vi; vi+1) is the outgoing edgeACM Journal Name, Vol. V, No. N, Month 20YY.



46 � Éri Fusy et al.
(a) n(3)e = 3n(4)e = 0 (b) n(3)e = 2n(4)e = 2 () n(3)e = 1n(4)e = 4 (d) n(3)e = 0n(4)e = 6Fig. 26. The possible on�gurations for a minimal lokwise iruit of X0.of vi with label 1 in X0. Then P = [v; v0℄ on Ck and all edges of P are bi-orientedbilabelled 1-3.Proof. Proving that P = [v; v0℄ omes down to proving that all edges of P areon Ck. By onstrution of the orientation (see Figure 20), for eah vertex w of G,the extremity w1 2 G of the outgoing edge of w with label 1 is removed at an earlierstep than w. Moreover, a vertex in GnGk is removed at a step j < k. Hene, if wis in GnGk, then w1 is also in GnGk. Hene, if P passes by a vertex outside of Gk,it an not reah Ck again. By de�nition of an ative vertex of Ck, the extremityof its outgoing edge with label 1 is a vertex of GnGk. Hene none of the vertiesv0; : : : vl�1 an be ative, otherwise P would pass by a vertex outside of Gk andould not reah Ck again.Hene, all verties of Ck enountered by P before reahing v0 are passive. It justremains to prove that the outgoing edge with label 1 of eah passive vertex of Ck isan edge of Ck and will be bi-oriented and bilabelled 1-3 in X0.Let w be a passive vertex of Ck and let wl and wr be respetively the left and theright neighbour of w on Ck. We laim that the outgoing edge of w with label 1 isthe edge (w;wl) if wl will be removed before wr and is the edge (w;wr) if wr willbe removed before wl. Indeed, as long as none of wl or wr is removed, w remainspassive and keeps wl and wr as left and right neighbour. Let k0 be the �rst stepwhere wl or wr is removed. By onstrution of the orientation, two verties v1 andv2 on the boundary of Ck0 suh that ℄v1; v2[ ontains a passive vertex an not beremoved at the same step. Hene, at step k0, either wl or wr is removed. Assumethat the removed vertex at step k0 is wl. Then, at step k0, (w;wl) is given a bi-orientation and reeives label 1 on w's side and label 2 on wl's side, see Figure 20.Similarly, if the removed vertex is wr then, at step k0, (w;wr) is bi-orientated andreeives label 1 on w's side and label 3 on wr's side.Finally, it is easy to see that only this seond ase an happen in the path P ,beause the starting vertex of P is on the left of the end vertex of P on Ck.Lemma 10.8. None of the on�gurations of Figure 26 an be the boundary of alokwise iruit in X0.Proof. We take here the example of the third on�guration of the ase fn(3)e =ACM Journal Name, Vol. V, No. N, Month 20YY.
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v̂
bv1 e�1
e�2 ()Fig. 27. The 3 possible ases for the boundary of the map M assoiated to the third on�gurationof the ase fn(3)e = 2; n(4)e = 2g in Figure 26.2; n(4)e = 2g of Figure 26 and show why this on�guration an not be a lokwiseiruit in X0. Let C be a lokwise iruit orresponding to suh a on�guration.Then C ontains two suessive dual edges e�1 and e�2 �in ounter-lokwise orderaround C� and a unique primal vertex whih we denote by vC . Let M 0 be thesubmap of G0 obtained by removing all edges and verties outside of C. Let M bethe submap of G obtained by keeping only the edges whose assoiated edge-vertexbelongs to M 0 and by keeping the verties inident to these edges. As C is anessential iruit, no edge inside C has its origin on C, see [Felsner 2004, Lem.17℄. Therules of labelling (see Figure 19), the fat that all edge-verties have outdegree 1,and the fat that no edge goes from a vertex of C toward the interior of C determineunambiguously the labels and orientations of all the edges on the boundary ofM inX0, up to the label of the outgoing edge of vC on C. Figures 27(a), 27(b) and 27()represent the respetive on�gurations when the label of the outgoing edge of vCon C is 1, 2 or 3.First, we deal with the ase of Figure 27(a). Let v̂ (resp. bv0) be the primal vertexoutside of C and adjaent to the edge-vertex assoiated to e�2 (resp. e�1). Let bv0 bethe primal vertex inside of C and adjaent to the edge-vertex assoiated to e�2. Letk be the step at whih v̂ is treated. As already explained in preeding proofs (forexample in the proof of Lemma 10.5), it is easy to see that k � 2 and that v̂ is thehosen vertex v(k). Hene we an use Lemma 10.2 and Lemma 10.3. Lemma 10.2and the on�guration of Figure 27(a) ensure that bv0 is the right neighbour of v̂ onCk and that bv0 is the next ative vertex on the right of v̂ on Ck. Moreover, theon�guration of Figure 27(a) ensures that bv1 orresponds to the vertex v1 in thestatement of Lemma 10.3. Hene Lemma 10.3 ensures that bv1 is on Ck on the leftof v̂. We see on Figure 27(a) that there is an oriented path P going from bv1 tobv suh that eah edge of the path is leaving with label 1. Lemma 10.7 ensuresthat all edges of P are bilabelled 1-3, in ontradition with the fat that (bv0; v) isbilabelled 1-2.We deal with the ase of Figure 27(b) similarly. We de�ne v̂ := vC and denoteby bv0 the primal vertex outside of C and adjaent to the edge-vertex assoiated toe�2. We denote by bv1 the primal vertex inside of C and adjaent to the edge-vertexassoiated to e�1. Let k be the step where v̂ is removed. Then it is easy to see thatk � 2 and v̂ = v(k). Hene we an use Lemma 10.2 and Lemma 10.3. Lemma 10.2ACM Journal Name, Vol. V, No. N, Month 20YY.
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