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With the proliferation of wireless communication and mobile devices, various location-based services are emerging. For the
growth of the location-based services, more accurate and various types of personal location data are required. However, concerns
about privacy violations are a significant obstacle to obtain personal location data. In this paper, we propose a local differential
privacy scheme in an environment where there is no trusted third party to implement privacy protection techniques and incentive
mechanisms tomotivate users to provide more accurate location data.*e proposed local differential privacy scheme allows a user
to set a personalized safe region that he/she can disclose and then perturb the user’s location within the safe region. It is the way to
satisfy the user’s various privacy requirements and improve data utility. *e proposed incentive mechanism has two models, and
both models pay the incentive differently according to the user’s safe region size to motivate to set a more precise safe region. We
verify the proposed local differential privacy algorithm and incentive mechanism can satisfy the privacy protection level while
achieving the desirable utility through the experiment.

1. Introduction

With the development of wireless communication tech-
nology and widespread of mobile devices, various location-
based services are emerging. For example, Dark Sky [1] offers
hyperlocal forecasts for an exact address, with down-to-the-
minute notifications about changing weather conditions.
Curbside [2] is the shopping app using the customer’s lo-
cation information. When the user uses the curbside service,
the user gets a notification that the order is ready, and the
retailer/restaurant gets an alert when the customer arrives.

*ere are various techniques [3–8] researched for the
proliferation of LBS, and acquiring the good quality of
personal location data is one of the essential elements in the
LBS. However, there is a risk that personal location data may
cause serious privacy violations such as lifestyle exposure or
stalking. Users who are threatened by privacy violations do
not want to provide their accurate location data. It is one of
the biggest obstacles to use more accurate personal location
information. Many research studies have been carried out to

solve this privacy violation [9–23], and differential privacy,
which is accepted as a de facto standard among the privacy
protection techniques, is being studied to protect the privacy
of personal location data.

Existing differential privacy is based on the assumption
that a trustworthy third party performs the perturbation
process. However, it is not suitable for real-world applica-
tions because the trusted third party is an overly strong
assumption. *erefore, local differential privacy (LDP), in
which data owners randomly perturb their data to guarantee
the plausible deniability without the trusted data curator, has
been proposed. However, LDP has a disadvantage that the
data utility is lower than the central DP (CDP). *us, this
limitation should be solved to apply LDP in the real world.

In this paper, we propose a local differential privacy
scheme to protect the data owner’s location data in an
environment where there is no trustworthy third party to
perform privacy protection. *e proposed local differential
privacy scheme allows a data owner to set a publicly available
region and apply differential privacy to the data owner’s
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location data within the region. For example, a certain data
owner does not mind to disclose the information that he/she
is located in New York. In this case, the goal of differential
privacy is to ensure that the data owner’s exact location
cannot be distinguished from any other location within New
York. We call the region that the data owner set to be
publicly open as a safe region, and the differential privacy is
applied only for the location within the safe region
(Figure 1).

In addition, we propose an incentive mechanism that
motivates the data owner to provide more accurate location
data. In terms of the proposed LDP scheme with the safe
region, how to set the safe region size is a major factor in the
privacy protection level and data utility. *us, the data
consumer pays the incentive to motivate the data owner to
set a safe region as accurate as possible to maximize their
profit. We propose the two types of incentive mechanisms to
determine the incentive and safe region size. One is the
incentive mechanism that maximizes the data consumer’s
profit, and the other is to optimize the profit of both the data
owner and consumer.

*e contributions of this paper are as follows:

(1) Personalized local differential privacy based on the
safe region: in the proposed local differential privacy
scheme, each data owner sets a safe region to reflect
their own privacy sensitivity and the incentive. *e
safe region size is set differently for each data owner.
*us, personalized privacy protection is possible.

(2) Adaptive grid size considering population density:
we suggest an adaptive size grid configuration
technique considering population density in the area
to minimize the unnecessary error. By this scheme,
we can improve the data utility while satisfying the
privacy protection requirements.

(3) Incentive mechanism for profit optimization: we
propose an incentive mechanism that can determine
the safe region size considering the profit between
the data owner and the data consumer.*e proposed
incentive mechanism has two types: a principal-
agent model that maximizes a data consumer’s
profit, and the Stackelberg model that negotiates the
incentive to maximize a data owner and consumer’s
profit.

*e structure of the paper is as follows. In Section 2, we
describe the related works and the existing work’s limitation.
In Section 3, we introduce the proposed local differential
privacy scheme and incentive mechanism. In Section 4, we
verify the proposed method through experiments. In Section
5, we discuss the conclusions and future research studies.

2. Related Works

2.1. Differential Privacy. Differential privacy is a privacy
protection mechanism that prevents private information
exposure, which is proposed by Dwork [9]. Dwork defined a
mathematical model to prevent information exposure,
which ensures privacy protection at a specified level ε. Given

two neighboring databases, D1 and D2, which differ by only
one record, a randomized function K provides ε-differential
privacy if all datasets with D1 and D2 differ by one element
only and all O Range (K), i.e.,

Pr K D1(  ∈ O ≤ exp(ε) · Pr K D2(  ∈ O , ε> 0. (1)

*is description of differential privacy means that spe-
cific individuals in the statistical database cannot be deduced
correctly by keeping the probability of a change in query
results by inserting/deleting one data to be less than eε.

According to the definition, the value of ε which is called
the privacy budget affects the amount of added noise. As ε
decreases, the privacy protection is enhanced. Conversely, as
ε increases, the degree of privacy protection decreases.

*e most widely used technique for inserting noise to
satisfy differential privacy is the Laplace mechanism using
the Laplace distribution. Let f (D) denote a function of
database D. An ε-differentially private Laplace noise
mechanism is defined as L (D)� f (D)+X, where X is a
random variable drawn from the Laplace distribution and
standard deviation�√2Δf /ε. *e Laplace distribution is as
follows:

Pr(Z | (μ, d) �
1
2b

e
(|x− μ|/b)

. (2)

Δf is the sensitivity of the function, which means that the
maximum value of the change in the query results due to
insertion/deletion of a specific individual, that is, the higher
the sensitivity and the smaller ε are, the greater the prob-
ability that a larger noise is inserted.

A

B

C

D

Figure 1: *e example of a safe region. In this map, users A, B, C,
and D have different sizes of safe region.
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One of the main properties of differential privacy [9] is
that it allows composing of queries. Suppose that the al-
gorithms K1 and K2 satisfy ε1-DP and ε2-DP, respectively.
*en, K1 and K2 also satisfy the following properties:

Sequential composition: for any database D, the al-
gorithm that performs K1(D) and K2(D) satisfies
(ε1 + ε2)-DP.
Parallel composition: let A and B be the partition of any
database D (A∪B � D, A∩B � ∅). *en, the algo-
rithm that performs K1(A) and K2(B) satisfies the max
(ε1, ε2)-DP.

2.2. Differentially Private Location Data. *e research for
differentially private location data has mainly been studied
to protect the count estimation of users for cell-based lo-
cations. *e utility of these studies is evaluated by the dif-
ference between the differentially count estimation in each
cell and real count estimation for range query Q.

*e study of [10] applied differential privacy by dividing
the entire area into hierarchical grids. In this study, they
propose two spatial decomposition techniques: kd-tree,
which divides the area in consideration of the density, and
quad-tree, which divides the region regardless of density.
*e study of [11] argues that the existing differential privacy
mechanism is not suitable for location data because of the
problem of excessive sensitivity when considering all the
points of interest. *ey divide the entire location data into
smaller local problems using a local quad-tree with differ-
ential privacy to provide better accuracy at the same dif-
ferential privacy level. Qardaji et al. [12] proposed a uniform
grid method (UG) and an adaptive grid approach (AG) to
determine the optimal size of the grid cell that divides the
region. In the UG scheme, each cell has the same size, but in
the AG scheme, the size of each cell differs depending on the
data distribution. Li et al. [13] proposed a range query
method that determines the optimum size for partitioning
the data domain considering the data distribution and
calculates the count of each region considering the query
workload. Li et al. [13] have verified that the proposed
method is suitable for two-dimensional data through the
experiment. Chen [14] is the first study to apply differential
privacy to location data in a local setting. Chen [14] has
defined a safe region taxonomically where the user feels safe
to disclose and provide location perturbation method, which
satisfies local differential privacy.

As we have seen, the application of differential privacy to
location data has mainly focused on studies in the central
setting. However, existing research cannot be applied to a
local setting environment where there is no trustworthy data
curator to carry out differential privacy. Although the local
setting has a more realistic premise than the central setting, it
is important to improve the utility in the local setting be-
cause it has the disadvantage of being less useful than the
central setting in terms of data utility.

In this paper, we try to improve the utility in a local
setting by determining the adaptive grid size considering the
population density in each area. In addition to that, we

propose an incentive mechanism that can motivate users to
provide more accurate location data by paying an incentive.

2.3. Variation of Differential Privacy. Apple, Google, and
Microsoft have introduced local differential privacy algo-
rithms [15–17], and several studies try to apply existing CDP
algorithms to local settings. *e definition of local differ-
ential privacy is as follows.

Definition 1 (local differential privacy, see [18]). A ran-
domized algorithm K satisfies ε-local differential privacy if,
for any pair of values d and d’∈D and for any O ⊆ Range (K),

Pr[K(d) ∈ O]≤ exp(ε) · Pr K d′(  ∈ O , (3)

where the probability space is over the coin flips of K.
LDP has the advantage of not having a trusted third party

that performs the DP, but it has the disadvantage of sig-
nificantly reducing data utility compared to CDP. Especially,
as the data domain size increases in LDP, the data utility is
deteriorated because of the probability of reporting a
noncorrect value by the randomization algorithm increases.
For example, in the case of location data, if a country level is
set as the data domain, data utility is much lower than for a
city. Several techniques are proposed to avoid this problem
in LDP, such as domain size reduction or fixed domain size
using a hash function.

Another variation of DP is a personal DP (PDP). In
general, DP applies the parameter ε, which determines the
level of privacy protection to all personal data. PDP is a
variation of DP that each data owner can personally set ε on
the premise that each individual has a different privacy
sensitivity. Ebadi et al. [19] defined the PDP that generalizes
the definition of DP and proposed an interactive query
system called ProPer to implement PDP. Jorgensen et al. [20]
proposed a PDP technique that improved data utility while
satisfying each user’s privacy requirements using the ex-
ponential mechanism. Chen [14] proposed a personalized
LDP in which the user can select the size of the safe region
that each individual allows disclosing the area where his or
her is located.

PDP is proposed under the realistic assumption that each
individual’s privacy sensitivity is different. Although PDP
has the advantage of being able tomeet each person’s privacy
requirements while providing better data utility compared to
existing DP, PDP needs to consider how to make criteria to
determine each user’s privacy parameter. In this paper, we
define the personalized LPD in which each user can set
different safe regions according to each individual’s privacy
sensitivity and propose an incentive mechanism to motivate
the user to set the smaller safe region. Our Personalized LDP
definition is as follows.

Definition 2 (personalized local differential privacy). Given
the personalized privacy specification (τ, ε) of a data owner u
and τ is the data owner u’s safe region size, a randomized
algorithm K satisfies (τ, ε)-personalized local differential
privacy (or (τ, ε)-PLDP) for u if, for any two locations l and l′
∈ τ and any O ⊆ Range (K),
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Pr[K(d) ∈ O]≤ exp(ε) · Pr[K d′(  ∈ O, (4)

where the probability space is over the coin flips of K.

2.4. PricingMechanism. Along with the study of differential
privacy itself, research has studied data pricing in consid-
eration of the privacy protection level [24–30]. Jorgensen
et al. [20] proposed a pricing function considering arbitrage-
free and discount-free when the buyer queries the data.
Ghosh and Roth [25] proposed a compensation mechanism
in which data owner is rewarded based on data accuracy
when they provide data with differential privacy. In the
previous research, a data pricing mechanism sets the price
according to the predefined query type or proceeds auction.
However, these methods have limitations in determining
price only from the data consumer’s perspective. Anke et al.
and Rachana et al. [26, 31] suggested a mechanism to adjust
the balance between privacy and cost in the data market
environment.*ey consider the owner’s benefit, but it is still
at an early stage.

*e existing pricing mechanism focuses on data pricing
according to ε value. In addition to the existing pricing
mechanism for ε value, we propose an incentive mechanism
based on safe regions to satisfy the PLDP definition. We
propose the two incentive mechanisms in terms of the
participant’s profit: one is the principal-agent model to
maximize the data consumer’s profit; the other is the
Stackelberg model which optimizes both the data owner and
consumer’s profit.

3. Differentially Private Location Data in Local
Setting and Pricing Mechanism

3.1. Overview. As described above, the proposed local dif-
ferential privacy scheme determines the adaptive grid size by
considering the density information of the area and satisfies
PLDP definition by applying perturbation within a personal
safe region, which is set by the user. To perform the proposed
scheme, we need a user’s privacy sensitivity, density in-
formation, and incentive incentivei,j. Unlike CDP, user’s
privacy sensitivity and density information should be col-
lected in the LDP environment. To this end, we design the
proposed scheme in two phases to collect the necessary
information from the user. An overview of the entire process
is shown in Figure 2.

Step 1: the data consumer divides the entire area into a
uniform size grid and then sends the grid map to
each user.

Step 2: users perturb their location using a uniform size
grid map and send perturbed location data to the
data consumer.

Step 3: the data consumer aggregates perturbed loca-
tion data and then divides each uniform grid
area into an adaptive grid size using the ag-
gregated perturbed data. *e data consumer
sends the adaptive grid map, density

information, and suggested incentive
incentivei,j to each user.

Step 4: each user determines the safe region size using
the adaptive grid map, density information, and
incentivei,j and sends the perturbed data within a
safe region to the data consumer.

Step 5: the data consumer estimates the total count
estimation using the perturbed location
information.

In the following sections, we describe each step in more
detail. Section 3.2 describes the local differential privacy
schemes, and Section 3.3 describes the proposed incentive
mechanism. *e notation used in this paper is as follows
(Table 1).

3.2. Differentially Private Location Data in a Local Setting

3.2.1. Phase 1: Density Estimation for the Entire Area.
*e first step in the proposed local differential privacy
scheme is to obtain the entire area’s density information. In
the central setting, it is not necessary to collect the density
information because it is already known. However, in the
local setting, we should collect density information to de-
termine the adaptive grid size. We split the entire budget to
ε1 and ε2 and use ε1 to collect the entire area’s density in-
formation and ε2 to perturb user’s location within the safe
region.

First, we divide the entire area into a uniform grid size.
When we divide the area into the grid and apply the DP to
location information, we should consider two types of error.
*e first one is caused by noise insertion for DP, and the
other is a nonuniformity error that is caused by dividing the
area into the grid. If the density of all areas is uniform, the
nonuniformity error is 0, but if the density is skewed, this
error increases, that is, if the size of the grid increases, the
nonuniformity error increases. On the contrary, the error for
DP reduces as the grid size increases because of the number
of the grid in which noise is inserted by DP decreases. *us,
we need to set an appropriate grid size to minimize the sum
of the two types of errors. In this paper, we follow Guideline
1, which is validated by Qardaji et al. [12] to minimize the
sum of errors.

Guideline 1. In order to minimize the error in uniform
grid size, the grid should be partitioned into m1 ×m1 cells,
where m1 is computed as follows:

m1 �

����
Nε1

c



, (5)

where N is the number of users in the entire area, ε1 is the
total privacy budget, and c is the small constant (usually
c� 10) depending on the dataset.

After the data consumer sends the grid map to the user,
users send the perturbed location using a uniform size grid
map to the data consumer.We use the Hadamard count-min
sketch data structure for the user’s location perturbation.
*e count-min sketch is the probabilistic data structure [30],
which is mainly used for frequency estimation in data
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streaming environments where only a small fraction of el-
ements have a high-frequency value. Our intuition is that the
count-min sketch is suitable because location data is gen-
erally skewed in a specific area.

Hadamard transform is [32] a useful tool for reducing
the communication cost and error. *e Hadamard matrix H
is defined recursively as follows:

Hi �
Hi/2 Hi/2

Hi/2 − Hi/2
 , (6)

where H1 � [1] and i is power of two.

Note that the columns of Hi are orthogonal and
Hi · HT

i � i · Ii.
Our randomizer takes as input an m-bit string repre-

sented as − (1/
��
m

√
), (1/

��
m

√
) 

m, and m could be any value
that is large enough to satisfy the Johnson–Lindenstrauss
Lemma (JL-Lemma).

Theorem 1 (Johnson–Lindenstrauss lemma). Given 0<
η< 1, a set of V of m points in RD, and a number
n> 8 ln(m)/η2, there is a linear map f: RD⟶ Rd such that

(1 − η)u − v
2 ≤f(u) − f(v)

2 ≤ (1 + η)u − v
2
, (7)

for all u, v ∈V.

*e local randomizer and count estimation algorithm
are given in Algorithm 1.

*is local randomizer [25] guarantees the local differ-
ential privacy. We use this local randomizer in Algorithm 2.

Algorithm 2 is based on succinct histogram protocol
[25], and we describe Algorithm 2. Firstly, the server cal-
culates the number of grid d and divides the entire area into a
uniform grid size (line 1). Secondly, the server generates the
k × m sketch matrix Mh(line 5), and each user maps their
location’s grid to j hash function value, randomizes this hash
function using local randomizer LR, and sends it to the
server (lines 7–14). *e server decodes the perturbed

User Data consumer

Step 1: uniform grid amp

Step 2: perturbed location data

Phase 1

User Data consumer

Step 3: adaptive grid map and price Pi 

Step 4: perturbed location data within safe region

Phase 2

Step 5: aggregation

Figure 2: Overview of the proposed local differential privacy scheme.

Table 1: Key notation.

Key notations
Ci ith data consumer
Pj jth user
Sj jth user safe region
Uci

ith data consumer profit
Upj

jth user profit
incentivei,j Incentive by the ith data consumer to the jth user
utili ith data consumer’s utility for jth user data
θj jth user privacy sensitivity
p costj jth user privacy cost
c costj jth user communication cost
SmaxandSmin Maximum/minimum size of safe region
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Hadamard code, estimates the count-min sketch (lines
15–19), and returns the count-min sketch structure Mh. *e
server determines the user ith location li’s count estimation as
Min(Mh1(li), . . . , Mhj (li)).

3.2.2. Phase 2: Count Estimation Using the Safe Region.
*e data consumer estimates the density of the entire area
using information gathered in phase 1 and then divides the
entire area into adaptive grid sizes. We follow the adaptive
grid size guideline [12].

Guideline 2. Given a cell with a noisy count of N’, to
minimize the errors, the grid should be partitioned into
m2 ×m2 cells, where m2 is computed as follows:

m2 �

����
N′ε2

c2



, (8)

where c2 � c/2 and c is the same constant as in Guideline 1.

*e major benefit of the adaptive grid over the existing
recursive partition-based method [8] is the data utility en-
hancement. In the case of the existing partition-based
method without considering the population density, noise is
inserted into an unnecessary area where users do not exist
(sparsity problem). It causes serious data utility degradation.
On the contrary, in the case of an adaptive grid considering
the population density, the grid size is determined according
to the density of each cell. It mitigates the data utility
deterioration.

In addition to that, we apply PLDP within the safe re-
gion. By using the safe region, we can reduce the data
domain to improve the data utility and meet each user’s
realistic privacy requirements.

After the adaptive grid size determination, the data
consumer distributes an adaptive grid map and the incentive
incentivei,j to each user. Each user sets a safe region based on
the adaptive grid map, incentivei,j, and their own privacy
sensitivity θj.

Input: m-bit string x ∈ − (1/
��
m

√
), (1/

��
m

√
) 

m, the privacy budget ε, and user’s hashed location li,j
Output: sanitized bit zj

(1) Generate the standard basis vector el ∈ 0, 1{ }d

(2) xl � XTel

(3) Randomize j-bit xj of the input x ∈ − (1/
��
m

√
), (1/

��
m

√
) 

m

(4) zj �
cεmxli,j,with probability(e

ε/eε + 1)

− cεmxli,j,with probability (1/eε + 1)


(5) where cε � (eε + 1/eε − 1)

(6) return zj

ALGORITHM 1: Local randomizer LR.

Input: user’s location li, number of user n, confidence parameter 0< β< 1, and user’s privacy specification ε1
Output: user location count Min(Mh1(li), . . . , Mhj (li))

(1) Server calculates the number of grid d �
������
(Nε/c)



(2) Server calculates c⟵
������������
(log(2 d/β)/n)



(3) Server calculates m m⟵ (log(d + 1)log(2/β)/c2)
(4) Server generates a random matrix ϕ ∈ − (1/

��
m

√
), (1/

��
m

√
) 

m

(5) Server initializes Mh ∈ 0{ }k×m

(6) Server initializes z and f
(7) for each user ui do
(8) for each hash hj do
(9) server randomly generates k from {1, . . ., m}
(10) server sends kth row φk to ui
(11) ui returns zi,j � LR(ϕk, hj(li), ε1) to server
(12) server adds zi,j to kth bit of Mhj

(13) end for
(14) end for
(15) for each hash hj do
(16) for each hashed location hj(li) do
(17) server sets Mhj ‘s ith element of c to 〈φi, z〉

(18) end for
(19) end for
(20) return Min(Mh1(li), . . . , Mhj (li))

ALGORITHM 2: Hadamard count-min sketch LDP algorithm.
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Definition 3 (safe region). *e safe region is an area where
each user j allows to be exposed in public. *e safe region
size is calculated as follows:

Si � e
− incentivej,k/θk( 

× Smax, (9)

where Smax is set by the data consumer.
If the proposed incentive incentivei,j becomes larger, the

safe region size becomes smaller. If privacy sensitivity be-
comes larger, the size of the safe region also becomes larger.
Each user perturbs his/her location data within a safe region
using an adaptive grid and sends it to the data consumer. We
use ε2 for the location perturbation and modify the succinct
histogram method [33] for the local environment to perturb
the user’s location. *e data consumer aggregates the per-
turbed location and performs the final count estimation.

3.3. Incentive Mechanism for Optimization. In the proposed
technique, the data utility is affected by ε value and safe region
size Si. We assume that the ε value determines the existing
incentive mechanism. *us, data consumers have the moti-
vation to pay a reasonable incentive to encourage the user to
set a safe region size as accurate as possible. We propose the
two incentivemodels: a principle-agent model thatmaximizes
a data consumer’s profit, and the Stackelberg model to
maximize a profit of both data consumer and data owner.

3.3.1. Principal-Agent Model. If a data consumer knows the
user’s privacy sensitivity, the data consumer can set an
incentive to maximize his/her own profit. *is incentive
must be larger than the user’s cost.*e equation is expressed
as follows:

maxUci
incentivei,j ,

such thatUpj
incentivei,j > 0 .

(10)

*e profit of the consumer is calculated by the profit that
consumer gains using the data minus the cost that the
consumer pays. *e consumer’s profit is affected by the safe
region size Si, data utility utili, and payment incentivei,j for
the data.

*e safe region size is determined by each user’s privacy
sensitivity θj and incentivei,j paid by the consumer i
(Figure 3).

*e higher the privacy sensitivity θ, the larger the Si, and
the higher the incentivei,j, the smaller the Si. *e data
consumer and user’s profit function U(incentivei,j) is as
follows:

Uci
� 

n

j

1 − Si(  × utili − incentivei,j , (11)

Upj
� incentivei,j − 1 − Si(  × p costj, (12)

where (1 − eSi ) × p costj is the user j’s privacy cost.
Since the utili and θj are constants, which are set by the

consumer and user, the profit is determined by Si, which is

affected by the incentivei,j paid by the consumer. *us, we
should find a incentivei,j to maximize equation (11).

*e first-order derivate of the function Uci
is

(z/zincentivei,j)Uci
� (utili × e(incentivei,j/θj)/θj) − 1. We ob-

tain optimal incentive∗i,j, where (utili × e(incentivei,j/θj)/θj) − 1 �

0 because the second-order derivate of the function Uci
is

(z2/z2incentivei,j) � − (utili × e(incentivei,j/θj)/θ2j)< 0.
*en, the data consumer pays incentive∗i,j for the user

who is able to maximize their profits.

3.3.2. Stackelberg Game Model. If the data consumer does
not know the user’s privacy sensitivity, the principal-agent
model cannot be used. In this case, we use the Stackelberg
model for incentive mechanisms. *e Stackelberg game [34]
is a type of game theory in which one participant becomes a
leader with more information than the other participants,
predicting their reaction to their strategy and making de-
cisions. *e remaining participants become followers of the
leader and take the action that is most profitable to himself/
herself. *e follower does not have information about the
leader’s decision, but the leader has information about the
follower’s decision-making process. *erefore, the leader
can predict the reaction that the follower will react to the
leader’s decision. *e leader puts his followers’ responses to
his choices in advance and decides his optimal strategy. *e
follower observes the leader’s strategy and chooses his/her
best strategy.

We define the incentive problem of safe region size as a
Stackelberg game situation. *e data consumer is acting as
the leader, and the user is the follower. *ey try to maximize
their own profit as follows:

maxUci
incentivei,j ,

maxUpj
incentivei,j .

(13)
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Figure 3: Safe region size with incentivei,j and θj.
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Backward induction is applied to solve the problem.
First, given incentivei,j, the user determines Si to optimize
Upj

. Based on the user’s decision on safe region size, the data
consumer decides on incentivei,j to optimize their profit Uci

.

4. Experimental Results

4.1. Experimental Environments. We perform the following
experiments to verify the proposed scheme:

(1) Hadamard count-min sketch local DP performance
(2) Impact of privacy sensitivity based on safe region size
(3) Comparison of the principle-agent model and

Stackelberg model
(4) Comparison of the proposed PLDP and existing

methods

*e data used in the experiment are Yelp [35] and
California datasets [36]. Yelp data is a check-in data con-
sisting of user’s location data, about 5 million data, and
California data is location data of the point of interest in
California, which has 85,920 data. We sampled this data in
our experiments.

*e parameters used in the experiments and the default
values are given in Table 2.

*e values in bold are the default parameter values. *e
size of the grid was determined by using Guidelines 1 and 2,
and the ratio of ε1 to epsilon ε2 is 7 : 3 because ε1 splits to the
hash function which is used in sketch structure. We use the
RMSE as the evaluation criteria for measuring the
performance.

We use Super Micro Computer, Inc.’s SuperServer
7049P-TR (64-bit), consisting of CPU Intel Xeon Silver 4110
and 64GB memory, and the operating system is Ubuntu
16.04.2 LTS. *e proposed technique is implemented in
Python 2.7.12.

4.2. Hadamard Count-Min Sketch Local DP Performance.
*e proposed PLDP scheme uses the succinct histogram
method proposed in [33] using a count-min sketch and
Hadamard transform. As the number of hash h and sketch
vector size w become larger, the error due to collision de-
creases. However, if the w becomes larger, the domain size
increases and data utility decreases due to the perturbation.
If h increases, ε1 should split by the sequential composition
property. We experimented with changing the number of
sample N, h, and w.

Experimental results show that the accuracy increases
when h and w increases (Figure 4). However, as the h and w

increases, the accuracy enhancement ratio decreases. We find
that if the epsilon value was sufficient, the accuracy en-
hancement ratio is sustained. *is is the result of interference
between the sketch structure and succinct histogram protocol.

4.3. Impact of Privacy Sensitivity Based on Safe Region Size.
In the proposed scheme, each user has their own privacy
sensitivity θj, which is a factor determining the safe region
size with incentivei,j.

We measured the mean value of the safe region size
according to the distribution of the users’ θj and the RMSE
value when the pricei,j is fixed. First, we classify the users into
three groups: (θ� 20: θ � 40: θ� 60)�(10 : 20 : 70), (θ� 20:
θ� 40: θ� 60)�(30 : 40 : 30), and (θ� 20: θ� 40: θ� 60)�(70 :
20 :10), that is, we classify the users into high-sensitivity
group, normal sensitivity group, and low-sensitivity group.
incentivei,j is fixed at 40, and the other parameter is set equal
to the default setting.

When Smax is set as the entire area, the experimental
results show that safe region size is changed according to the
privacy sensitivity (Figure 5). *ese results confirm that the
group with higher privacy sensitivity set a larger safe region
and the group with smaller privacy settings had a smaller
safe region. Moreover, the RMSE score was changed in
proportion to the safe region size.

4.4. Comparison in the Principle-AgentModel and Stackelberg
Model. We compared the profits of data consumers and
users when determining incentivei,j using the proposed in-
centive models, the principal-agent model and Stackelberg
model. We fixed the privacy sensitivity to a normal group
and compared the profit and performance of both models.
*e consumer’s total budget was limited to 100,000. As
shown in the results, the principal-agent model has a higher
profit for the data consumer, and the RMSE is also lower
(Table 3, Figure 6). *is is because the Stackelberg model
basically supposes the decentralized environment, which
does not have a trusted third party. However, as can be seen
from the safe region size, the Stackelbergmodel is a more fair
model for the user than the principal-agent model.

4.5. Comparison in the Proposed PLDP and ExistingMethods.
We compared the performance of the proposed PLDP and
existing methods [13, 14]. We select [13] as a comparative
group because it proposes a local differential privacy scheme
using a safe region in the same way as the proposed tech-
nique. However, they use a uniform grid size and static tree-
structure taxonomy for the safe region.*e study [13] is used
as a comparative group in many research studies because it
shows a fine performance for differentially private location
data. It [13] is not a local differential privacy scheme, but it
can adapt to the local differential privacy easily. In the
experiment, we set the default parameter value, but for [13],
we set the average safe region size in the proposed technique.
*e experiment was carried out by changing the epsilon
value from 1 to 3.

Table 2: *e parameter and default value.

Parameter Value
Number of sample N 10,000, 15,000, and 20,000
Epsilon value ε 1, 2, and 3
Number of hash h 2, 3, and 4
Sketch vector size w 16, 32, and 64
θj 20, 40, and 60
P_costj 40
utili 40
Pricei,j 40
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*e experimental result shows that the proposed tech-
nique has the lowest RMSE value (Figure 7). In the case of
the proposed technique and [10], it shows higher

performance than [13] because noise is only inserted into the
safe region’s grid. *e proposed technique shows higher
performance than [14] because the proposed technique
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Table 3: Parameter and default values.

Model Total profit Average profit Average safe region size RMSE

Yelp Principal-agent model 54,030 5.783 0.156 8.485
Stackelberg model 39,141 4.189 0.193 10.021

CAL Principal-agent model 39,128 4.169 0.192 9.764
Stackelberg model 27,812 2.877 0.237 11.932
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Figure 6: RMSE score of the principal-agent model and Stackelberg model for Yelp and California datasets.
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adjusts the grid size in consideration of the population
density. In the local differential scheme, inserting noise into
unnecessary grid deteriorates the data utility and the ex-
perimental result shows that the proposed technique suc-
cessfully reduces unnecessary noise.

However, the proposed technique has a problem that it
spends privacy budget twice to collect the population density
information for grid size adaption. If we can use the publicly
available data, such as [37], we can enhance the proposed
technique’s performance.

5. Conclusion

As the demand for valuable personal data increases, the
privacy violation also increases.*e personal location data is
directly related to individual privacy. *us, it needs to be
protected more strictly. In this paper, we propose a per-
sonalized differentially private location data scheme in the
local setting and an incentive mechanism in which users
receive reasonable compensation for their data, while the
data consumer optimizes their profit. *e proposed scheme
aims to satisfy both privacy protection and utility more
realistically by introducing the concept of a safe region. In
future work, we will study the pricing mechanism that
considers epsilon values with safe region size.
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