
ZU064-05-FPR jfp 10 August 2016 17:36

Under consideration for publication in J. Functional Programming 1

Which simple types have a unique inhabitant?

Gabriel Scherer
Northeastern University

Didier Rémy
INRIA Paris

Abstract

Some programming language features (coercions, type-classes, implicits) rely on inferring a part
of the code that is determined by its usage context. In order to better understand the theoretical
underpinnings of this mechanism, we ask: when is it the case that there is a unique program that
could have been guessed, or in other words that all possible guesses result in equivalent program
fragments? Which types have a unique inhabitant?

To approach the question of unicity, we build on work in proof theory on more canonical represen-
tation of proofs. Using the proofs-as-programs correspondence, we can adapt the logical technique
of focusing to obtain more canonical program representations.

In the setting of simply-typed lambda-calculus with sums, equipped with the strong βη-equivalence,
we show that uniqueness is decidable. We present a saturating focused logic that introduces irre-
ducible cuts on positive types “as soon as possible”. Goal-directed proof search in this logic gives an
effective algorithm that returns either zero, one or two distinct inhabitants for any given type.

This document is a largely extended version of the conference article Scherer and
Rémy [2015]. The major changes to the presentation are the following:

• Focusing is introduced and detailed in Section 2 (Introduction to focusing), in
a way that should be self-contained and accessible to a programming-language
audience.

• The conference presentation of focusing and related type systems used the usual
types of the λ -calculus, distinguishing positive, negative and atomic types after
the fact. The current presentation introduces, in Section 2.4.1 (Explicit shifts), an
explicitly polarized syntax with separate grammatical categories, explicit shifts
between polarities, and polarized (positive and negative) atoms. This presenta-
tion is more in line with recent expositions of focusing, and results in a more
general, uniform system that is easier to generalize.

• Section 5 (Saturation logic for canonicity) introduces the main contribution of
this work, namely the saturating focused system, in a much more didactic and
detailed way than could be achieved in the conference version. Minor issues in
the formalization have been corrected – we explicitly mention those.

ZU064-05-FPR jfp 10 August 2016 17:36

1 Introduction

In this article, we answer an instance of the following question: “Which types have a unique
inhabitant”? In other words, for which type is there exactly one program of this type?
Which logical statements have exactly one proof term?

To formally consider this question, we need to choose one specific type system, and one
specific notion of equality of programs – which determines uniqueness. In this article, we
work with the simply-typed λ -calculus with atoms, functions, products and sums as our
type system, and we consider programs modulo βη-equivalence. We show that unique
inhabitation is decidable in this setting; we provide and prove correct an algorithm to
answer it, and suggest several applications for it. This is only a first step: simply-typed
calculus with sums is, in some sense, the simplest system in which the question is delicate
enough to be interesting. We hope that our approach can be extended to richer type systems
– with polymorphism, dependent types, and substructural logics.

1.1 Why unique?

We see three different sources of justification for studying uniqueness of inhabitation:
practical use of code inference, programming language design, and understanding of type
theory.

In practice, if the context of a not-yet-written code fragment determines a type that is
uniquely inhabited, then the programming system can automatically fill the code. This is
a strongly principal form of code inference: it cannot guess wrong. Some forms of code
completion and synthesis have been proposed [Perelman, Gulwani, Ball, and Grossman,
2012, Gvero, Kuncak, Kuraj, and Piskac, 2013], to be suggested interactively and approved
by the programmer. Here, the strong restriction of uniqueness would make it suitable
for a code elaboration pass at compile-time: it is of different nature. Of course, a strong
restriction also means that it will be applicable less often. Yet we think it becomes a useful
tool when combined with strongly typed, strongly specified programming disciplines and
language designs – we have found in preliminary work [Scherer, 2013] potential use cases
in dependently typed programming. The simply-typed lambda-calculus is very restricted
compared to dependent types, or even the type systems of ML, System F, etc. used in
practice in functional programming languages; but we have already found a few examples
of applications (Section 8 (Evaluation)). This shows promises for future work on more
expressive type systems.

For programming language design, we hope that a better understanding of the question
of unicity will let us better understand, compare and extend other code inference mecha-
nisms, keeping the question of coherence, or non-ambiguity, central to the system. Type
classes or implicits have traditionally been presented [Wadler and Blott, 1989, Stuckey
and Sulzmann, 2002, Oliveira, Schrijvers, Choi, Lee, Yi, and Wadler, 2014] as a mech-
anism for elaboration, solving a constraint or proof search problem, with coherence or
non-ambiguity results proved as a second step as a property of the proposed elaboration
procedure. Reformulating coherence as a unique inhabitation property, it is not anymore
an operational property of the specific search/elaboration procedure used, but a semantic
property of the typing environment and instance type in which search is performed. Non-

2

ZU064-05-FPR jfp 10 August 2016 17:36

ambiguity is achieved not by fixing the search strategy, but by building the right typing en-
vironment from declared instances and potential conflict resolution policies, with a general,
mechanism-agnostic procedure validating that the resulting type judgments are uniquely
inhabited.

In terms of type theory, unique inhabitation is an occasion to take inspiration from the
vast literature on proof inhabitation and proof search, keeping relevance in mind: all proofs
of the same statement may be equally valid, but programs at a given type are distinct in
important and interesting ways. We use focusing [Andreoli, 1992], a proof search discipline
that is more canonical (enumerates less duplicates of each proof term) than simply goal-
directed proof search, and its recent extension into (maximal) multi-focusing [Chaudhuri,
Miller, and Saurin, 2008a].

1.2 Example use cases

Most types that occur in a program are, of course, not uniquely inhabited. Writing a term
at a type that happens to be uniquely inhabited is a rather dull part of the programming
activity, as there are no meaningful choices. While we do not hope types with inhabitants
would occur all instances of boring programming tasks, we have identified two areas where
they may appear:

• inferring the code of highly parametric (strongly specified) auxiliary functions
• inferring fragments of glue code in the middle of a more complex (and not uniquely

determined) term

For example, if you write down the signature of flip
∀αβγ.(α → β → γ)→ (β → α → γ) to document your standard library, you should not
have to write the code itself. The types involved can be presented equivalently as simple
types, replacing prenex polymorphic variables by uninterpreted atomic types (X, Y, Z. . .).
Our algorithm confirms that (X → Y → Z)→ (Y → X → Z) is uniquely inhabited and
returns the expected program – same for curry and uncurry, const, etc.

In the middle of a term, you may have forgotten whether the function issue accepts
a journal as first argument and a volume as second argument, or the other way around.
Suppose a language construct ?! that infers a unique inhabitant at its expected type (and
fails if there are several choices), understanding abstract types (such as journal) as un-
interpreted atoms. You can then write (?! journal jfp my volume), and let the pro-
gramming system infer the unique inhabitant of, depending on the actual argument order,
either (journal→ volume→ issue)→ (journal→ volume→ issue) or (journal→
volume→ issue)→ (volume→ journal→ issue) – note that it would also work for
journal×volume→ issue, etc.

1.3 Aside: Parametricity?

Can we deduce unique inhabitation from the free theorem of a sufficiently parametric
type? We worked out some typical examples, and our conclusion is that this is not the
right approach. Although it was possible to derive uniqueness from a type’s parametric
interpretation, proving this implication (from the free theorem to uniqueness) requires

3

ZU064-05-FPR jfp 10 August 2016 17:36

arbitrary reasoning steps, that is, a form of proof search. If we have to implement proof
search mechanically, we may as well work with convenient syntactic objects, namely
typing judgments and their derivations.

For example, the unary free theorem for the type of composition ∀αβγ.(α → β)→
(β → γ)→ (α → γ) tells us that for any sets of terms Sα ,Sβ ,Sγ , if f and g are such that,
for any a ∈ Sα we have f a ∈ Sβ , and for any b ∈ Sβ we have g b ∈ Sγ , and if t is of the
type of composition, then for any a ∈ Sα we have t f g a ∈ Sγ . The reasoning to prove
unicity is as follows. Suppose we are given functions (terms) f and g. For any term a, first
define Sα

def
= {a}. Because we wish f to map elements of Sα to Sβ , define Sβ

def
= { f a}.

Then, because we wish g to map elements of Sβ to Sγ , define Sγ

def
= {g (f a)}. We have that

t f g a is in Sγ , thus t f g is uniquely determined as λa.g (f a).
This reasoning exactly corresponds to a (forward) proof search for the type α → γ in

the environment α,β ,γ, f : α → β ,g : β → γ . We know that we can always start with
a λ -abstraction (formally, arrow-introduction is an invertible rule), so introduce x : α

in the context and look for a term of type γ . This type has no head constructor, so no
introduction rules are available; we shall look for an elimination (function application or
pair projection). The only elimination we can perform from our context is the application
f x, which gives a β . From this, the only elimination we can perform is the application
g (f x), which gives a γ . This has the expected goal type: our full term is lamxg (f x). It is
uniquely determined, as we never had a choice during term construction.

1.4 Formal definition of equivalence

We recall the syntax of the simply-typed lambda-calculus types (Figure 1), terms (Figure 2)
and neutral terms. The standard typing judgment Γ ` t : A is recalled in Figure 3, where Γ

is a general context mapping term variables to types. The equivalence relation we consider,
namely βη-equivalence, is defined as the least congruence satisfying the equations of
Figure 4. Writing t : A in an equivalence rule means that the rule only applies when the
subterm t has type A – we only accept equivalences that preserve well-typedness.

Fig. 1. Types of the simply-typed calculus

A,B,C,D ::= types
| X ,Y,Z atoms
| A→ B function types
| A×B product types
| A+B sum types

The equivalence rules of Figure 4 make it apparent that the η-equivalence rule for sums
is more difficult to handle than the other η-rule, as it quantifies on any term context C[�].
In fact, it is only at the end of the 20th century [Ghani, 1995, Altenkirch, Dybjer, Hofmann,
and Scott, 2001, Balat, Di Cosmo, and Fiore, 2004, Lindley, 2007] that decision procedures
for equivalence in the lambda-calculus with sums were first proposed.

Can we reduce the question of unicity to deciding equivalence? One would think of
enumerating terms at the given type, and using an equivalence test as a post-processing
filter to remove duplicates: as soon as one has found two distinct terms, the type can be

4

ZU064-05-FPR jfp 10 August 2016 17:36

Fig. 2. Terms of the lambda-calculus with sums

t,u,r ::= terms
| x,y,z variables
| λx. t λ -abstraction
| t u application
| (t,u) pair
| πi t projection (i ∈ {1,2})
| σi t sum injection (i ∈ {1,2})

| match t with
∣∣∣∣ σ1 x1→ u1

σ2 x2→ u2
sum elimination (case split)

n,m := x,y,z | πi n | n t neutral terms

Fig. 3. Typing rules for the simply-typed lambda-calculus

Γ,x : A ` x : A

Γ,x : A ` t : B

Γ ` λx. t : A→ B

Γ ` t : A→ B Γ ` u : A

Γ ` t u : B

Γ ` t1 : A1 Γ ` t2 : A2

Γ ` (t1, t2) :
A1×A2

Γ ` t : A1×A2

Γ ` πi t : Ai

Γ ` t : Ai

Γ ` σi t : A1 +A2

Γ ` t : A1 +A2 Γ,x1 : A1 ` u1 : C Γ,x2 : A2 ` u2 : C

Γ ` match t with
∣∣∣∣ σ1 x1→ u1

σ2 x2→ u2
: C

Fig. 4. βη-equivalence for the simply-typed lambda-calculus

(λx. t) u .β u[t/x] (t : A→ B)≈η λx. t x πi (t1, t2) .β t i (t : A×B)≈η (π1 t,π2 t)

match σi t with
∣∣∣∣ σ1 x1→ u1

σ2 x2→ u2
.β ui[t/xi]

∀C[�], C[t : A+B]≈η match t with
∣∣∣∣ σ1 x1→C[σ1 x1]

σ2 x2→C[σ2 x2]

declared non-uniquely inhabited. Unfortunately, this method does not give a terminating
decision procedure, as naive proof search may enumerate infinitely many equivalent proofs,
taking infinite time to post-process. We need to integrate canonicity in the structure of proof
search itself.

1.5 Terminology

We describe our search procedure as proof search in restricted systems of inference rule (a
step of search is the bottom-up application of an inference rule to refine a partial proof).

We distinguish and discuss the following properties:

• termination: A search procedure is terminating if, for any input search problem, it
returns a result (or fails) after a finite number of steps of search.

• provability completeness : A search procedure is complete for provability if, for any
type that is inhabited in the unrestricted type system, it finds at least one proof term.

5

ZU064-05-FPR jfp 10 August 2016 17:36

• unicity completeness: A search procedure is complete for unicity if it is complete
for provability and, if there exists two proofs distinct as programs in the unrestricted
calculus, then the search finds at least two proofs distinct as programs.
• computational completeness : A search procedure is computationally complete if,

for any proof term t in the unrestricted calculus, there exists a proof in the restricted
search space that is equivalent to t as a program. This implies both previous notions
of completeness.
• canonicity : A search procedure is canonical if it has no duplicates: any two enu-

merated proofs are distinct as programs. Such procedures require no filtering of
results after the fact. We will say that a system is more canonical than another if
it enumerates less redundant terms, but this does not imply canonicity.

There is a tension between computational completeness and termination of the corre-
sponding search algorithm: when termination is obtained by cutting the search space, it
may remove some computational behaviors. Canonicity is not a strong requirement: we
could have a terminating, unicity-complete procedure and filter duplicates after the fact,
but have found no such middle-ground. This article presents a logic (Section 5) that is both
computationally complete and canonical (Section 6), and can be restricted (Section 4) to
obtain a terminating yet unicity-complete algorithm (Section 7).

1.6 Focusing for a less redundant proof search

Focusing [Andreoli, 1992] is a generic search discipline that can be used to decrease
redundancy in the search space of proofs; it relies on the general idea that some proof steps
are invertible (the premises are provable exactly when the conclusion is, hence performing
this step during proof search can never lead you to a dead-end) while others are not. By
imposing an order on the application of invertible and non-invertible proof steps, focusing
restricts the number of valid proofs, but it remains complete for provability and, in fact,
computationally complete (§1.5).

More precisely, a focused proof system alternates between two phases of proof search.
During the invertible phase, rules recognized as invertible are applied as long as possible –
this stops when no invertible rule can be applied anymore. During the non-invertible phase,
non-invertible rules are applied in the following way: a formula (in the context or the goal)
is chosen as the focus, and non-invertible rules are applied as long as possible.

For example, consider the judgment x : X +Y ` X +Y . Introducing the sum on the right
by starting with a σ1 ? or σ2 ? would be a non-invertible proof step: we are permanently
committing to a choice – which would here lead to a dead-end. On the contrary, doing a
case-split on the variable x is an invertible step: it leaves all our options open. For non-
focused proof search, simply using the variable x : X +Y as an axiom would be a valid
proof term. It is not a valid focused proof, however, as the case-split on x is a possible
invertible step, and invertible rules must be performed as long as they are possible. This

gives a partial proof term match x with
∣∣∣∣ σ1 y→?

σ2 z→?
, with two subgoals y : X ` X +Y

and z : X ` X +Y ; for each of them, no invertible rule can be applied anymore, so one
can only focus on the goal and do an injection. While the non-focused calculus had two

6

ZU064-05-FPR jfp 10 August 2016 17:36

syntactically distinct but equivalent proofs, x and match x with
∣∣∣∣ σ1 y→ σ1 y

σ2 z→ σ2 z
, only the

latter is a valid focused proof: redundancy of proof search is reduced.
We present a focused intuitionistic logic in more details in Section 2 (Introduction to

focusing), and a term system, the focused λ -calculus, in Section 3 (Focused λ -calculus).
We say that a type is positive if building a value requires a non-invertible choice, and

negative if using its value requires a non-invertible choice. Sums are positive, and functions
and products are negative.

1.7 Limitations of focusing

In the absence of sums, focused proof terms correspond exactly to β -short η-long normal
forms. In particular, focused search is canonical (§1.5). However focused proofs are not
canonical anymore when sums are introduced. They correspond to η-long form for the
strictly weaker eta-rule defined without context quantification

t : A+B =weak-η match t with
∣∣∣∣ σ1 x1→ σ1 x1

σ2 x2→ σ2 x2

This can be seen for example on the judgment z : Z1,x : Z1→ X +Y ` X +Y , a variant on
the previous example where the sum in the context is “thunked” under a negative datatype.
The expected proof is

match x z with
∣∣∣∣ σ1 y1→ σ1 y1

σ2 y2→ σ2 y2

but the focused discipline will accept infinitely many equivalent proof terms, such as

match x z with

∣∣∣∣∣∣
σ1 y1→ σ1 y1

σ2 y2→ match x z with
∣∣∣∣ σ1 y′1→ σ1 y′1

σ2 → σ2 y2

The result of the application x z can be matched upon again and again without breaking
the focusing discipline.

1.8 Our idea: saturating proof search

Our idea is that instead of only deconstructing the sums that appear immediately as the top
type constructor of a type in context, we shall deconstruct all the sums that can be reached
from the context by applying eliminations (function application and pair projection). Each
time we introduce a new hypothesis in the context, we saturate it by computing all neutrals
of sum type that can be built using this new hypothesis. At the end of each saturation phase,
all the sums that could be deduced from the context have been deconstructed, and we can
move forward applying non-invertible rules on the goal. Eliminating negatives until we get
a positive and matching in the result corresponds to a cut (which is not reducible, as the
scrutinee is a neutral term), hence our technique can be summarized as “Cut the positives
as soon as you can”.

The idea was inspired by Sam Lindley’s equivalence procedure for the lambda-calculus
with sums, whose rewriting relation can be understood as moving case-splits down in the

7

ZU064-05-FPR jfp 10 August 2016 17:36

derivation tree, until they get blocked by the introduction of one of the variable appearing
in their scrutinee (so moving down again would break scoping) – this also corresponds to
“restriction (A)” in Balat, Di Cosmo, and Fiore [2004]. In our saturating proof search in
Section 5 (Saturation logic for canonicity), after introducing a new formal parameter in
the context, we look for all possible new scrutinees using this parameter, and case-split on
them. Of course, this is rather inefficient as most proofs will in fact not make use of the
result of those case-splits, but this allows to give a common structure to all possible proofs
of this judgment.

In our example z : Z,x : Z→X+Y `X+Y , the saturation discipline requires to cut on x z.
But after this sum has been eliminated, the newly introduced variables y1 : X or y2 : Y do not
allow to deduce new positives – we would need a new Z for this. Thus, saturation stops and

focused search restarts, to find a unique normal form match x z with
∣∣∣∣ σ1 y1→ σ1 y1

σ2 y2→ σ2 y2
.

In Section 6 (Canonicity of saturated proofs) we show that saturating proof search is
computationally complete and canonical (§1.5).

1.9 Termination

The saturation process described above does not necessarily terminate. For example, con-
sider the type of Church numerals specialized to a positive X+Y , that is, X+Y→ (X+Y→
X +Y)→ X +Y . Each time we cut on a new sum X +Y , we get new arguments to apply
to the function (X +Y → X +Y), giving yet another sum to cut on.

In the literature on proof search for propositional logic, the usual termination argument
is based on the subformula property: in a closed, fully cut-eliminated proof, the formulas
that appear in subderivations of subderivations are always subformulas of the formulas of
the main judgment. In particular, in a logic where judgments are of the form S ` A where
S is a finite set of formulas, the number of distinct judgments appearing in subderivations
is finite (there is a finite number of subformulas of the main judgment, and thus finitely
many possible finite sets as contexts). Finally, in a goal-directed proof search process, we
can kill any recursive subgoal whose judgment already appears in the path from the root
of the proof to the subgoal. There is no point in trying to complete a partial proof Pleafward
of S ` A as a strict subproof of a partial proof Prootward of the same S ` A (itself a subproof
of the main judgment): if there is a closed subproof for Pleafward, we can use that subproof
directly for Prootward, obviating the need for proving Pleafward in the first place. Because the
space of judgments is finite, a search process forbidding such recurring judgments always
terminates.

We cannot directly apply this reasoning, for two reasons.

• Our contexts are mapping from term variables to formulas or, seen abstractly, multi-
sets of formulas; even if the space of possible formulas is finite for the same reason
as above, the space of multisets over them is still infinite.
• Erasing such multiset to sets, and cutting according to the non-recurrence criteria

above, breaks unicity completeness (§1.5). Consider the construction of Church nu-
merals by a judgment of the form x : X ,y : X → X ` X . One proof is just x, and
all other proofs require providing an argument of type X to the function y, which

8

ZU064-05-FPR jfp 10 August 2016 17:36

corresponds to a subgoal that is equal to our goal; they would be forbidden by the
no-recurrence discipline.

We must adapt these techniques to preserve not only provability completeness, but also
unicity completeness (§1.5). Our solution is to use bounded multisets to represent contexts
and collect recursive subgoals. We store at most M variables for each given formula, for
a suitably chosen M such that if there are two different programs for a given judgment
Γ ` A, then there are also two different programs for bΓcM ` A, where bΓcM is the bounded
erasure keeping at most M variables at each formula.

While it seems reasonable that such a M exists, it is not intuitively clear what its value
is, or whether it is a constant or depends on the judgment to prove. Could it be that a given
goal A is provable in two different ways with four copies of X in the context, but uniquely
inhabited if we only have three X?

In Section 4 (Counting terms and proofs) we prove that M def
= 2 suffices. In fact, we

prove a stronger result: for any n ∈ N, keeping at most n copies of each formula in context
suffices to find at least n distinct proofs of any goal, if they exist.

For recursive subgoals as well, we only need to remember at most 2 copies of each
subgoal: if some Pleafward appears as the subgoal of Prootward and has the same judgment,
we look for a closed proof of Pleafward. Because it would also have been a valid proof for
Prootward, we have found two proofs for Prootward: the one using Pleafward and its closed proof,
and the closed proof directly. Pleafward itself needs not allow new recursive subgoal at the
same judgment, so we can kill any subgoal that has at least two ancestors with the same
judgment while preserving completeness for unicity (§1.5).

1.10 Contributions

While the logical notion of focusing is usually presented using the sequent calculus, we
introduce a term syntax for a focused propositional intuitionistic logic in natural deduction
style, that corresponds to (the normal-forms of a) focused λ -calculus. We hope that this fo-
cused λ -calculus could be useful to transfer other results from logic into the programming
language community.

We show that the unique inhabitation problem for simply-typed lambda-calculus for
sums is decidable, and propose an effective algorithm for it. Given a context and a type, it
answers that there are zero, one, or “at least two” inhabitants, and correspondingly provides
zero, one, or two distinct terms at this typing. Our algorithm relies on a novel saturating fo-
cused logic for intuitionistic natural deduction, with strong relations to the idea of maximal
multi-focusing in the proof search literature [Chaudhuri, Miller, and Saurin, 2008a], that is
both computationally complete (§1.5) and canonical with respect to βη-equivalence.

We provide an approximation result for program multiplicity of simply-typed derivations
with bounded contexts. We use it to show that our terminating algorithm is complete for
unicity (§1.5), but it is a general result (on the common, non-focused intuitionistic logic)
that is of independent interest.

Finally, we present preliminary studies of applications for code inference. While exten-
sion to more realistic type systems is left for future work, simply-typed lambda-calculus

9

ZU064-05-FPR jfp 10 August 2016 17:36

with atomic types already allows to encode some prenex-polymorphic types typically
found in libraries of strongly-typed functional programs.

2 Introduction to focusing

2.1 Natural deduction and sequent calculus

Type systems and proof systems can both be defined by a judgment (or a family of judg-
ments) equipped by a family of inference rules that define valid derivations. If you take
the type system of the simply-typed calculus Γ ` t : A in Figure 3 (Typing rules for the
simply-typed lambda-calculus) and erase all mentions of terms and term variables, you get
the natural deduction presentation of propositional intuitionistic logic in Figure 5 (Natural
deduction proof system for propositional intuitionistic logic) – this is the usual Curry-
Howard correspondence between type systems and logics.

Fig. 5. Natural deduction proof system for propositional intuitionistic logic

ND-AXIOM

Γ,A ` A

ND-IMPL-ELIM
Γ ` A→ B Γ ` A

Γ ` B

ND-IMPL-INTRO
Γ,A ` B

Γ ` A→ B

ND-CONJ-ELIM
Γ ` A1×A2

Γ ` Ai

ND-CONJ-INTRO
Γ ` A1
Γ ` A2

Γ ` A1×A2

ND-DISJ-ELIM
Γ ` A1 +A2 Γ,A1 `C
Γ ` A1 +A2 Γ,A2 `C

Γ `C

ND-DISJ-INTRO
Γ ` Ai

Γ ` A1 +A2

Note that the contexts written Γ in this new judgment Γ ` A are not mappings from
variables to types, but merely sets of types. In particular, when we write Γ,A ` B in the
premise of the function rule (or the implication-introduction rule), the type A may already
belong to the set Γ: the comma in (Γ,A) denotes a non-disjoint union.

The rules coming from the constructor of a given type (λx. t for functions, (t1, t2) for
pairs, σi t for sums) are called introduction rules – in the right column of the figure. The
rules coming from the destructor of a given type (t u for functions, πi t for pairs, and
match t with | σ1 x1→ y1 | σ2 x2→ y2 for sums) are called elimination rules – in the left
column of the figure.

One may notice that the elimination rule for sums stands out, with its C formula that does
not appear in other rules. Natural deduction nicely corresponds to human reasoning, but its
lack of symmetry in presence of sums makes meta-theory difficult. For example, there is
a well-known combinatorial argument for normalization of β -reduction in the system with
functions and products (using as termination measure the set of introduction-elimination
pairs ranked by complexity of the type/formula at which the reduction happens), but this

10

ZU064-05-FPR jfp 10 August 2016 17:36

argument falls down in presence of sums and requires elaborate extensions (introducing
commuting conversions) to be restored.

The sequent calculus presentation of propositional intuitionistic logic, given in Figure 6
(Sequent calculus proof system for propositional intuitionistic logic), is another proof
system that proves the same types/formulas, but is more symmetric, making meta-theory
easier, and more adapted to proof search.

Fig. 6. Sequent calculus proof system for propositional intuitionistic logic

SEQ-AXIOM

Γ,A ` A

SEQ-CUT
Γ ` A Γ,A `C

Γ `C

SEQ-IMPL-LEFT
Γ ` A Γ,B `C

Γ,A→ B `C

SEQ-IMPL-RIGHT
Γ,A ` B

Γ ` A→ B

SEQ-CONJ-LEFT
Γ,Ai `C

Γ,A1×A2 `C

SEQ-CONJ-RIGHT
Γ ` A1
Γ ` A2

Γ ` A1×A2

SEQ-DISJ-LEFT
Γ,A1 `C
Γ,A2 `C

Γ,A1 +A2 `C

SEQ-DISJ-RIGHT
Γ ` Ai

Γ ` A1 +A2

In natural deduction, elimination rules tell you how to use a complete proof of a con-
nective to build new proofs (rootward). The sequent calculus uses left-introduction rules
instead, that tell you how to consume a hypothesis present in context to prove your goal
(leafward). The existing introduction rules are unchanged in sequent calculus (it is called
“right-introduction”).

(We use leafward to mean “towards the leaves of the derivation”, and rootward to mean
“towards the root of the derivation”.)

The cut rule
SEQ-CUT

Γ ` A Γ,A `C

Γ `C

is necessary to obtain a simple translation of any natural deduction derivation into a sequent
calculus derivation – elimination rules of natural deduction embed a form of cut rule on
their type connective. For example, the following derivation shows that the elimination rule
for functions is derivable: Γ ` B can be deduced from Γ ` A→ B and Γ ` A:

Γ ` A→ B
Γ ` A Γ,B ` B

Γ,A→ B ` B
SEQ-CUT

Γ ` B

All uses of the cut rule can be eliminated – just as β -redexes in the λ -calculus, but the
elimination does not correspond to β -reduction alone as it performs commuting conver-

11

ZU064-05-FPR jfp 10 August 2016 17:36

sions. In this article we are interested with the observable identity of proofs and programs,
not the dynamics of their reduction, so we shall consider cut-free derivations, that do not
use this cut rule.

2.1.1 Non-canonicity of cut-free sequent proofs

While sequent calculus and natural deduction prove the same judgments, normal natural
deduction derivations are more canonical than cut-free sequent proofs. For example, while
there is a single normal natural deduction proof of the judgment A→ B,B→C ` A→C
(for readability, we gray out the parts of the judgments that are not involved in the current
inference rule)

A→ B,B→C,A ` B→C
A→ B,B→C,A ` A→ B B→C,A ` A

A→ B,B→C,A ` B
A→ B,B→C,A `C

A→ B,B→C ` A→C

there are two distinct cut-free sequent rules of the same judgment:

A→ B,B→C,A ` A
A→ B,B→C,A,B ` B A→ B,B→C,A,B,C `C

A→ B,B→C,A,B `C
A→ B,B→C,A `C

A→ B,B→C ` A→C

A→ B,B→C,A ` A A→ B,B→C,A,B ` B
A→ B,B→C,A ` B A→ B,B→C,A,B,C `C

A→ B,B→C,A `C
A→ B,B→C ` A→C

Focusing introduces restrictions on the proofs that restore a one-to-one correspondence
between focused natural deduction proofs and focused sequent proofs.

2.2 Focused proofs as a subset of non-focused proofs

We introduce the focusing discipline as a set of conditions that make a cut-free sequent
proof a valid focused proof. In Section 2.3 (Structural presentations of focusing), we will
present different judgment structures that structurally enforce the focusing discipline.

2.2.1 Invertible rules

Definition 2.1 Invertible rule.

J1 J2 . . . Jn

J

is invertible when the following property holds: if J is provable, then all of the J1, . . .Jn

are provable as well.

12

ZU064-05-FPR jfp 10 August 2016 17:36

Example 2.1 (Invertible rule).

Γ,A ` B

Γ ` A→ B

is invertible, as witnessed by the following “inverse derivation”:

Γ ` A→ B
Γ,A ` A→ B Γ,A ` A

Γ,A ` B

. ♦

Example 2.2 (Non-invertible rule).

Γ ` Ai

Γ ` A1 +A2
i ∈ {1,2}

is not invertible. For example, the judgment A1 +A2 ` A1 +A2 is provable, but none of the
A1 +A2 ` Ai are. ♦

Invertibility is an interesting notion for goal-directed proof search: by definition, the
invertible rules are those can always be used without risk of “getting stuck”. This suggests
that we may study a sub-system of the proofs that always apply invertible rules whenever
possible, and only try non-invertible rules once no invertible rule can be applied – focusing
generalizes this idea.

On the contrary, applying non-invertible rules corresponds to making a choice: if the
rule is wrongly applied, the proof attempt may fail whereas another rule would have led to
a solution. In a sense, non-invertible rules are the “important” rules in a proof – and in fact,
we could reconstruct a proof from only the tree of its non-invertible rules.

2.2.2 Focus

Definition 2.2 focus.
We define the focus of a non-invertible introduction rule to be the formula introduced by
the rule – it is also often called the principal formula of the rule. To help readability, we
often underline the foci in a proof:

A j ` Bi

A1×A2 ` Bi

A1×A2 ` B1 +B2

2.2.3 Positive and negative connectives

Given a proof system in sequent calculus style, a connective whose right-introduction rule
is non-invertible (“important”) is called positive, and a connective whose left-introduction
rule is non-invertible is called negative.

13

ZU064-05-FPR jfp 10 August 2016 17:36

In the sequent calculus proof system given in Figure 6, the implication and the conjunc-
tion are negative connectives, and the disjunction is a positive connective:

Γ ` A Γ,B `C

Γ,A→ B `C

Γ,Ai `C

Γ,A1×A2 `C

Γ ` Ai

Γ ` A1 +A2

It is immediate that the conjunction and disjunction rules are non-invertible: using them
may remove some information from the judgment to prove. For the left-introduction of
implication, non-invertibility comes from the fact that Γ ` A may not be provable, when C
would have been provable by using another rule.

2.2.4 Invertibility and side-conditions

One difficulty with the definition of invertibility given above is that it is sensitive to the
way rules are presented. Consider these two different definitions of the axiom rule:

Γ,A ` A

A ∈ Γ

Γ ` A

The rule on the left is premise-free, so in particular it should be invertible by the defini-
tion above: its conclusion is always provable, and its premises are always provable (there
are none). The rule on the right is not invertible: it may be the case that A /∈ Γ, yet that the
conclusion be provable by a different rule.

The problem with the rule on the left is the use of non-linear pattern-matching: we use
A twice in the conclusion, and this hides an implicit side-condition. Invertibility makes
perfect sense for the left- and right-introduction rules of logical connectives, which do not
have such non-linear patterns: each meta-variable is used exactly once.

The same subtlety occurs in multi-succedent linear logic, where the definition of the
positive right unit 1 requires the context and succedent to be empty.

/0 ` 1, /0

Γ = /0 ∆ = /0

Γ ` 1,∆

The solution to this subtlety is to always consider rules with their side-conditions (equal-
ity and emptiness checks) made explicit. The axiom rule for Γ,A ` A can be reformulated
in two different presentations with a simple conclusion pattern:

A = B

Γ,A ` B

A ∈ Γ

Γ ` A

Both rules are non-invertible and equi-provable, but they do not have the same focus. For
now we use the formulation on the right: we consider that the focus of the axiom rule is the
succedent occurrence of the formula. We shall revisit this choice using finer-grained rules
that make both options useful and interesting in Section 2.2.7 (Polarized atoms).

2.2.5 The focusing phase discipline

The focusing discipline relies on exposing a structure of consecutive phases of a proof, and
verifying that they verify certain conditions.

14

ZU064-05-FPR jfp 10 August 2016 17:36

Definition 2.3 phase.
Phases are sets of consecutive rules of the same polarity (invertible or non-invertible),
defined as the maximal sets satisfying the following properties:

• two consecutive invertible rules are part of the same invertible phase
• two consecutive non-invertible rules are part of the same non-invertible phase if the

focus of the leafward phase is a subformula occurrence of the focus of the rootward
phase

When two consecutive non-invertible rules are in the same phase, we say that they have
the same focus (the focused subformula of one is a subformula occurrence of the other).

For example, we have labeled each rule of the proof below with a phase indication, using
different indices for distinct phases.

n1
Z ` Z n1

Z ` X +Z

n3
Z ` X n3

Z ` X +Z
n2

Y ×Z ` X +Z
i

X +(Y ×Z) ` X +Z
i` X +(Y ×Z)→ X +Z

Remark 2.1. In the literature, invertible phases are called negative phases, and non-invertible
phases positive phases; this comes from one-sided presentations of linear logic judgments
` ∆ with only succedents and no hypotheses, in which the non-invertible phases always
manipulate positive connectives and invertible phases always manipulate negative connec-
tives.

The adjectives synchronous and asynchronous are also in common usage since Andreoli
[1992]. (One idea would be that asynchronous rules “have more freedom”, they can be
applied freely, they are the invertible rules.) ∗
Definition 2.4 Focusing conditions.
To be a valid focused proof, a sequent proof must respect the following conditions. In the
rest of this section, we give several examples to explain and motivate those restrictions.

1. Invertible phases must be as long as possible: if the premise of a rule in an invertible
phase matches the conclusion of an invertible rule, then it must be the conclusion of
a rule in this invertible phase.

2. Non-invertible phases must be as long as possible: if the premise of a rule in a non-
invertible phase matches a non-invertible rule of the same focus, then it must be the
conclusion of a non-invertible rule in this phase.

Example 2.3 (Long invertible phases). Consider the two following, equivalent proofs of
` X×Y → X×X .

n2
X ` X

n3
X ` X

iX ` X×X n1
X×Y ` X×X

i` X×Y → X×X

n2
X×Y ` X

n3
X ` X n1

X×Y ` X
iX×Y ` X×X

i` X×Y → X×X
The first proof breaks the focusing discipline: a (non-invertible) left-introduction of the

pair X ×Y happens at a place where an invertible rule could have been used – the right-
introduction rule for the pair X×X . The second proof is a valid focused proof. ♦

15

ZU064-05-FPR jfp 10 August 2016 17:36

This restriction allows us to reason on the polarity of connectives at the beginning of a
non-invertible phase. Indeed, the invertible rules are exactly the left-introduction of positive
connectives and right-introduction of a negative connective. At the start of a non-invertible
phase, no invertible rule is applicable; this means that the formulas in the hypotheses are
all negative or atomic, and the formula in succedent is positive or atomic.

Example 2.4 (Long non-invertible phases). Consider the two following proofs of Z1×(X+

Y) ` Z0 +(Y +X).

n4
X ` X n4

X ` Y +X

n3
Y ` Y n3

Y ` Y +X
iX +Y ` Y +X n2

Z1× (X +Y) ` Y +X
n1

Z1× (X +Y) ` Z0 +(Y +X)

n3
X ` X n3

X ` Y +X
n3

X ` Z0 +(Y +X)

n2
Y ` Y n2

Y ` Y +X
n2

Y ` Z0 +(Y +X)
i

X +Y ` Z0 +(Y +X)
n1

Z1× (X +Y) ` Z0 +(Y +X)

The first proof starts with a non-invertible phase on the focused formula Z0+(X+Y), but
then stops to perform an invertible rule. But a non-invertible rule matches the introduced
subformula Y +X , as it is a positive on the right of the sequent; the focusing discipline is
not respected. To respect the focusing discipline, one would have to introduce either X or
Y , but there is not enough information in the context to know which one is provable.

In the second proof, the corresponding non-invertible rule on the goal is applied later in
the proof, after the formula X +Y in the context has been decomposed. It is performed in
the two branches of the case analysis, with either X or Y in context, and in each branch the
focused phase is complete. This proof respects the focusing discipline. ♦

An important early result about the focusing discipline is that it is complete for prov-
ability: all provable judgments have a valid focused proof.

Theorem from previous works 1 (Liang and Miller [2007]). The subsystem of cut-free
propositional intuitionistic sequent proofs which respect the focusing discipline is complete
for provability.

This is a strong result. It is easy to see that imposing invertible rules to be applied as easy
as possible is complete – this is essentially the definition of invertibility – but imposing that
the non-invertible phases be as long as possible is a much stronger restriction, and it is not
at all obvious that it is complete.

2.2.6 The atomic axiom rule

Among a given class of proofs (or programs) that are equivalent to each other, some will
respect the focusing discipline above and some will not. Formally, a focused subsystem is
more canonical than the original, non-focused system. This selectivity is an advantage of
focusing: it brings us closer to the dream land of canonical proof systems.

A common source of non-canonicity in proofs is the axiom rule:

Γ,A ` A

16

ZU064-05-FPR jfp 10 August 2016 17:36

For example, there are two η-equivalent proofs of ` (X → Y)→ X → Y :

X → Y ` X → Y
` λx.x : (X → Y)→ X → Y

X → Y,X ` X X → Y,X ,Y ` Y
X → Y,X ` Y

X → Y ` X → Y
` λx.λy.let z = x y in z : (X → Y)→ X → Y

However, notice that the left proof above is not a valid focused proof. Indeed, the axiom
rule is non-invertible – see Section 2.2.4 (Invertibility and side-conditions). This non-
invertible rule cannot be applied while invertible rules are still applicable, and in this proof
X → Y can still be (invertibly) introduced on the right.

For the same reason, the axiom rule cannot be used when the formula A starts with
a positive connective, as it is then its occurrence in the context that could be invertibly
introduced.

In our logic, all connectives are either positive or negative. This means that the axiom
rule can only be used for formulas that do not start with a head connective, that is with
atoms. It is thus exactly equivalent, under the focusing discipline, to the following atomic
axiom rule:

Γ,X ` X

2.2.7 Polarized atoms

To understand that it is non-invertible, the atomic axiom rule above can be expressed using
side-conditions in two different ways:

X = A

Γ,X ` A

X ∈ Γ

Γ ` X

The rule on the left resembles a (non-invertible) left-introduction rule, and the rule on
the right resembles a (non-invertible) right-introduction rule. We could informally say that
the atom X is treated as a negative connective by the left rule, and as a positive connective
by the right rule.

In Section 2.2.4 (Invertibility and side-conditions) we made the arbitrary choice of using
the axiom rule only when an atom is in focus on the right – we have used negative atoms. It
is more interesting, however, to consider both options. Let us assume a given atom polarity
function mapping any atom to a sign {+,−}. We will write X+ when X is mapped to the
positive sign, and Y− when Y is mapped to the negative sign. We can then refine the axiom
rule in two polarized axiom rules as follows:

X− = A

Γ,X− ` A

X+ ∈ Γ

Γ ` X+

The left rule is associated to the negative polarity as it resembles a non-inversion left-
introduction for a (negative) connective.

Those choices of atom polarity do not endanger the completeness theorem.

17

ZU064-05-FPR jfp 10 August 2016 17:36

Theorem from previous works 2. Any choice of atom polarity function preserves com-
pleteness for provability of the focused sequent-calculus.

This formulation is not generality for the sake of generality: changing the polarity func-
tion actually enforces interesting phenomena, in particular when studying the behavior of
proof search in the focused system. In particular, forcing all atoms to be negatively po-
larized corresponds to backward search, while forcing all atoms to be positively polarized
corresponds to forward search [Chaudhuri, Pfenning, and Price, 2008b]. To understand
this, let us consider the proofs of the sequent (X → Y),(Y → Z),X ` Z.

There are two ways to start proving this sequent. We may start from our assumption
X (forward search), decide to use the implication X → Y , and then we have deduced the
new assumption Y . Or we may start from the goal (backward search), decide to use the
implication Y → Z, and then it suffices to prove Y .

X ` X
?

X → Y,Y → Z,X ,Y ` Z
X → Y ,Y → Z,X ` Z

?
X → Y,Y → Z,X ` Y Z ` Z

X → Y,Y → Z,X ` Z

In both cases this first part of the proof finishes with Y under focus, and at this point no
axiom rule can be used to discharge Y , so the proof can only proceed by ending the non-
invertible phase and choosing a different focus. In the left case, Y is under focus on the left;
if it was a negatively polarized axiom Y−, then the focusing discipline would not allow us
to end the non-invertible phase while a negative formula is still under focus, and the proof
attempt would fail. In other words, the forward-search approach can only succeed if Y is
positively polarized Y+. Conversely, the backward-search approach can only succeed with
a negatively polarized Y−.

More generally, when a non-invertible phase reaches a positive atom focused on the
right (in the succedent), this atom must be in the context (have already been deduced)
or the proof attempt fails. A positive atom must first be deduced from the assumptions in
context, and only then proved in the goal. This is the essence of forward search; if all atoms
are positive, then focused proofs are pure forward-search proofs.

Conversely, when a non-invertible phase reaches a negative atom focused on the left, (in
the context), this atom must be in the succedent, so a deduction in the context can only
start when it is the goal of the proof. If all atoms are negative, then focused proofs are pure
backward-search (goal-directed, demand-driven) proofs.

Remark 2.2. In Section 2.1.1 (Non-canonicity of cut-free sequent proofs), we gave an ex-
ample of cut-free natural deduction proof that corresponds to two distinct cut-free sequent
proofs. This example relied in an essential way on the trace, in the sequent calculus proof
structure, of a “backward” or “forward” search process.

In a focused sequent system with polarized atoms, only one of these two cut-free sequent
proof is valid – for any choice of atom polarization. In particular, cut-free focused sequent
proofs in the purely negative fragment (only negative connectives and negative atoms)
correspond closely to cut-free natural deduction proofs, and this enabled Herbelin [1994]
to propose a term syntax for the negative fragment of sequent calculus that is very close to
the λ -calculus – although this result was not presented in terms of focusing at the time. ∗

18

ZU064-05-FPR jfp 10 August 2016 17:36

2.3 Structural presentations of focusing

The restrictions of Section 2.2.5 (The focusing phase discipline) define a focused subsys-
tem of the sequent calculus for propositional intuitionistic logic.

In this section, we define an isomorphic subsystem, not as a subset of the valid sequent
proofs, but by giving a new proof system that enforces the invariant. We call this a “struc-
tural” presentation of focusing as it relies on the structure of specific focused inference
rules.

The key idea is to separate sequent judgments Γ ` A into four distinct judgments:

• Γ `inv A proves Γ ` A by starting with an invertible phase.
• Γ `foc B proves Γ ` B by starting with a non-invertible phase – it will choose to focus

either on the left or on the right
• Γ, [A] `foc.l B proves Γ,A ` B by focusing on A (on the left)
• Γ `foc.r [B] proves Γ ` B by focusing on B (on the right)

The full rules are given in Figure 7. In Section 2.4.1 (Explicit shifts) we give a better,
more regular system, so we do not give a name to the present system which is mostly for
exposition purposes.

Fig. 7. Focused sequent calculus (without shifts)

SEQ-INV-IMPL-RIGHT
Γ,A `inv B

Γ `inv A→ B

SEQ-INV-DISJ-LEFT
Γ,A1 `inv B Γ,A2 `inv B

Γ,A1 +A2 `inv B

SEQ-INV-CONJ-RIGHT
Γ `inv B1 Γ `inv B2

Γ `inv B1×B2

SEQ-INV-FOC
Γ negative or atomic Γ `foc B B positive or atomic

Γ `inv B

SEQ-FOC-CHOOSE-RIGHT
Γ `foc.r [B]

Γ `foc B

SEQ-FOC-CHOOSE-LEFT
Γ, [A] `foc.l B

Γ,A `foc B

SEQ-FOC-DISJ-RIGHT
Γ `foc.r [Bi]

Γ `foc.r [B1 +B2]

SEQ-FOC-CONJ-LEFT
Γ, [Ai] `foc.l B

Γ, [A1×A2] `foc.l B

SEQ-FOC-IMPL-LEFT
Γ `foc.r [B] Γ, [A] `foc.l C

Γ, [B→ A] `foc.l C

SEQ-FOC-AXIOM-LEFT

Γ, [X−] `foc.l X−

SEQ-FOC-AXIOM-RIGHT

Γ,X+ `foc.r [X+]

SEQ-FOC-INV-LEFT
A positive Γ,A `inv B

Γ, [A] `foc.l B

SEQ-FOC-INV-RIGHT
B negative Γ `inv B

Γ `foc.r [B]

The rules allowing to transition between judgments use explicit requirements on the
polarity of formulas to enforce phases to be as long as possible. We cannot transition
from the invertible judgment to the non-invertible one (ending an invertible phase) if there
remain a positive on the left or an atomic on the right, that is if we could apply an invertible
rule. We cannot transition from the non-invertible to the invertible judgment (ending a non-

19

ZU064-05-FPR jfp 10 August 2016 17:36

invertible phase) if we can still apply a non-invertible introduction rule to the formula under
focus – if it is positive on the right, or negative on the left.

It is possible to erase such structural proofs into sequent proofs in the restricted sub-
system; the phase transition rules SEQ-INV-FOC, SEQ-INV-FOC-LEFT, SEQ-INV-FOC-RIGHT,
SEQ-FOC-INV-LEFT, and SEQ-FOC-INV-RIGHT are erased in the process, but it is still a one-
to-one mapping: the focusing structure, explicit in the structural presentation, is implicit in
the restricted presentation: it is present in the justification of why a given proof is “valid”,
and a given proof is valid in a unique way.

2.4 Polarized formulas

Once a choice of polarization has been made for atoms, all formulas are either positive
or negative, and can thus be split in two grammatical categories. Recent presentations
of focused systems often make the transitions from one grammatical category to another
explicit by placing shifts in the syntax.

2.4.1 Explicit shifts

We write 〈N〉+ for a negative formula embedded into the set of positive formulas, and
conversely 〈P〉− for a positive formula seen as a negative formula. The complete grammar
of those polarized formulas is defined in Figure 8.

Fig. 8. Polarized propositional formulas

P,Q ::= positive formulas
| X+ positive atom
| P+Q sum
| 〈N〉+ shift

N,M ::= negative formulas
| X− negative atom
| P→ N implication
| N×M product
| 〈P〉− shift

Pat,Qat ::= P | X− positive or atomic
Nat,Mat ::= N | X+ negative or atomic

Σ ::= /0 | Σ,P positive context
Γat ::= /0 | Γat,Nat negative or atomic context

Notice that, while the (positive) sum expects positive subformulas and (negative) product
expects negative subformula, the (negative) implication expects a positive subformula on
its left-hand side.

20

ZU064-05-FPR jfp 10 August 2016 17:36

2.4.2 Polarized judgments

In the focused proof system of Figure 7, for the choice of focusing judgment Γ `foc A, we
know that Γ may only contain negative or atomic formulas, while A must be positive or
atomic. This directly corresponds to a judgment Γat `foc Qat with polarized types.

On the other hand, for the invertible judgment Γ `inv A, the context Γ may contain either
positive or negative formulas, and similarly the goal A may be positive or negative.

For the context Γ for example, one may think of splitting it into two contexts Γ;Σ, with
only negatives in Γ and positives in Σ. However, looking at the transition between focused
judgments rather suggests using Γat;Σ, where the first judgment contains either negative
types or positive atoms. Consider the two rules moving from a focused judgment to the
invertible judgment – in both rules we know that Γ has only negative or atomic formulas:

SEQ-FOC-INV-LEFT

A positive Γ,A `inv B

Γ, [A] `foc.l B

SEQ-FOC-INV-RIGHT

B negative Γ `inv B

Γ `foc.r [B]

When moving from Γ, [A] `foc.l B where Γ is negative or atomic and A is positive, it is
natural to use the context split Γ;A: the negative or atomic context contains hypotheses
that were present before the start of the invertible phase, and the strictly positive context
contains formulas that have been or will be decomposed during the invertible phase.

A similar reasoning can be applied to the goal part. When coming from the SEQ-FOC-INV-LEFT

rule, we know that B is a positive or atomic formula that has already been fully decomposed
by a previous invertible phase. When coming from the rule SEQ-FOC-INV-RIGHT, B is a
negative formula that must be decomposed by the invertible phase. This suggests a goal of
the form N? | Qat?, where N? and Qat? are either formulas or an empty position /0, but
exactly one of them is a formula. The N position is empty when coming from a left-
focusing phase – and remains empty during the whole invertible phase – and the Qat

position is empty when coming from a right-focusing phase.
To summarize, we use a four-position judgment Γat;Σ `inv N |Qat, where N and Qat are

both optional but exactly one of them is a formula, with the following transition rules in
and out of the focusing phase:

Γ
at;Q `inv /0 | Pat

Γ
at, [〈Q〉−] `foc.l Pat

Γ
at; /0 `inv N | /0

Γ
at `foc.r [〈N〉+]

FOCSEQ-INV-FOC

Γ
at,Γat′ `foc (Pat | Qat)

Γ
at;
〈

Γ
at′
〉+at

`inv
〈
Pat
〉−at | Qat

In rule FOCSEQ-INV-FOC we use two partial shifting functions 〈Nat〉+at (respectively 〈Pat〉−at)
that take a negative or atomic (respectively positive or atomic) formula and turns it into a
positive or atomic (respectively negative or atomic) formula.〈

X+
〉+at def

= X+ 〈N〉+at def
= 〈N〉+

〈
X−
〉−at def

= X− 〈P〉−at def
= 〈P〉−

21

ZU064-05-FPR jfp 10 August 2016 17:36

The rule moving out of the invertible phase requires that its positive context be of the form
〈Γat〉+at, that is, that it only contain negative or atomic formulas.

Similarly, we request that the goal be of the form 〈Pat〉−at | Qat: if the negative formula
position is not empty, then to leave the invertible phase it must be the shift of a positive or
atomic formula. We know that exactly one of the formulas Pat and Qat is defined and the
other is empty, and we write (Pat | Qat) to denote the formula that is defined.

The full rules of the focused sequent-calculus with polarized formulas are given in
Figure 9 (Focused sequent calculus for polarized propositional intuitionistic logic).

Fig. 9. Focused sequent calculus for polarized propositional intuitionistic logic

POLSEQ-INV-IMPL-RIGHT
Γ
at;Σ,P `inv N | /0

Γ
at;Σ `inv P→ N | /0

POLSEQ-INV-CONJ-RIGHT
Γ
at;Σ `inv N1 | /0

Γ
at;Σ `inv N2 | /0

Γ
at;Σ `inv N1×N2 | /0

POLSEQ-INV-DISJ-LEFT
Γ
at;Σ,P1 `inv N | Qat

Γ
at;Σ,P2 `inv N | Qat

Γ
at;Σ,P1 +P2 `inv N | Qat

POLSEQ-INV-FOC

Γ
at,Γat′ `foc (Pat | Qat)

Γ
at;
〈

Γ
at′
〉+at

`inv
〈
Pat
〉−at | Qat

POLSEQ-FOC-CHOOSE-RIGHT
Γ
at `foc.r [P]
Γ
at `foc P

POLSEQ-FOC-CHOOSE-LEFT
Γ
at, [N] `foc.l Qat

Γ
at,N `foc Qat

POLSEQ-FOC-CONJ-LEFT
Γ
at, [Ni] `foc.l Pat

Γ
at, [N1×N2] `foc.l Pat

POLSEQ-FOC-IMPL-LEFT
Γ
at `foc.r [Q] Γ

at, [N] `foc.l Pat

Γ
at, [Q→ N] `foc.l Pat

POLSEQ-FOC-INV-LEFT
Γ
at;Q `inv| Pat

Γ
at, [〈Q〉−] `foc.l Pat

POLSEQ-FOC-AXIOM-LEFT

Γ
at, [X−] `foc.l X−

POLSEQ-FOC-AXIOM-RIGHT

Γ
at,X+ `foc.r [X+]

POLSEQ-FOC-DISJ-RIGHT
Γ
at `foc.r [Pi]

Γ
at `foc.r [P1 +P2]

POLSEQ-FOC-INV-RIGHT
Γ
at; /0 `inv N |

Γ
at `foc.r [〈N〉+]

Remark 2.3. While this may seem a minor syntactic difference, adding explicit shifts is
in fact a radical idea, because it let us make distinction between formulas that we couldn’t
distinguish before: a formula can be shifted to the other polarity, and then shifted back to
its original polarity, and we obtain a different formula!

There is an interesting analogy between this situation and the difference in meaning of
connectives between intuitionistic and classical logic in Zeilberger [2013]. ∗
Example 2.5. The formulas P→Q→ N and P→

〈
〈Q→ N〉+

〉−
have proofs that differ in

very interesting ways: a focused proof of the first formula necessarily starts by invertibly
introducing both P and Q in context; but for the second formula, the invertible phase stops
after introducing P in context, as the formula 〈Q→ N〉+ is positive and may thus not be
invertibly introduced. A focused proof may thus perform arbitrary left-focusing phases on

22

ZU064-05-FPR jfp 10 August 2016 17:36

the context at this point, before focusing on this positive formula, unboxing its negative
content, and then introducing the second function type. ♦

2.5 Defocusing

When relating non-focused proof systems with focused systems with polarized formulas,
we rely on the fact that focused proofs are also valid non-focused proofs. This is self-
evident when focused proofs are defined as the subset of non-focused proofs that satisfy the
focusing discipline, but requires an erasure step for the structural presentations of focusing,
in particular when using explicit shifts (that is, a different structure for formulas).

In Figure 10 (Polarity erasure), we define the polarity erasure operations bPc± and bNc±
that return a formula without explicit shifts. It is readily extended to contexts.

Fig. 10. Polarity erasure

⌊
X+
⌋
±

def
= X

bP+Qc±
def
= bPc±+ bQc±⌊

〈N〉+
⌋
±

def
= bNc±

⌊
Y−
⌋
±

def
= Y

bP→ Nc±
def
= bPc±→ bNc±

bN×Mc±
def
= bNc±×bMc±⌊

〈P〉−
⌋
±

def
= bPc±

We can then erase any proof derivation from a focused proof to a non-focused proof.

Theorem 2.1 (Polarity erasure).
The following provability implications hold:

Γat;Σ `inv N | Pat =⇒ bΓatc± ,bΣc± ` bNc± ,bPatc±
Γat `foc Pat =⇒ bΓatc± ` bPatc±
Γat, [N] `foc.l Pat =⇒ bΓatc± ,bNc± ` bPatc±
Γat `foc.r [P] =⇒ bΓatc± ` bPc±

Proof. We use the notation Π :: J to say that Π is a proof derivation for the judgment J ;
for example, Π :: Γ `foc A means that Π is a derivation whose conclusion is Γ `foc A.

The proof is by direct induction, by erasing the focusing information from the proof –
the proof structure is unchanged. For example:⌊

ΠP :: Γ
at `foc.r [P] ΠN :: Γ

at, [N] `foc.l Qat

Γ
at, [P→ N] `foc.l Qat

⌋
±

def
=

bΠPc± ::
⌊
Γ
at
⌋
± ` bPc± bΠNc± ::

⌊
Γ
at
⌋
± ,bNc± `

⌊
Qat
⌋
±⌊

Γ
at
⌋
± ,bP→ Nc± `

⌊
Qat
⌋
±

Because bP→ Nc± is equal (by definition) to bPc±→bNc±, this is the (valid) left-introduction
rule for implication in the non-focused sequent calculus.

23

ZU064-05-FPR jfp 10 August 2016 17:36

The rules that are solely concerned with the focusing structure are erased in the process.
For example:⌊

Π :: Γ
at `foc Pat

Γ
at; /0 `inv /0 | Pat

⌋
±

def
= bΠc± ::

⌊
Γ
at
⌋
± `

⌊
Pat
⌋
±

⌊
Π :: Γ

at; /0 `inv N | /0

Γ
at `foc.r [〈N〉−]

⌋
±

def
= bΠc± ::

⌊
Γ
at
⌋
± ` bNc±

�

In particular, this means that our structural focused system is sound with respect to
propositional intuitionistic logic: the (defocused erasing of) formulas it proves are all
provable in our reference proof system.

Furthermore, one can easily check that proofs obtained in this way remain valid focused
proof – they are in the restricted subsystem defined by the focusing restrictions.

3 Focused λ -calculus

In this section we build this presentation of “focused λ -terms”, which will be useful for
the results of the latter sections. We could equip the focused sequent calculus with a term
syntax directly, but they may seem rather exotic to readers familiar with the λ -calculus.
Instead, we start by building a focused version of natural deduction, and use its natural
term syntax as our notion of focused λ -calculus. Interestingly, the result is rather close to
the grammar of β -normal forms familiar to users of the λ -calculus. It is mostly a refinement
of the distinction, on β -normal forms, between constructors and neutral terms.

3.1 Intuitionistic natural deduction, focused

3.1.1 Invertibility of elimination rules

The notion of “invertible rule” works very well in sequent-calculus presentations of logics,
but needs to be modified to fit natural deduction presentation. Consider for example:

SEQ-IMPL-LEFT

Γ ` A Γ,B `C

Γ,A→ B `C

ND-IMPL-ELIM

Γ ` A→ B Γ ` A

Γ ` B

SEQ-DISJ-LEFT

Γ,A1 `C
Γ,A2 `C

Γ,A1 +A2 `C

ND-DISJ-ELIM

Γ ` A1 +A2

Γ,A1 `C
Γ,A2 `C

Γ `C

Definition 2.1 (Invertible rule) (the conclusion is invertible if and only if all premises
are) works for introduction rules, but is not suited for elimination rules.

Instead, we will rely on the rootward reading of elimination rules: the elimination of
implications let us deduce Γ ` B from Γ ` A→ B – whenever Γ ` A is provable. This

24

ZU064-05-FPR jfp 10 August 2016 17:36

suggests that we could reason about the invertibility of this rule by starting from the
eliminated premise, rather than from the conclusion. We propose the following notion of
invertibility for elimination rules.

Definition 3.1 Invertible elimination rule.
An elimination rule is invertible if, whenever its eliminated premise is provable, then its
conclusion is provable if and only if it is provable using this elimination rule.

The definition captures the intuition that an invertible rule “can always be applied”,
but in a situation where we do not decide which rule to apply by looking at the conclusion
judgment, but by looking at the eliminated premise. Let us highlight the eliminated premise
in both elimination rules:

Γ ` A→ B Γ ` A

Γ ` B

Γ ` A1 +A2 Γ,A1 `C Γ,A2 `C

Γ `C

We can check that, with this definition, the elimination of implication is non-invertible and
the elimination of disjunction is invertible, as expected. Invertibility fails when one of the
non-eliminated premises is non-provable, while the conclusion would be – by applying
another rule. For implication: if B is in the context Γ, both the eliminated premise and
conclusion are provable but Γ ` A may be non-provable. For disjunction: if Γ ` C is
provable, then we can build premises Γ,Ai `C by weakening, so the rule is applicable.

Intercalation syntax We use the following syntax from Brock-Nannestad and Schürmann
[2010], itself inspired by the “intercalation calculus”:

NAT-FOC-ELIM-IMPL

Γ ⇓ A→ B Γ ⇑ A

Γ ⇓ B

NAT-FOC-INTRO-DISJ

Γ ⇑ Ai

Γ ⇑ A1 +A2

The direction of the arrows corresponds to the direction of proof search. When we try
to prove the conclusion of an introduction rule (here Γ ⇑ A1 + A2) the rule says that it
suffices to “look up” and prove its premise (here Γ ⇑ Ai). When we know how to deduce
the eliminated premise of an elimination rule (here Γ ⇓ A→ B), then we can “look down”
and further deduce its conclusion (here Γ ⇓ B – provided we can prove Γ ⇑ A).

Structural focusing for natural deduction We give the full rules of our focused natural
deduction in Figure 11 (Focused natural deduction, with explicit shifts), using explicit
shifts in the style of Figure 9 (Focused sequent calculus for polarized propositional intu-
itionistic logic).

The involved judgments are as follows:

• Γat;Σ `inv N | Pat, the invertible judgment, with the same structure as a sequent-
calculus judgment Γat;Σ `inv N | Pat

• Γat `foc Pat, the judgment starting the focusing phase (a focus has not been chosen
yet), with the same structure as the sequent-calculus judgment Γat `foc Pat

• Γat ⇑ P, the focused introduction judgment, corresponding to the right-focusing
sequent judgment Γat `foc.r [P]

• Γat ⇓ N, the focused elimination judgment, corresponding to the left-focusing se-
quent judgment Γat, [N] `foc.l Pat.

25

ZU064-05-FPR jfp 10 August 2016 17:36

Fig. 11. Focused natural deduction, with explicit shifts

NAT-INV-IMPL-INTRO
Γ
at;Σ,P `inv N | /0

Γ
at;Σ `inv P→ N | /0

NAT-INV-CONJ-INTRO
Γ
at;Σ `inv N1 | /0

Γ
at;Σ `inv N2 | /0

Γ
at;Σ `inv N1×N2 | /0

NAT-INV-DISJ-ELIM
Γ
at;Σ,Q1 `inv N | Pat

Γ
at;Σ,Q2 `inv N | Pat

Γ
at;Σ,Q1 +Q2 `inv N | Pat

NAT-INV-FOC
Γ
at,Γat′ `foc (Pat | Qat)

Γ
at;
〈

Γ
at′
〉+at

`inv
〈
Pat
〉−at | Qat

NAT-FOC-CHOOSE-LEFT
Γ
at ⇓ 〈P〉− Γ

at;P `inv /0 | Qat

Γ
at `foc Qat

NAT-FOC-CHOOSE-RIGHT
Γ
at ⇑ P

Γ
at `foc P

NAT-FOC-SUM-INTRO
Γ
at ⇑ Pi

Γ
at ⇑ P1 +P2

NAT-FOC-AXIOM-RIGHT

Γ
at,X+ ⇑ X+

NAT-FOC-INV-RIGHT
Γ
at; /0 `inv N | /0

Γ
at ⇑ 〈N〉+

NAT-FOC-IMPL-ELIM
Γ
at ⇓ P→ N Γ

at ⇑ P

Γ
at ⇓ N

NAT-FOC-CONJ-ELIM
Γ
at ⇓ N1×N2

Γ
at ⇓ Ni

NAT-FOC-AXIOM-LEFT
Γ
at ⇓ X−

Γ
at `foc X−

NAT-FOC-CONTRACTION

Γ
at,N ⇓ N

The mapping between the various judgments is direct, except for the focused elimination
judgment whose proofs, compared to left-focusing proofs, are turned upside down. For
example, the “release” rules that explain how the focused phase stops (on an atom or a
shift) are now the rootwardmost rule of the elimination phase. Conversely, the counterpart
of the sequent rule that started a left-focusing phase (Γat,N), [N] `foc.l Pat now becomes
the leaf rule concluding Γat,N ⇓ N.

Elimination or left-introduction rules for positives? While we claim that the system of
Figure 11 (Focused natural deduction, with explicit shifts) is in natural deduction style,
one cannot help noticing that the invertible rules are actually sequent calculus rules; in
particular, we have left-introduction rules for positives, rather than elimination rules as
expected. Is this system really natural deduction? We have three different angles of answer.

First, we should point out that positive eliminations do not really fit natural deduction
in the first place. Even though they do have a formulation that is different from the se-
quent calculus one, they stand out of the rest of the system and are the source of various
difficulties when studying the meta-theory of the mixed-polarity system. We are making
them more sequent-like than they were before, but the worm was already in the fruit. The
negative elimination rules are the usual one, and this is what makes a system distinctively
natural deduction in style.

Second, in a focused system, invertible rules do not really matter, because they are
automatically applied in an irrelevant order. Invertible rules could in fact be removed from

26

ZU064-05-FPR jfp 10 August 2016 17:36

the term syntax, and reconstructed at type-checking time. Again, what really matters are
the non-invertible elimination rules.

Third and finally, we tried to look for a formulation of the invertible positive rules
that would be closer to the natural deduction rule, and didn’t find any. In particular, it
is interesting to see why the obvious idea does not work:

Γ
at;Σ `inv 〈P1 +P2〉− | /0

Γ
at;Σ,P1 `inv N | Qat

Γ
at;Σ,P2 `inv N | Qat

Γ
at;Σ `inv N | Qat

This would be a sensible invertible rule if we could always choose it without having to
make choices – choice is the privilege of non-invertible rules. It is not, because we cannot
know locally side of P1 +P2 to attempt to prove in the left rule. More generally, this left
premise may incur arbitrary proof search, including non-invertible rules.

One idea would be to restrict this unbounded-search premise to a more specific judg-
ment: instead of allowing any proofs of the positives to eliminate, could we allow only
“simple” proofs? Using the focused elimination judgment Γat ⇓ 〈P1 +P2〉− resembles the
restriction on normal natural proofs (the eliminated premise cannot be a constructor, so it
should start with an elimination or axiom rule), but it is still not invertible, as the focused
elimination judgment has to make choice.

There remain an even simpler notion of “being provable”: hypotheses are immediately
provable if they are in the assumption context. Due to the polarity invariants, we know that
positives are in Σ if they are in Γat,Σ. This suggests the following restriction of the rule
above:

Σ 3 (P1 +P2)

Γ
at;Σ,P1 `inv N | Qat

Γ
at;Σ,P2 `inv N | Qat

Γ
at;Σ `inv N | Qat

This rule is exactly the sequent left-introduction rules that we use.

3.1.2 Equivalence with the focused sequent calculus

Comparing arbitrary natural deduction and sequent-calculus proofs is delicate, and in par-
ticular there is no one-to-one correspondence between cut-free proofs in either system –
see Section 2.1.1. The restrictions of focusing give more structure to cut-free proofs, which
allow to get a one-to-one correspondence.

Theorem 3.1 (Bijection between focused sequent calculus and focused natural deduction).
There is a one-to-one correspondence between the cut-free focused sequent calculus proofs
of Figure 11 (Focused natural deduction, with explicit shifts) and the cut-free focused
natural deduction proofs of Figure 9 (Focused sequent calculus for polarized propositional
intuitionistic logic).

Proof. The general idea of this simple proof is that the difference between the two focused
systems is a stylistic choice of direction: elimination rules in natural deduction are written
“rootward”, while the corresponding left-introduction rules of sequent calculus are written
“leafward”. To translate between the two systems, it thus suffices to reverse the direction
of these parts of the proof.

27

ZU064-05-FPR jfp 10 August 2016 17:36

For example, consider the sequent proof:

Γat, [Z−] `foc.l Z−

Γat, [Y ×Z−] `foc.l Z−

Γat, [X× (Y ×Z−)] `foc.l Z−

Γat 3 X× (Y ×Z−) `foc Z−

It corresponds to the following natural deduction proof, which is a direct reversal:

Γat ⇓ X× (Y ×Z−)
Γat ⇓ Y ×Z−

Γat ⇓ Z−

Γat 3 X× (Y ×Z−) `foc Z−

In the general case, remark that there is a direct correspondence between:

• invertible sequent judgments Γat;Σ`inv N |Pat and invertible natural deduction judg-
ments Γat;Σ `inv N | Pat

• right-focused sequent judgments Γat `foc.r [P] and introduction-focused natural de-
duction judgments Γat ⇑ P

To complete our correspondence, we give a one-to-one mapping between:

• choice-of-focusing sequent judgments Γat `foc Pat and focused natural deduction
judgments Γat `foc P

• partial left-focused and elimination-focused phases, which is the reversal we de-
scribed informally; it is a correspondence between partial proof derivations of the
form

Γ
at, [N ′] `foc.l Pat

Π

Γ
at, [N] `foc.l Pat

←→

Γ
at ⇓ N

Π
′

Γ
at ⇓ N ′

We write Π←→Π′ when this correspondence holds.

The correspondence on the choice-of-focusing judgments is as follows:

Γ
at `foc.r [P]
Γ
at `foc P

←→
Γ
at ⇑ P

Γ
at `foc P

Γ
at, [X−] `foc.l X−

Π

Γ
at, [N] `foc.l X−

Γ
at 3 N `foc X−

←→

Γ
at ⇓ N

Π
′

Γ
at ⇓ X−

Γ
at 3 N `foc X−

when Π←→Π
′

28

ZU064-05-FPR jfp 10 August 2016 17:36

Γ
at;Q `inv /0 | Pat

Γ
at, [〈Q〉−] `foc.l Pat

Π

Γ
at, [N] `foc.l Pat

Γ
at 3 N `foc Pat

←→

Γ
at ⇓ N

Π
′

Γ
at ⇓ 〈Q〉− Γ

at;Q `inv /0 | Pat

Γ
at 3 N `foc Pat

when Π←→Π
′

The correspondence between the partial left-focused and elimination-focused phases is
as follows. First, we describe the correspondence between any inference rules (that is,
partial proofs of height 2):

Γ
at, [Ni] `foc.l Pat

Γ
at, [N1×N2] `foc.l Pat

←→
Γ
at ⇓ N×

Γ
at ⇓ Ni

Γ
at `foc.r [Q] Γ

at, [N] `foc.l Pat

Γ
at, [Q→ N] `foc.l Pat

←→
Γ
at ⇓ Q→ N Γ

at ⇑ Q

Γ
at ⇓ N

Then we can reverse longer proof by simply concatenating the reverses:

Γ
at, [N3] `foc.l Pat

Π2

Γ
at, [N2] `foc.l Pat

Π1

Γ
at, [N1] `foc.l Pat

←→

Γ
at ⇓ N1

Π
′
1

Γ
at ⇓ N2

Π
′
2

Γ
at ⇓ N3

when Π1↔Π
′
1, Π

′
2↔Π

′
2

�

3.2 A focused term syntax: focused λ -calculus

We propose a term syntax for this focused natural deduction that is as close as reasonably
possible to the λ -calculus. We would like to think of it as mostly a subset of λ -terms with
minor additions.

Looking at the four judgments of our focused system, we propose the following classes
of terms:

• Terms for the invertible judgments Γat;Σ `inv N | Pat contain a mix of constructors
and destructors and have subterms of arbitrary judgments; we will simply use the
class of arbitrary (cut-free) terms, with meta-variable t. We will sometimes call these
invertible terms to insist that they come from an invertible phase.

• Terms for the focused elimination judgment Γat ⇓ N are variables, to which a series
of elimination forms (function application or pair projection) are applied. This cor-
responds to the usual class (in the purely negative fragment) of neutral terms, often
written with the meta-variable n. We call them negative neutral terms.

• Terms for the focused introduction judgment Γat ⇑P are series of introduction forms,
eventually followed by an invertible proof term. We call them positive neutral terms,
and use the meta-variable p.

29

ZU064-05-FPR jfp 10 August 2016 17:36

• The choice-of-focusing judgment Γat `foc Qat has no interesting structure of its own,
but it can become either an introduction-focused or elimination-focused phase, and
we use the meta-variable f where this choice occurs. We call them focusing terms.

The grammar is described in Figure 12 (Term grammar for the focused λ -calculus), and
the corresponding typing system (using mappings from term variables to types as contexts,
instead of sets) is given in Figure 13 (Typing rules for the focused λ -calculus). We call this
system the focused λ -calculus.

Fig. 12. Term grammar for the focused λ -calculus

t,u,r ::= (invertible) terms
| λx. t λ -abstraction
| (t,u) pair
| match x with | σ1 x→ u1 | σ2 x→ u2 variable case split
| () trivial
| absurd(x) absurd variable
| (f : Pat) focusing term

f ,g ::= focusing terms
| (n : X−) negative conclusion
| let (x : P) = n in t positive binding
| (p : P) positive conclusion

n,m ::= negative neutral terms
| πi n projection
| n p application
| (x : N) negative head variable

p,q ::= positive neutral terms
| σi p injection
| (x : X+) positive head variable
| (t : N) invertible conclusion

This grammar is designed to describe well-typed terms, and we have used some typing
annotations, which are not actually part of the term syntax, but describe the expected types
of various subterms or variables – for the whole term to be well-typed. For example, the
class p of positive neutral terms includes the whole class η of invertible terms (which itself
includes f , in particular n and p), so as a grammar of untyped terms positive neutrals and
invertible terms seem to be equivalent. However, because we will only allow the use of an
invertible term inside a positive neutral at a negative type (and not in arbitrary positions),
the two classes are very different for well-typed terms and expose interesting structure.

We could have a more explicit syntax, with term markers to indicate the various phase
transitions that would remove the ambiguities, but we suspect that it would be much less
pleasant to work with. In practice we will always manipulate typed terms, associated to
their typing derivation, from which all necessary structural information can be obtained.

Remark 3.1. Our focused sequent calculus was cut-free in the literal sense of not having
a cut rule. It is interesting to check that this focused natural deduction, and the focused
λ -calculus, are also “cut-free” in the sense that the terms are irreducible. At first sight, this

30

ZU064-05-FPR jfp 10 August 2016 17:36

Fig. 13. Typing rules for the focused λ -calculus

FOCLC-LAM
Γ
at;Σ,x : P `inv t : N | /0

Γ
at;Σ `inv λx. t : P→ N | /0

FOCLC-PAIR
Γ
at;Σ `inv t1 : N1 | /0

Γ
at;Σ `inv t2 : N2 | /0

Γ
at;Σ `inv (t1, t2) : N1×N2 | /0

FOCLC-CASE
Γ
at;Σ,x : Q1 `inv t1 : N | Pat

Γ
at;Σ,x : Q2 `inv t2 : N | Pat

Γ
at;Σ,x : Q1 +Q2 `inv match x with

∣∣∣∣ σ1 x→ t1
σ2 x→ t2

: N | Pat

FOCLC-INV-FOC
Γ
at,Γat′ `foc f : (Pat | Qat)

Γ
at;
〈

Γ
at′
〉+at

`inv f :
〈
Pat
〉−at | Qat

FOCLC-CONCL-NEG
Γ
at ` n ⇓ X−

Γ
at `foc n : X−

FOCLC-LET-POS
Γ
at ` n ⇓ 〈P〉− Γ

at;x : P `inv t : /0 | Qat

Γ
at `foc let x = n in t : Qat

FOCLC-VAR-NEG

Γ
at,x : N ` x ⇓ N

FOCLC-VAR-POS

Γ
at,x : X+ ` x ⇑ X+

FOCLC-FOC-INV
Γ
at; /0 `inv t : N | /0

Γ
at ` t ⇑ 〈N〉+

FOCLC-CONCL-POS
Γ
at ` p ⇑ P

Γ
at `foc p : P

FOCLC-PROJ
Γ
at ` n ⇓ N1×N2

Γ
at ` πi n ⇓ Ni

FOCLC-APP
Γ
at ` n ⇓ P→ N Γ

at ` p ⇑ P

Γ
at ` n p ⇓ N

FOCLC-INJ
Γ
at ` p ⇑ Pi

Γ
at ` σi p ⇑ P1 +P2

seems to come from the restriction on the elimination judgment Γ ` n ⇓N, that elimination
forms are only applied to neutrals and thus never create redexes. But this omits an important
subtlety of the system, namely the use of a let-binding to represent (some) left focusing
phases, let (x : P) = n in t.

We think that this construction should not be considered as a cut; in particular, we remark
that if you substitute away all those let-bindings, the substituted term remains irreducible:
a variable (x : P) of strictly positive type will always be matched-upon by the next invertible
phase, but it will always be substituted with a neutral term n so the resulting elimination
will never become a redex. One can talk of this let-binding as an “irreducible cut”. ∗

3.2.1 Invertible commuting conversions

We call invertible commuting conversions, noted by the relation (≈icc), the equivalence
relation generated by reordering two consecutive invertible rules.

Note that there are rules permuting invertible left-introduction and right-introduction
rules, and rules that permute two left-introduction rules, but no rules permuting two right-
introduction rules. There is no right-right permutation that would preserve typing; this is
a consequence of the fact that this presentation of (focused) intuitionistic logic is single-
succedent, in a multi-succedent system we could have right-right permutations.

31

ZU064-05-FPR jfp 10 August 2016 17:36

Fig. 14. Invertible commuting conversions

λy.match x with
∣∣∣∣ σ1 z1→ u1

σ2 z2→ u2
≈icc match x with

∣∣∣∣ σ1 z1→ λy.u1
σ2 z2→ λy.u2(

t,match x with
∣∣∣∣ σ1 z1→ u1

σ2 z2→ u2

)
≈icc match x with

∣∣∣∣ σ1 z1→ (t,u1)
σ2 z2→ (t,u2)(

match x with
∣∣∣∣ σ1 z1→ u1

σ2 z2→ u2
, t
)

≈icc match x with
∣∣∣∣ σ1 z1→ (u1, t)

σ2 z2→ (u2, t)

match x′ with

∣∣∣∣∣∣ σ1 z1→ match x with
∣∣∣∣ σ1 y1→ u1

σ2 y2→ u2
σ2 z2→ t

≈icc match x with

∣∣∣∣∣∣∣∣
σ1 y1→ match x′ with

∣∣∣∣ σ1 z1→ u1
σ2 z2→ t

σ2 y2→ match x′ with
∣∣∣∣ σ1 z1→ u2

σ2 z2→ t

match x′ with

∣∣∣∣∣∣
σ1 z1→ t

σ2 z2→ match x with
∣∣∣∣ σ1 y1→ u1

σ2 y2→ u2

≈icc match x with

∣∣∣∣∣∣∣∣
σ1 y1→ match x′ with

∣∣∣∣ σ1 z1→ t
σ2 z2→ u1

σ2 y2→ match x′ with
∣∣∣∣ σ1 z1→ t

σ2 z2→ u2

3.2.2 Defocusing into non-focused λ -terms

We have glossed over the fact that focused λ -terms are not quite λ -terms as defined in
Figure 2 (Terms of the lambda-calculus with sums), because they use the let x = t in u
form that is not formally part of the syntax.

In Figure 15 (Erasure of focusing btcfoc) we define the erasure of focusing operation
b cfoc that, for any focused λ -term t, gives its erasure as a simple λ -term btcfoc, obtained
by replacing each let x = t in u form by the substitution u[t/x].

In Figure 10 (Polarity erasure), we established a translation from each focused sequent
proof of a judgment on polarized formulas A into a non-focused sequent proof of a judg-
ment on the corresponding depolarized formulas bAc±. We can now state a similar result
for focused natural deduction, strengthened with a correspondence between the proof terms
themselves.

Lemma 3.2 (Type soundness of defocusing).
The following implications hold:

Γat;Σ `inv t : N | Pat =⇒ bΓatc± ,bΣc± ` btcfoc : (bNc± | bPatc±)
Γat `foc f : Pat =⇒ bΓatc± ` b f cfoc : bPatc±
Γat ` n ⇓ N =⇒ bΓatc± ` bncfoc : bNc±
Γat ` p ⇑ P =⇒ bΓatc± ` bpcfoc : bPc±

Proof. By direct mutual induction on the premises. �

32

ZU064-05-FPR jfp 10 August 2016 17:36

Fig. 15. Erasure of focusing btcfoc

bλx. tcfoc
def
= λx.btcfoc

b(t1, t2)cfoc
def
= (bt1cfoc,bt2cfoc)⌊

match x with
∣∣∣∣ σ1 x→ u1

σ2 x→ u2

⌋
foc

def
= match x with

∣∣∣∣ σ1 x→ bu1cfoc
σ2 x→ bu2cfoc

b()cfoc
def
= ()

babsurd(x)cfoc
def
= absurd(x)

blet x = n in tcfoc
def
= btcfoc[bncfoc/x]

bπi tcfoc
def
= πi btcfoc

bn pcfoc
def
= bncfoc bpcfoc

bxcfoc
def
= x

bσi tcfoc
def
= σi btcfoc

The following technical lemma gives a specification of defocusing translations will be
useful to establish later results.

Lemma 3.3 (Composability of defocusing).
Any subterm of btcfoc is of the form

bucfoc[bn1cfoc/x1][bn2cfoc/x2] . . . [bnncfoc/xn]

where u is a subterm of t, and the let xi = ni are the let-bindings in t that scope over u.

Proof. By induction on (the subterms of) t. �

3.3 Focusing completeness by big-step translation

Theorem 3.4 (Completeness of focusing).
The focused λ -calculus is computationally complete: any well-typed lambda-term is βη-
equivalent to (the let-substitution of) a focused λ -term.

Computational completeness could be argued to be folklore, or a direct adaptation of
previous work on completeness of focusing: a careful reading of the elegant presenta-
tion of Simmons [2011] (or Laurent [2004] for linear logic) would show that its logical
completeness argument in fact proves computational correctness. Without sums, it exactly
corresponds to the fact that β -short η-long normal forms are computable for well-typed
lambda-terms of the simply-typed calculus.

We introduce an explicit η-expanding, let-introducing transformation from β -normal
forms to valid focused proofs for our system. Detailing this transformation also serves by
building intuition for the computational completeness proof of the saturating focused logic
in Figure 22 (Saturation translation), Section 6 (Canonicity of saturated proofs).

Proof (Computational completeness). Let us recall that simply-typed lambda-calculus with-
out fixpoints is strongly normalizing, and write NFβ (t) for the (full) β -normal form of t.

We define in Figure 16 an expansion relation Γat;Σ `inv t t ′ : N | Qat that turns any
well-typed β -normal form bΓatc± ,bΣc± ` t : b(N | Qat)c± into a valid focused derivation
Γat;Σ `inv t ′ : N | Qat.

33

ZU064-05-FPR jfp 10 August 2016 17:36

Fig. 16. Translation into focused terms

REW-INV-SUM
Γ
at;Σ,x : P1 `inv NFβ (t[σ1 x/x]) t ′1 : N | Qat

Γ
at;Σ,x : P2 `inv NFβ (t[σ2 x/x]) t ′2 : N | Qat

Γ
at;Σ,x : A1 +A2 `inv t match x with

∣∣∣∣ σ1 x→ t ′1
σ2 x→ t ′2

: N | Qat

REW-INV-ARROW
Γ
at;Σ,x : P `inv NFβ (t x) u′ : N | /0

Γ
at;Σ `inv t λx.u′ : P→ N | /0

REW-INV-PROD
Γ
at;Σ `inv NFβ (π1 t) u′1 : N1 | /0 Γ

at;Σ `inv NFβ (π2 t) u′2 : N2 | /0

Γ
at;Σ `inv t

(
u′1,u′2

)
: N1×N2 | /0

REW-INV-FOC
Γ
at,Γat′ `foc t t ′ : (Pat | Qat)

Γ
at;
〈

Γ
at′
〉+at

`inv t t ′ :
〈
Pat
〉−at | Qat

REW-FOC-ATOM
Γ
at ` n n′ ⇓ X−

Γ
at `foc n n′ : X−

REW-FOC-INTRO
Γ
at ` t t ′ ⇑ P

Γ
at `foc t t ′ : P

REW-FOC-ELIM
Γ
at,x : P `C[x] : Qat

Γ
at ` n n′ ⇓ 〈P〉− Γ

at;x : P `inv C[x] t ′ : /0 | Qat

Γ
at `foc C[n] let x = n′ in t ′ : Qat

REW-UP-SUM
Γ
at ` t t ′ ⇑ Pi

Γ
at ` σi t σi t ′ ⇑ P1 +P2

REW-UP-INV
Γ
at; /0 `inv t t ′ : N | /0

Γ
at ` t t ′ ⇑ 〈N〉+

REW-UP-VAR
(x : X+) ∈ X+

Γ
at ` x x ⇑ X+

REW-DOWN-VAR
(x : N) ∈ Γ

at

Γ
at ` x x ⇓ N

REW-DOWN-PAIR
Γ
at ` n n′ ⇓ N1×N2

Γ
at ` πi n πi n′ ⇓ Ni

REW-DOWN-ARROW
Γ
at ` t : P

Γ
at ` n n′ ⇓ P→ N Γ

at ` t t ′ ⇑ P

Γ
at ` n t n′ t ′ ⇓ N

We use four mutually recursive judgments, one for each judgment in the focused λ -
calculus of Figure 13 (Typing rules for the focused λ -calculus): the invertible and focusing
translations Γat;Σ`inv t t ′ : N |Qat and Γat `foc t t ′ : Qat, and the negative and positive
neutral translations Γat ` n n′ ⇓ N and Γat ` t t ′ ⇑ P. For the two first judgments, the
inputs are the context(s), source term, and translation type, and the output is the translated
term. For the neutral judgments the translation type is an output – this reversal follows the
usual bidirectional typing of normal forms.

Three distinct aspects of the translation need to be discussed:

1. Finiteness. It is not obvious that a translation derivation Γat;Σ `inv t t ′ : N | Qat

exists for any bΓatc± ,bΣc± ` t : b(N | Qat)c±, because subderivations of invertible
rules perform β -normalization of their source term, which may a priori make it grow
without bounds. It could be the case that for certain source terms, there does not exist
any finite derivation.

2. Partiality. As the rules are neither type- nor syntax-directed, it is not obvious that any
input term, for example match t1 t2 with | σ1 x1→ u1 | σ2 x2→ u2, has a matching
translation rule.

34

ZU064-05-FPR jfp 10 August 2016 17:36

3. Non-determinism. The invertible rules are not quite typed-directed, and the REW-FOC-ELIM

rule is deeply non-deterministic, as it applies for any neutral subterm of the term be-
ing translated – that is valid in the current typing environment. This non-determinism
allows the translation to accept any valid focused derivation for an input term, reflect-
ing the large choice space of when to apply the FOC-ELIM rule in backward focused
proof search.

Totality The use of β -normalization inside subderivations precisely corresponds to the
“unfocused admissibility rules” of Simmons [2011]. To control the growth of subterms in
the premises of rules, we will use as a measure (or accessibility relation) the three following
structures, from the less to the more important in lexicographic order:

• The (measure of the) types in the context(s) of the rewriting relation. This measure
is strictly decreasing in the invertible elimination rule for sums, but increasing for
the arrow introduction rule.

• The (measure of the) type of the goal of the rewriting relation. This measure is
strictly decreasing in the introduction rules for arrow, products and sums, but in-
creasing in REW-FOC-ELIM or neutral rules.

• The set of (measures of) translation judgments Γat ` n n′ ⇓ N for well-typed
neutral subterms n of the translated term whose type N is of maximal mesaure.
Note that while that complexity seems to increase in the premises of the judgment
Γat ` n n′ ⇓ N, this judgment should be read top-down: all the sub-neutrals of n
already appear as subterms of the source t in the REW-FOC-ELIM application Γat `foc
t ? : Qat that called Γat ` n ? ⇓ N.
This measure is non-increasing in all non-neutral rules other than REW-FOC-ELIM, in
particular the rules that require re-normalization (β -reduction or η-reduction may
at best duplicate the occurrences of the neutral of maximal type, but not create new
neutrals at higher types). In the sum-elimination rule, the neutral x of type P1 +P2

is shadowed by another neutral x of smaller type (P1 or P2). In the arrow rule, a
new neutral t x is introduced if t is already neutral, but then t x : N is at a strictly
smaller type than t : P→ N. In the product rule, new neutral πi t : Ni are introduced
if t : N1×N2 is neutral, but again at strictly smaller types.
Finally, this measure is strictly decreasing when applying REW-FOC-ELIM. Note that
by typing we know that n, of shifted positive type 〈P〉−, is not the whole term t, of
positive or atomic type Qat – ruling this case out is an advantage of using explicit
shifts, compared to the presentation of Scherer and Rémy [2015].

This three-fold measures proves termination of Γat;Σ `inv t ? : N | Qat seen as an al-
gorithm: we have proved that there are no infinite derivations for the translation judgments.

Partiality The invertible translation rules are type-directed; the neutral translation rules
are directed by the syntax of the neutral source term. But the focusing translation rules are
neither type- nor source-directed. We have to prove that one of those three rule applies for
any term – assuming that the context is negative or atomic, and the goal type positive or
atomic.

35

ZU064-05-FPR jfp 10 August 2016 17:36

The term t either starts with a constructor (introduction form), a destructor (elimination
form), or it is a variable; a constructor may be neither a λ or a pair, as we assumed the type
is positive or atomic. It starts with a non-empty series of sum injections, followed by a
negative or atomic term, we can use REW-FOC-INTRO. Otherwise it contains (possibly after
some sum injections) a positive subterm that does not start with a constructor.

If it starts with an elimination form or a variable, it may or may not be a neutral term. If
it is neutral, then one of the rules REW-FOC-ATOM (if the goal is atomic) or REW-FOC-INTRO

(if the goal is strictly positive) applies. If it is not neutral (in particular not a variable), it

has an elimination form applied to a subterm of the form match t with
∣∣∣∣ σ1 x1→ u1

σ2 x2→ u2
;

but then (recursively) either t is a (strictly positive) neutral, or of the same form, and the
rule REW-FOC-ELIM is eventually applicable.

We have proved that for any well-typed bΓatc± ,bΣc± ` t : b(N | Qat)c±, there exists a
translation derivation Γat;Γ `inv t t ′ : N | Qat for some t ′.

Non-determinism The invertible rules may be applied in any order; this means that for
any t ′ such that Γat;Γ ` t t ′ : A, for any t ′′ =icc t ′ we also have Γat;Γ ` t t ′′ : A: a
non-focused term translates to a full equivalence class of commutative conversions.

The rule REW-FOC-ELIM may be applied at will (as soon as the let-extruded neutral n is
well-typed in the current context). Applying this rule eagerly would give a valid saturated
focused deduction. Not enforcing its eager application allows (but we need not formally
prove it) any βη-equivalent focused proof to be a target of the translation.

Validity We prove by immediate (mutual) induction that, if bΓatc± ,bΓc± ` t : b(N | Qat)c±
holds, then the focusing translations are type-preserving:

• if Γat;Σ; t `inv t ′ N : Qat | then Γat;Σ `inv t ′ : N | Qat

• if Γ = /0 and Γat `foc t t ′ : Qat then Γat `foc t ′ : Qat

• if Γ = /0 and Γat ` n n′ ⇓ N then Γat ` n′ ⇓ N

• if Γ = /0 and Γat ` t t ′ ⇑ P then Γat ` t ′ ⇑ P

Soundness Finally, we prove that the translation preserves βη-equivalence. If bΓatc± ,bΣc± `
t : b(N | Qat)c± and Γat;Σ `inv t t ′ : N | Qat, then t ≈βη t ′, that is, t ≈βη bt ′cfoc.

As for validity, this is proved by mutual induction on all judgments. The interesting cases
are the invertible rules and the focusing elimination rule; all other cases are discarded by
immediate induction.

The invertible rules correspond to an η-expansion step. For REW-INV-PROD, we have that
t ≈η (π1 t,π2 t), and can thus deduce by induction hypothesis that t ≈βη (u′1,u′2). For
REW-INV-ARROW, we have that t ≈η λx. t, and can thus deduce by induction hypothesis that

36

ZU064-05-FPR jfp 10 August 2016 17:36

t ≈βη λx. t ′. For REW-INV-SUM, let us write t as C[x] with x /∈C, we have that

t = C [x : A+B]

≈η match x with
∣∣∣∣ σ1 x→C [σ1 x]

σ2 x→C [σ2 x]

= match x with
∣∣∣∣ σ1 x→ t[σ1 x/x]

σ2 x→ t[σ2 x/x]

≈βη match x with
∣∣∣∣ σ1 x→ t ′1

σ2 x→ t ′2
(by induction hypothesis)

In the case of the rule REW-FOC-ELIM, the fundamental transformation is the let-binding
that preserves βη-equivalence.

t = t[x/n][n/x]
≈βη let x = n in t[x/n]
≈βη let x = n′ in t ′ (by induction hypothesis)

Conclusion We have proved computational completeness of the focused logic: for any
bΓatc± ,bΓc± ` t : b(N | Qat)c±, there exists some Γat;Σ `inv t ′ : N | Qat, such that
Γat;Σ `inv NFβ (t) t ′ : N | Qat, with t ≈βη bt ′cfoc. �

4 Counting terms and proofs

In Section 2.1 (Natural deduction and sequent calculus) we presented a correspondence
between well-typed terms in the simply-typed lambda-calculus, with (typing) derivations
for the judgment Γ` t : A, and natural-deduction proofs of propositional intuitionistic logic,
written as (logic) derivations for judgments of the form Γ ` A. This correspondence is not
one-to-one. In typing judgments Γ ` t : A, the context Γ is a mapping from free variables
to their type. In logic derivations, the context Γ is a set of hypotheses; there is no notion of
variable, and at most one hypothesis of each type in the set. This means, for example, that
the following logic derivation

A ` A

A ` A→ A

/0 ` A→ A→ A

corresponds to two distinct programs, namely λx.λy.x and λx.λy.y. We say that those
programs have the same shape, in the sense that the erasure of their typing derivation gives
the same logic derivation – and they are the only programs of this shape.

Despite, or because, not being one-to-one, this correspondence is very helpful to answer
questions about type systems. For example, the question of whether, in a given typing
environment Γ, the type A is inhabited, can be answered by looking instead for a valid
logic derivation of bΓc ` A, where bΓc denotes the erasure of the mapping Γ into a set
of hypotheses. In Section 1.9 (Termination) we have argued that only a finite number of
different types need to be considered to find a valid proof (this is the case for propositional

37

ZU064-05-FPR jfp 10 August 2016 17:36

logic because of the subformula property). As a consequence, there are finitely many set-
of-hypothesis ∆, and the search space of sequents ∆ ` B to consider during proof search is
finite. This property is key to the termination of proof search algorithms for propositional
logic. Note that it would not work if we searched typing derivations Γ ` t : A directly: even
if there are finitely many types of interest, the set of mappings from variables to such types
is infinite.

In the present artile, we are interested in a different problem. Instead of knowing whether
there exists a term t such that Γ ` t : A, we want to know whether this term is unique –
modulo a given notion of program equivalence. Intuitively, this can be formulated as a
search problem where search does not stop at the first candidate, but tries to find whether
a second one (that is nonequivalent as a program) exists. In this setting, the technique
of searching for logic derivations bΓc ` A instead is not enough, because a unique logic
derivation may correspond to several distinct programs of this shape: summarizing typing
environments as set-of-hypotheses loses information about (non)-unicity, it is not complete
for unicity.

To better preserve this information, one could keep track of the number of times a
hypothesis has been added to the context, representing contexts as multisets of hypothe-
ses; given a logic derivation annotated with such counts in the context, we can precisely
compute the number of programs of this shape. However, even for a finite number of
types/formulas, the space of such multisets is infinite; this breaks termination arguments. A
natural idea is then to approximate multisets by labeling hypotheses with 0 (not available in
the context), 1 (added exactly once), or 2̄ (available two times or more); this two-or-more
approximation has three possible states, and there are thus finitely many contexts annotated
in this way.

The question we answer in this section is the following: is the two-or-more approxima-
tion correct? By correct, we mean that if the precise number of times a given hypothesis
is available varies, but remains in the same approximation class, then the total number of
programs of this shape may vary, but will itself remain in the same approximation class. A
possible counter-example would be a logic derivation ∆ ` B such that, if a given hypothesis
A∈ ∆ is present exactly twice in the context (or has two free variables of this type), there is
one possible program of this shape, but having three copies of this hypothesis would lead
to several distinct programs.

Is this approximation correct? We found it surprisingly difficult to have an intuition
on this question (guessing what the answer should be), and discussions with colleagues
indicate that there is no obvious guess – people have contradictory intuitions on this.
We show (Corollary 4.6 (Two-or-more approximation)) that this approximation is in fact
correct.

4.1 Terms, types and derivations

We will manipulate several different systems of inference rules and discuss the relations
between them: the type system, the logic, and inference systems annotated with counts
(precise and approximated). To work uniformly over those various judgments, we will re-
define their context structure as a mapping from types to some set. A set of hypothesis is
now seen as a mapping from types to booleans, a multiset is a mapping to natural number,

38

ZU064-05-FPR jfp 10 August 2016 17:36

and typing judgment is a mapping from types to sets of free variables (we inverse the usual
association order).

In this section, we shall write T for the set of formulas or types defined in Figure 1
(Types of the simply-typed calculus). Besides the set of types T, we will write V for the
set of term variables x,y, . . . , B for the set of booleans {1,0}, N for the (non-negative)
natural numbers, and 2̄ for the set {0,1, 2̄} used by the two-or-more approximation – note
the bar on 2̄ to indicate the extra element 2̄ and avoid confusion with other notations for
the booleans.

We write E→ F for the set of functions from the set E to the set F , and cardinal(E) for
the cardinal of the set E.

To make our discussion of shapes (of propositional judgments) precise and notationally
convenient, we give a syntax for them in Figure 17 (Syntax of propositional shapes),
instead of manipulating derivation trees directly. A shape is a variable-less proof-term;
we will manipulate explicitly typed shapes, where variables have been replaced with their
typing information.

Fig. 17. Syntax of propositional shapes

S,T := typed shapes
| A,B,C axioms
| λA.S λ -abstraction
| S T application
| (S,T) pair
| πi S projection
| σi S sum injection

| match S with

∣∣∣∣ σ1 A1→ T1
σ2 A2→ T2

sum destruction

Shapes correspond to logic derivations, that is, proof term without variables. Instead of
a variable x : A, we just use the shape A. Similarly, the term λx. t, where the bound variable
x has type A, becomes the shape λA.S, where S is the shape of t.

There is an immediate mapping from valid derivations of the usual logic judgment Γ ` A
into shapes, which suggests reformulating the judgment as S :: Γ ` A. Valid judgments
are then in direct one-to-one mapping with their valid derivations – a principle all our
different judgments will satisfy. A gramatically correct shape S may be invalid, that is, not
correspond to any valid logic derivation S :: Γ ` A – for example π1 (λA.B) is an invalid
shape. We will only consider valid shapes, classified by the provability judgment Γ ` A, in
the rest of this document.

We will manipulate the following judgments, each annotated with a propositional shape
S:

• the provability judgment S :: Γ ` A, where the context Γ is in T→ B – isomorphic to
sets of types;

• the typing judgment S :: E ` t : A, where the context E is in T→P(V) – isomorphic
to mappings from term variables to types;

• various counting judgments of the form S :: Φ `K A : a for a set K, where Φ is in
T→ K – mapping from types to a multiplicity in K – and a, in K, represents the
output count of the derivation.

39

ZU064-05-FPR jfp 10 August 2016 17:36

The context annotations of all those judgments each have a (commutative) monoid
structure ((+M),0M) of a binary operation and its unit/neutral element: ((∨),0) for B and
((∪), /0) for P(V). Our counting sets K will even have the stronger algebraic structure of a
semiring, we detail this in Section 4.2 (Counting terms in semirings). This is used to define
common notations as follows.

The binary operation of the monoid can be lifted to whole context, and we will write Γ,∆

for the addition of contexts: (Γ,∆)(A) = Γ(A)+M ∆(A). We will also routinely specify a
context as a partial mapping from types to annotations, for example the singleton mapping
[A 7→ a] (for some a in the codomain of the mapping); by this, we mean that the value for
any other element of the domain is the neutral element 0M . In particular, the notation Γ,A
on sets of hypotheses corresponds to the addition Γ, [A 7→ 1] in T→ B, and the notation
Γ,x : A on mapping from variables to types corresponds to the addition Γ, [A 7→ {x}] in
T→P(V).

Finally, for any function f : E→ F , we will write b c f : T→ E→ T→ F the pointwise

lifting of f on contexts: bΦc f (A)
def
= f (Φ(A)). In particular, b c6= /0 erases typing environ-

ments T→P(V) into logic contexts T→ B, b c6=0 erases multiplicity-annotated contexts
T→ N into logic context T→ B, and b ccardinal() erases typing environments T→P(V)
into multiplicity-annotated contexts T→ N.

The logic and typing judgments are defined in Figure 18 (Shaped provability judgment)
and Figure 19 (Shaped typing judgment). In logic derivations we will simply write A for the
singleton mapping [A 7→ 1]. In typing derivations, we write x : A for the singleton mapping
[A 7→ {x}]. Similarly, the variable freshness condition x /∈ E means (∀A ∈ T,x /∈ E(A)).

Fig. 18. Shaped provability judgment

Γ(A) = 1
A :: Γ ` A

S :: Γ,A ` B

λA.S :: Γ ` A→ B

S :: Γ ` A→ B T :: Γ ` A

S T :: Γ ` B

S :: Γ ` A T :: Γ ` B

(S,T) :: Γ ` A×B

S :: Γ ` A1×A2

πi S :: Γ ` Ai

S :: Γ ` Ai

σi S :: Γ ` A1 +A2

S :: Γ ` A+B T1 :: Γ,A1 `C T2 :: Γ,A2 `C

match S with

∣∣∣∣ σ1 A1→ T1
σ2 A2→ T2

:: Γ `C

Note that while changing the logic judgment from Γ ` A to S :: Γ ` A has the clear
notational benefit of making valid judgments equivalent to derivations, this argument does
not apply to changing the typing judgment from E ` t : A to S :: E ` t : A, as the valid
judgments E ` t : A are already in one-to-one correspondence with their derivations; S
adds some extra redundancy and could be computed from the triple (E, t,A) (or directly
from t if we had used explicitly typed λ -terms). The benefit of S :: E ` t : A is to let us
talk very simply of the logical shape of a program, without having to define an additional
erasure function from typing derivation to logical derivations: the set of programs of shape

40

ZU064-05-FPR jfp 10 August 2016 17:36

Fig. 19. Shaped typing judgment

x ∈ E(A)

A :: E ` x : A

x /∈ E S :: E,x : A ` t : B

λA.S :: E ` λx. t : A→ B

S :: E ` t : A→ B T :: E ` u : A

S T :: E ` t u : B

S :: E ` t : A T :: E ` u : B

(S,T) :: E ` (t,u) : A×B

S :: E ` t : A1×A2

πi S :: E ` πi t : Ai

S :: E ` t : Ai

σi S :: E ` σi t : A1 +A2

S :: E ` t : A+B x /∈ E,y /∈ E T1 :: E,x1 : A1 ` u1 : C T2 :: E,x2 : A2 ` u2 : C

match S with

∣∣∣∣ σ1 A1→ T1
σ2 A2→ T2

:: E ` match t with
∣∣∣∣ σ1 x1→ u1

σ2 x2→ u1
: C

S and type A in the environment E is simply defined as:

{t | S :: E ` t : A}

4.2 Counting terms in semirings

We are trying to connect two distinct ways of “counting” things about a logic derivation
S :: Γ ` A. One is precise, it counts the number of distinct programs of shape S, and the
other is the two-or-more approximation.

We generalize those two ways of counting as instances of a generic counting scheme
that works for any semiring (K,0K ,1K ,+K ,×K). A semiring is defined as a two-operation
structure where (0K ,+K) and (1K ,×K) are monoids, (+K) commutes and distributes over
(×K) (which may or may not commute), 0K is a zero/absorbing element for (×K), but (+K)

and (×K) need not have inverses1

The usual semiring is (N,0,1,+,∗), and it will give the precise counting scheme. The
2-or-more semiring, which we will call 2̄, will correspond to the approximated scheme:

• its support is 2̄ = {0,1, 2̄}; 0K is 0, 1K is 1
• we define the addition by 1+K 1 = 2̄ and 2̄+K 1 = 2̄+K 2̄ = 2̄.
• we define the (commutative) multiplication by 2̄×K 2̄ = 2̄.

Definition 4.1 Semiring notations.
Addition and multiplication can be lifted pointwise from K to T→ K: for any A ∈ T we
define (Φ+K Ψ)(A) def

= Φ(A)+K Ψ(A) and (Φ×K Ψ)(A) def
= Φ(A)×K Ψ(A).

Finally, we define a morphism from the semiring N to the semiring 2̄. Recall that ϕ :
K→ K′ is a semiring morphism if ϕ(0K) = 0K′ , ϕ(1K) = 1K′ , ϕ(a+K b) = ϕ(a)+K′ ϕ(b)
and ϕ(a×K b) = ϕ(a)×K′ ϕ(b).

1 For a ring (K,0K ,1K ,+K ,×K), (+K) must be invertible, so Z is a ring while N is only a semiring.

41

ZU064-05-FPR jfp 10 August 2016 17:36

Definition 4.2 The 2-or-more morphism ϕ2̄.
We define ϕ2̄ : N→ 2̄ as follows:

ϕ2̄(0) = 0
ϕ2̄(1) = 1
ϕ2̄(n) = 2̄ if n≥ 2

ϕ2̄ is a semiring morphism.

Note that (B,0,1,∨,∧) is also a semiring. For any semiring K, the function (6= 0K) :
K→ B (which we may also write (6= 0)) is a semiring morphism.

4.2.1 Semiring-annotated derivations

Given a semiring K, we now define derivations S :: Φ `K A : a where Φ is a set of types
labeled with counts in K (that is, an element of the product T→ K for some set Γ), and a
is itself in K.

We construct those inference rules such that, when K is instantiated with the semiring
of natural numbers N, they really count the different programs of the same shape. For
example, consider a logic derivation S :: Γ ` B starting with a function elimination rule

S1 :: Γ ` A→ B S2 :: Γ ` A

S1 S2 :: Γ ` B

A program of this shape is of the form t u, at type B; it can be obtained by pairing any
possible program t (of shape S1) at type A→ B with any possible program u at type A (of
shape S2), so the number of possible applications is the product of the number of possible
functions and possible arguments. Formally, we have that, for any typing environment E,
writing cardinal(S) for the cardinal of the set S:

{t0 | S1 S2 :: E ` B}=
{
(t u) | S1 :: E ` t : A→ B,

S2 :: E ` u : A

}
cardinal({t0 | S1 S2 :: E `

B}) = cardinal({t | S1 :: E ` t : A→ B})× cardinal({u | S2 :: E ` u : A})

This suggests the following semiring-annotated inference rule:

S1 :: Φ `K A→ B : a1 S2 :: Φ `K B : a2

S1 S2 :: Φ `K B : a1×K a2

The other rules are constructed in the same way, and the full inference system is given in
Figure 20 (Shaped counting judgment). We write A : a for the singleton mapping [A 7→ a].

The identity rule says that if we have a different program variables of type A in our con-
text, then using the variable rule of our typing judgment we can form a different programs.
In particular, if A is absent from the context Φ, we have A :: Φ ` A : 0. In the function-
introduction rule, the number of programs of the form λx. t : A→ B is the number of pro-
grams t : B in a context enriched with one extra variable of type A. The most complex rule is
the sum elimination rule: the number of case-eliminations (match t with | σ1 x1→ u1 | σ2 x2→ u2) :
C is the product of the number of possible scrutinees t : A+B and cases u1 : C and u2 : C,
with u1 and u2 built from one extra formal variable of type A or B accordingly.

42

ZU064-05-FPR jfp 10 August 2016 17:36

Fig. 20. Shaped counting judgment

A :: Φ `K A : Φ(A)

S :: Φ,A : 1 `K B : a

λA.S :: Φ `K A→ B : a

S1 :: Φ `K A→ B : a1 S2 :: Φ `K A : a2

S1 S2 :: Φ `K B : a1×a2

S1 :: Φ `K A : a1 S2 :: Φ `K B : a2

(S1,S2) :: Φ `K A×B : a1×a2

S :: Φ `K A1×A2 : a

πi S :: Φ `K Ai : a

S :: Φ `K Ai : a

σi S :: Φ `K A1 +A2 : a

S :: Φ `K A1 +A2 : a1 T1 :: Φ,A1 : 1 `K C : a2 T2 :: Φ,A2 : 1 `K C : a3

match S with

∣∣∣∣ σ1 A1→ T1
σ2 A2→ T2

:: Φ `K C : a1×a2×a3

We now precisely formulate the fact that the system `N really counts the number of
programs of a given shape. Recall that b ccardinal() : (T→P(V))→ (T→ N) erases a
typing environment into a multiplicity-annotated context.

Lemma 4.1 (Cardinality count).
For any typing environment E ∈T→P(V), shape S and type A, the following is derivable:

S :: bEccardinal() `N A : cardinal({t | S :: E ` t : A})

Proof. By induction on the shape S, using the following equalities (obtained by inversion
of the shape-directed typing judgment):

{t0 | A :: E ` t0 : A}= {x ∈ E(A)}

{t0 | λA.S :: E ` t0 : A→ B}= {λx. t | S :: E,x : A ` t : A}

{t0 | S T :: E ` t0 : B}=
{

t u | S :: E ` t : A→ B
T :: E ` u : A

}

{t0 | (S,T) :: E ` t0 : A}=
{
(t,u) | S :: E ` t : A

T :: E ` u : B

}
{t0 | πi S :: E ` t0 : A}= {πi t | S :: E ` t : A}

{t0 | σi S :: E ` t0 : A}= {σi t | S :: E ` t : A}

{t0 | match S with

∣∣∣∣ σ1 A1→ T1

σ2 A2→ T2
:: E ` t0 : C}

=

match t with
∣∣∣∣ σ1 x1→ u1

σ2 x2→ u2
|

S :: E ` t : A1 +A2

T1 :: E,x1 : A1 ` u1 : C
T2 :: E,x2 : A2 ` u2 : C

�

43

ZU064-05-FPR jfp 10 August 2016 17:36

While the inference system `N corresponds to counting programs of a given shape (we
formally claim and prove it below), other semirings indeed correspond to counting schemes
of interest. The system `2̄ corresponds to the “two-or-more” approximation, as can be
exemplified by the following derivations:

(A) :: A : 2̄ `2̄ A : 2̄

(λA.A) :: A : 1 `2̄ A→ A : 2̄

(λA.λA.A) :: /0 `2̄ A→ A→ A : 2̄

(A) :: A : 2̄ `2̄ A : 2̄

(λA.A) :: A : 2̄ `2̄ A→ A : 2̄

(λA.λA.A) :: A : 1 `2̄ A→ A→ A : 2̄

(λA.λA.λA.A) :: /0 `2̄ A→ A→ A→ A : 2̄

When adding the hypothesis in the context in the context, its count goes from 0 to 1 – we
have /0(A) = 0 by definition. When adding it the second time, its count goes from 1 to 2̄.
But on the third addition on the right, the count remains 2̄, as in the semiring 2̄ we have
2̄+1 = 2̄.

The `B system intuitively corresponds to a system where the two possible counts are
“zero” and “one-or-more”, that is, it only counts inhabitation. There is a precise correspon-
dence between this system and the logic derivation we formulated: derivations of the form
S :: Γ ` A : 1 are in one-to-one correspondence with valid logic derivations S :: Γ ` A, and
derivations S :: Γ ` A : 0 correspond to invalid logic derivations, where the shape S is valid
but the context Γ lacks some hypothesis used in S. In particular, /0 ` A : 0 is always provable
by immediate application of the variable rule.

Lemma 4.2 (Provability count).
There is a one-to-one correspondence between logic derivations of S :: Γ ` A and B-
counting derivations of S :: Γ `B A : 1.

Proof. Immediate by induction on the shape S. �

4.2.2 Semiring morphisms determine correct approximations

The key reason why the two-or-more approximation is correct is that the mapping from N
to 2̄ is a semiring morphism and, as such, preserves the annotation structure of counting
derivations.

Theorem 4.3 (Morphism of derivations).
If ϕ : K → K′ is a semiring morphism and S :: Φ ` A : a holds, then S :: bΦc

ϕ
` A : ϕ(a)

also holds.

Proof. By induction on S.

A :: Φ `K A : Φ(A) ⇒ A :: bΦc
ϕ
`K′ A : ϕ(Φ(A))

S :: Φ,A : 1K `K B : a

λA.S :: Φ `K A→ B : a
⇒

S :: bΦc
ϕ
,A : 1′K `K′ B : ϕ(a)

λA.S :: bΦc
ϕ
`K′ A→ B : ϕ(a)

44

ZU064-05-FPR jfp 10 August 2016 17:36

To use our induction hypothesis, we needed the fact that bΦc
ϕ
,A : 1′K is equal to bΦ,A : 1Kcϕ ;

this comes from the fact that ϕ is a semiring morphism: ϕ(1K) = ϕ(1′K) and ϕ(a+K b) =
ϕ(a)+′K ϕ(b), thus bΦ,Ψc

ϕ
= bΦc

ϕ
,bΨc

ϕ
.

S1 :: Φ `K A→ B : a1 S2 :: Φ `K A : a2

S1 S2 :: Φ `K B : a1×a2

⇒
S1 :: bΦc

ϕ
`K′ A→ B : ϕ(a1) S2 :: bΦc

ϕ
`K′ A : ϕ(a2)

S1 S2 :: bΦc
ϕ
`K′ B : ϕ(a1)×ϕ(a2)

To conclude we then use the fact that ϕ(a1)×ϕ(a2) = ϕ(a1×a2).

S1 :: Φ `K A : a1 S2 :: Φ `K B : a2

(S1,S2) :: Φ `K A×B : a1×a2

⇒
S1 :: bΦc

ϕ
`K′ A : ϕ(a1) S2 :: bΦc

ϕ
`K′ B : ϕ(a2)

(S1,S2) :: bΦc
ϕ
`K′ A×B : ϕ(a1)×ϕ(a2)

S :: Φ `K A1×A2 : a

πi S :: Φ `K Ai : a
⇒

S :: bΦc
ϕ
`K′ A1×A2 : ϕ(a)

πi S :: bΦc
ϕ
`K′ Ai : ϕ(a)

S :: Φ `K Ai : a

σi S :: Φ `K A1 +A2 : a
⇒

S :: bΦc
ϕ
`K′ Ai : ϕ(a)

σi S :: bΦc
ϕ
`K′ A1 +A2 : ϕ(a)

S :: Φ `K A+B : a1 T1 :: Φ,A1 : 1K `K C : a2 T2 :: Φ,A2 : 1K `K C : a3

match S with

∣∣∣∣ σ1 A1→ T1

σ2 A2→ T2
:: Φ `K C : a1×a2×a3

⇒

S :: bΦc
ϕ
`K′ A+B : ϕ(a1) T1 :: bΦc

ϕ
,A1 : 1′K `K′ C : ϕ(a2) T2 :: bΦc

ϕ
,A2 : 1′K `K′ C : ϕ(a3)

match S with

∣∣∣∣ σ1 A1→ T1

σ2 A2→ T2
:: bΦc

ϕ
`K′ C : ϕ(a1)×ϕ(a2)×ϕ(a3)

�

From there, it remains to point out that the right-hand side count is uniquely determined
by the context multiplicity.

Lemma 4.4 (Determinism).
If S :: Φ `K A : a and S :: Φ `K A : b then a = b.

Proof. Immediate by induction on derivations. Note that the fact that the judgments are
indexed by the same shape S is essential here. �

Corollary 4.5 (Relation under morphism).
If ϕ : K → K′ is a semiring morphism and bΦ1cϕ = bΦ2cϕ , then S :: Φ1 `K A : a1 and
S :: Φ2 `K A : a2 imply ϕ(a1) = ϕ(a2)

45

ZU064-05-FPR jfp 10 August 2016 17:36

Proof. By Theorem 4.3 (Morphism of derivations), we have S :: bΦ1cϕ `K′ A : ϕ(a1) and
S :: bΦ2cϕ `K′ A : ϕ(a2). If bΦ1cϕ = bΦ2cϕ we can conclude by Lemma 4.4 (Determinism)
that ϕ(a1) = ϕ(a2). �

Corollary 4.6 (Two-or-more approximation).
The 2-or-more approximation is correct to decide unicity of inhabitants of a given shape
S. If bE1cϕ2̄·cardinal() = bE2cϕ2̄·cardinal(), then

ϕ2̄(cardinal({t | S :: E1 ` t : A})) = ϕ2̄(cardinal({t | S :: E2 ` t : A}))

Proof. By Lemma 4.1 (Cardinality count), counting the inhabitants corresponds to the
system `N, so we have

S :: bE1ccardinal() `N A : cardinal({t | S :: E1 ` t : A})

S :: bE2ccardinal() `N A : cardinal({t | S :: E2 ` t : A})

The result then directly comes from the previous corollary, given that ϕ2̄ is a semiring
morphism. �

4.2.3 n-or-more logics

The result can be extended to any “n-or-more” approximation scheme given by the semir-
ing n̄ and semiring morphism ϕn̄ : N→ n̄ defined as follows (assuming n> 1):

n̄ def
= {0,1, . . . ,n−1,n} 0n̄

def
= 0 1n̄

def
= 1

(a+n̄ b) def
= min(a+N b,n) (a×n̄ b) def

= min(a×N b,n)

To check that ϕn̄ is indeed a morphism, one needs to remark that having either a> n or
b> n implies (a+N b)> n and, if a and b are non-null, (a∗N b)> n.

5 Saturation logic for canonicity

Equipped with the understanding of program equivalence acquired through our study of
focusing (Section 3), it is now time to go back to our original question: which types have
a unique inhabitant? In this section, we provide a decision algorithm for this question in
the context of simply-typed lambda-calculus with products and unit types, sums and empty
types.

With the technical ideas that we have built throughout this document, the idea can be de-
scribed in a concise way: we define a variant of focusing for intuitionistic natural deduction
that is canonical and has a structural presentation which makes goal-directed proof search
possible in this subsystem. The key idea is to use saturation in non-invertible phases, that
is a complete forward search for left focused phases, until reaching a saturated state (all
deducible strict positives have been deduced), then doing right focus and continuing with
goal-directed (backward) search. We also need a precise notion of saturation to ensure both
completeness and termination.

In Section 5.2 (A saturating focused type system), we will present the typing rule of
our saturated focused type system, which can be understood as a variant of multi-focused

46

ZU064-05-FPR jfp 10 August 2016 17:36

λ -calculus. This system serves as a declarative specification of saturation, but it does not
suffice to obtain an algorithm as its goal-directed proof search process is not always termi-
nating. It Section 7 (Unique inhabitation algorithm) we introduce an algorithmic restriction
of the system in which proof search is terminating and gives a deduction procedure for
unicity – and prove its correctness.

5.1 Introduction to saturation for unique inhabitation

The rules of program equivalence for the full, pure simply-typed λ -calculus were given in
Figure 4 (βη-equivalence for the simply-typed lambda-calculus). Of particular interest is
the distinction between the weak eta-rule (≈weakη) and the strong η-rule (≈η) for sums

(t : A1 +A2) .weakη match t with
∣∣∣∣ σ1 y1→ σ1 y1

σ2 y2→ σ2 y2

∀C [x], C [t : A1 +A2] .η match t with
∣∣∣∣ σ1 y1→C [σ1 y1]

σ2 y2→C [σ2 y2]

5.1.1 Non-canonicity of simple focusing: splitting points

Simple focusing, as described in Section 3 (Focused λ -calculus), classifies terms that are
also called β -short η-long normal forms, but they in fact correspond to weak β -short
weakη-long normal forms. In the purely negative fragment (no sums and empty types),
the weak and strong η-rules coincide, so focusing captures the right notion of normal form
and is a canonical system.

Focusing fails to be canonical when positives are added; consider for example the fol-
lowing goal:

x : Z+
1 , f : Z+

1 → X++X+,g : X+→ Y− ` ? : Z+
0 +(Y−×Y−)

The three following programs are equivalent, yet are syntactically distinct valid focused
terms (normal forms). Note that there are other possible ways to write a well-typed β -short
weakη-long normal form at this type – but they are all equivalent.

47

ZU064-05-FPR jfp 10 August 2016 17:36

σ1

let y = f x in match y with

∣∣∣∣ σ1 z1→ g z1

σ2 z2→ g z2

,

let y = f x in match y with
∣∣∣∣ σ1 z1→ g z1

σ2 z2→ g z2

let y = f x in match y with
∣∣∣∣ σ1 z1→ σ1 (g z1,g z1)

σ2 z2→ σ1 (g z2,g z2)

let y = f x in match y with

∣∣∣∣∣∣
σ1 z1→ σ1 (g z1,g z1)

σ2 z2→ let y′ = f x in
(
match y′ with

∣∣∣∣ σ1 z′→ (g z2,g z′1)
σ2 z′→ (g z2,g z′2)

)
We can prove that these three terms are βη-equivalent, but an informal explanation also

helps following these examples.
The first two terms perform the same splitting (binding then pattern-matching) of f x,

but one does it once before building the pair, and the other does it separately in each branch
of the pair. Because we assume that f is a pure function2, it must returns the same thing in
each element of the pair, and the final results are thus identical. To prove that the two terms
are identical, it suffices to extrude the binding let y = f x in ? from the pair elements in
the second case, and extrude the pattern-matching as well. (In terms of focusing, we are
suggesting to permute two independent non-invertible phases, the let binding and the sum
injection; pair construction and variable case-split are implicitly moved around as well,
being the invertible phases that systematically follow each non-invertible phase.)

The third term is slightly different, as instead of performing two splits in two parallel
branches (as the first term), it performs two splits in sequence, with the second split being
in scope of the (right branch of) the first split. The reasoning to informally justify the
equivalence with the second term is that, at the time when y′ (that is f x) is matched over,
we already know the value of f x: if this branch has been taken, it is because f x is equal to
σ2 z2 for some z2 that is currently in scope. We can thus replace y′ with σ2 z2 in the nested
pattern-matching. Performing a β -reduction step then gives exactly the second term.

Remark 5.1. Note that this example of non-canonicity of the focusing discipline would
break if we replaced the context hypothesis f : Z+

1 →X++X+ by a mere sum x0 : X++X+.
Indeed, the focusing discipline would recognize it as a positive in context, to be split before
the start of the first non-invertible phase, and this would give a unique focused derivation.

By wrapping this positive under a (negative) function type, we make it out of reach from
the simple focusing discipline. In a system with explicit shifts (here we assumed minimal
shifts), see Section 2.4.1 (Explicit shifts), we could also simply put the sum under a double-
shift delay. ∗

2 Note that non-termination plus lazy pairs would already allow to observe a difference between
those two terms.

48

ZU064-05-FPR jfp 10 August 2016 17:36

5.1.2 Canonicity for term equivalence: extrusion

These examples allow to understand where non-canonicity comes from. We have (focused)
terms that are syntactically distinct but semantically equivalent. They differ by the place,
and the number of times, on which a particular subterm (here g ()) of sum type is bound
and matched over. We need to quotient over this source of difference, by imposing a unique
place at which those subterms should be bound and matched, that can be decided during
goal-directed proof search.

Definition 5.1 Splitting.
Splitting a (sub)term is pattern-matching over it, possibly after having bound it to a variable
name. We call splitting point the place where the term is bound and pattern-matched.

In the work on deciding equivalence of λ -terms with sums, the solution is to move each
subterm of sum type as high/early as possible in the term, to split them there – and merge
equal subterms that end up being split at the same place. This is clearly visible in the
rewriting-based work of Ghani [1995] and Lindley [2007], but it is also perceptible in the
normalization-by-evaluation work [Balat, Di Cosmo, and Fiore, 2004, Altenkirch, Dybjer,
Hofmann, and Scott, 2001]. For example, Balat, Di Cosmo, and Fiore [2004] define a
notion of quasi-normal form for terms with sums, with a side-condition (Condition (B),
page 5) says that a split term must become ill-typed if we move it before the latest series
of variable bindings (in fact, the latest invertible phase). This is a way to guarantee that
subterms of sum type are split as early as possible in the term.

Those procedures proceed by moving subterms (invertible and non-invertible phases)
around, so in particular they rely on the presence of one initial term to normalize, or two
initial terms to compare: it makes sense to search, for example, for all neutral subterms n
of the initial term that are valid at some possible splitting point (the start of a non-invertible
phase) and extrude them.

5.1.3 Canonicity for term enumeration: saturation

On the contrary, the problem of unique inhabitation requires enumerating proof terms out
of the blue, without starting from a pre-existing proof term to transform. When reaching
a potential splitting point (the start of a non-invertible phase) during term enumeration
(goal-directed proof search), there are no subterms to collect and extrude, only recursive
sub-goals that have not yet be filled. This crucial difference leads us to taking a quite
different (yet related) approach.

Another way to see the situation of term normalization or equivalence is that the initial
term serves as an oracle to answer the following question: “which terms should we split
now, that will be useful to the rest of the proof?”. Useful sub-terms are those that it is
necessary to bind now to build a term equivalent (computationally) to the initial term. We
can also see them as an over-approximation of a set of terms that we must split to find a
proof at all; we use the initial term as a base of “hints” (its subterms) to find a proof of the
desired judgment – a proof with the particular property of being equivalent to the initial
term we started from.

To move from term normalization or comparison to term enumeration, our idea is to
drop the usefulness criterion. We cannot know in advance, at this stage of the proof search,

49

ZU064-05-FPR jfp 10 August 2016 17:36

without having searched for the sub-goals, which terms of positive types will actually be
used by the proof(s) that we will find, but we can split all of them. Then we start again
enumerating terms of the desired type, in a context extended with (the decomposition of) all
those freshly split sums. Some splits will prove useful to build all terms of our enumeration,
some will only be used by some of those distinct terms, and some will not be used at all.
This is the idea of saturation.

What exactly do we mean by “all terms of positive types”? We are only interested in the
terms of positive type whose value is unknown, because they come from the (unknown)
formal variables in the typing context of the search. Those are the neutral terms n,m that are
obtained by taking a variable x of the context, and applying pair projections πi n or function
applications n p on it until we reach a result of sum type. One can think of a neutral term
n : A1 + A2 as a specific “observation” of the richly-typed value of its head variable x;
saturation, which splits all those neutral terms, is the process of learning everything we can
learn from our context by these observations, before continuing the proof search.

Saturation should come before any committing choice. If we delay these observations,
and first perform a non-invertible introduction step, we can get in a dead search branch,
because we do not have enough information at hand to know which choice to make (con-
sider again the proofs of f : ()→ X +Y ` ? : Y +X). This justifies performing saturation
“as early as possible”, or at least before making any mistake, that is before the start of each
non-invertible (right) introduction phase.

In the rest of this section, we will see

• A structural presentation of a focused saturating type system, which encapsulates
this idea of saturation as a typing rule.
• A simple mechanism to avoid splitting the same neutral of positive type during

two successive saturation phases, to preserve canonicity; Section 5.2 (A saturating
focused type system).
• Various methods to avoid saturating on infinitely many distinct neutrals, or repeating

saturation infinitely long before reaching a stable state, to preserve termination;
Section 7 (Unique inhabitation algorithm).

5.1.4 An example of saturation

Let us consider our previous example showing that focusing alone is not canonical:

x : Z+
1 , f : Z+

1 →
〈
X++X+

〉−
,g : X+→ Y− ` ? : Z+

0 +
〈
Y−×Y−

〉+
The context Γat is negative or atomic, and the goal is positive. In our focused logic, we

would start by looking for all n of positive type such that Γat ` n ⇓ P. There is exactly
one such (n : P) in this context, it is (f x : X++X+). Saturation would thus start with the
following phase:

let y = f x in ?

and the following invertible phase would be

match y with
∣∣∣∣ σ1 y→ ?

σ2 y→ ?

50

ZU064-05-FPR jfp 10 August 2016 17:36

leaving us with two subgoals, each with a context of the form

x : Z+
1 , f : Z+

1 →
〈
X++X+

〉−
,g : X+→ Y−,y : X+

As the two goals are identical, we will focus here on one of them, the other proceeds in the
exact same way.

At this point, a new focusing phase begins, looking for all negative neutrals with a
positive type. But the addition of a X+ in the context did not give us any way to deduce
a new neutral: we can still build f x, but we have already saturated over it. At this point,
saturation stops, and our algorithm tries all possible (non-invertible) rules to prove our
goal.

In our case the goal is a strict positive (rather than a negative atom) so we look for all
possible positive neutrals p at this type. Proof search will thus attempt to use a term of
the form σ1 ?, and prove the remaining goal Z+, and also to use a term of the form σ2 ?
and prove the remaining goal 〈Y−×Y−〉+. In the first case Z+

0 , search fails immediately:
a strictly positive neutral at this type is a variable, and there is none in the context. In
the second case, 〈Y−×Y−〉+, the focused introduction phase stops at the shift, and a new
invertible phase starts.

The invertible phase for Y−×Y− creates two identical goals, so we can focus on any of
them, trying to prove Y−. A new saturation phase start, but there is still no new negative
neutral of positive type in sight. The search algorithm then tries to prove the goal, and
because we have a negative atom it looks for a negative neutral at this type. All negative
neutrals of type Y− in this context are of the form g ?, with a subgoal of type X+, to be filled
by a positive neutral; there is exactly one positive neutral at this type, namely y; because
there is only one choice, we know that this goal has a unique inhabitant.

This leaves us with a unique program of this type, namely

let y = f x in match y with
∣∣∣∣ σ1 y→ (g y,g y)

σ2 y→ (g y,g y)

Positive variant We could also consider a variant of this goal with a different choice of
atom polarities – there are other possible choices but this one is interesting.

x : Z+
1 , f : Z+

1 →
〈
X++X+

〉−
,g : X+→

〈
Y+
〉− ` ? : Z++

〈〈
Y+
〉−×〈Y+

〉−〉+
As before, the first saturation step has exactly one neutral to introduce, let y = f x in ?,

with y : X++X+. But, after the following invertible phase match y with | σ1 y→ ? | σ2 y→ ?,
saturated proof search differs from the previous one as a new positive becomes provable,
(g y : Y+). This judgment is still uniquely inhabited, but with a different saturated proof
term:

let y = f x in match y with
∣∣∣∣ σ1 y→ let z = g y in (z,z)

σ2 y→ let z = g y in (z,z)

5.2 A saturating focused type system

In Figure 21 (Cut-free saturating focused type system (in natural deduction style)) we give
the full typing rules for our saturating focused λ -calculus. They share many similarities

51

ZU064-05-FPR jfp 10 August 2016 17:36

with the focused λ -calculus of Section 3 (Focused λ -calculus), with several changes that
we will describe in detail. The calculus is described by four mutually recursive judgments,
whose role we will detail in this section.

• The invertible judgment Γat;Σ `sinv t : N | Qat, which is very close to the invertible
judgment Γat;Σ `inv t : N | Qat of the focused λ -calculus.
• The saturating judgment Γat;Γat′ `sat f : Qat is where most of the novelty lies,

in particular the SAT rule that enforces saturating. It is inspired by the “choice of
focusing” judgment Γat `foc f : Qat of the simple focused λ -calculus, but behaves in
a different way.

• The focused introduction and elimination judgments Γat `s p ⇑ P and Γat `s n ⇓ N,
which are identical to the corresponding judgments of the focused λ -calculus.

In addition, the type system is parametrized by a family of selection functions SelectΓat();
for any negative or atomic context Γat and positive or atomic goal type Pat, it takes as input
a (potentially infinite) set of neutrals of positive type (n,P) and returns a finite subset of
its input. This parameter represents choices that can be made by an algorithm derived from
this logic.

5.2.1 Invertible phase

Our approach to decide unique inhabitation is to design a generic term enumeration pro-
cedure that only enumerates distinct terms (no duplicates) and enumerate distinct terms
lazily. Given such a procedure, it suffices to enumerate at most two term to decide unicity.

How can we enumerate all distinct values of type (A1×A2)? Well, we know from the
η-equivalence of products (t : A1 × A2) = (π1 t,π2 t) that any term of type A1 × A2 is
equivalent to some pair (t,u) of some t : A1 and u : B2, and it thus suffices to enumer-
ate all distinct values of A1, of A2, and take their (lazily enumerated) cartesian product.
Similarly, to enumerate all distinct values of type (A→ B), it suffices to enumerate B in an
environment extended with a formal variable x : A, and return λx. t for each distinct t in B.

The invertible judgment Γat;Σ`sinv t : N |Qat corresponds to this enumeration reasoning.
In term of focusing, we say that the λ -introduction rule is “invertible”, which means here
that we can always assume terms of function types are built using it, without losing any
generality. Same things for product – and unit, obviously.

A novelty of the focusing-based point of view is that this “without loss of generality”
reasoning not only applies to terms with an invertible constructor (the negative types), but
also terms that can be destructed without any loss of generality (the positive types). If we
have a variable of sum type in the context, any possible well-typed term can be rewritten
to begin with a case-split on this variable.

SINV-CASE

Γ
at;Σ,x : P1 `sinv t1 : N | Qat

Γ
at;Σ,x : P2 `sinv t2 : N | Qat

Γ
at;Σ,x : P1 +P2 `sinv match x with

∣∣∣∣ σ1 x→ t1

σ2 x→ t2
: N | Qat

When reading this rule, one should first read the rule without the terms, or with the terms
replaced by not-yet-filled holes, and think of the goal-directed search process: whenever

52

ZU064-05-FPR jfp 10 August 2016 17:36

Fig. 21. Cut-free saturating focused type system (in natural deduction style)

SINV-LAM
Γ
at;Σ,x : P `sinv t : N | /0

Γ
at;Σ `sinv λx. t : P→ N | /0

SINV-PAIR
Γ
at;Σ `sinv t1 : N1 | /0

Γ
at;Σ `sinv t2 : N2 | /0

Γ
at;Σ `sinv (t1, t2) : N1×N2 | /0

SINV-CASE
Γ
at;Σ,x : P1 `sinv t1 : N | Qat

Γ
at;Σ,x : P2 `sinv t2 : N | Qat

Γ
at;Σ,x : P1 +P2 `sinv match x with

∣∣∣∣ σ1 x→ t1
σ2 x→ t2

: N | Qat

SINV-SAT
Γ
at;Γ

at′ `sat f : (Pat | Qat)

Γ
at;
〈

Γ
at′
〉+at

`sinv f :
〈
Pat
〉−at | Qat

SAT

(n̄, P̄) def= Select
Γat,Γat ′({(n,P) | (Γat,Γat′ `s n ⇓ 〈P〉−)∧∃x ∈ Γ

at′,x ∈ n})
Γ
at,Γat′; x̄ : P̄ `sinv t : /0 | Qat

Γ
at;Γ

at′ `sat let x̄ = n̄ in t : Qat

SAT-UP
Γ
at `s p ⇑ P

Γ
at; /0 `sat p : P

SAT-DOWN
Γ
at `s n ⇓ X−

Γ
at; /0 `sat n : X−

SAT-UP-SINV
Γ
at; /0 `sinv t : N | /0

Γ
at `s t ⇑ 〈N〉+

SAT-UP-ATOM

Γ
at,x : X+ `s x ⇑ X+

SAT-DOWN-VAR

Γ
at,x : N `s x ⇓ N

SAT-DOWN-PROJ
Γ
at `s n ⇓ N1×N2

Γ
at `s πi n ⇓ Ni

SAT-DOWN-APP
Γ
at `s n ⇓ P→ N Γ

at `s p ⇑ P

Γ
at `s n p ⇓ N

SAT-UP-INJ
Γ
at `s p ⇑ Pi

Γ
at `s σi p ⇑ P1 +P2

we want to enumerate all terms at this typing judgment, it suffices to enumerate the possible
terms t1 and t2 in the premises, and for each pair of such terms (in the cartesian product of
the enumeration) return the term (match x with | σ1 x→ t1 | σ2 x→ t2). In other words,
all distinct terms are (equivalent to a term) of the shape (match x with | σ1 x→ ?1 | σ2 x→ ?2),
with the holes ?i filled as per the premise judgments.

Remark 5.2. This arguably distinguishes focusing from other approaches such as bidi-
rectional type-checking, which are essentially identical on the purely negative fragment.
Focusing is justified in a general enough setting to easily extend to sum types. It predicts
that some type-directed transformations should be guided by the typing context, rather than
the goal type. ∗

The negative types are those whose construction (introduction) rule is invertible, and the
positive types are those whose destruction (elimination) rule is invertible. This means that
while the goal is negative, or while there remains a negative in the context, an invertible
rule can be applied. The structure of our judgments forces us to apply these invertible rules
as long as possible; we only leave the invertible judgment in the transition rule SINV-SAT,

53

ZU064-05-FPR jfp 10 August 2016 17:36

which is only available when the context has only negative or atomic formulas, and the
goal is positive or atomic:

SINV-SAT

Γ
at;Γ

at′ `sat f : (Pat | Qat)

Γ
at;
〈

Γ
at′
〉+at

`sinv t :
〈
Pat
〉−at | Qat

More precisely, the polarity constraint is enforced by the fact that the function 〈 〉+at

takes a negative formula, and returns a positive formula (by shifting) or a negative atom
(atoms are preserved); so the judgment context is in the image of this function only if all
its formulas are shifted positive formulas or negative atoms. Same thing for 〈 〉−at in the
goal.

On the goal side, let us recall that a convention of the (A | B) notation is that exactly one
of the sides is empty, and the other is a formula. The invertible judgment maintains two
different formula positions,

Finally, let us comment on the role of the two contexts Γat and Γat′ appearing in this
rule, and in general Γat (a context of negative or atomic formulas) and the second context
Σ (a context of positive formulas). Γat never evolves when applying rules of the invertible
phase: it is the “old” context, in which the invertible phase started, unchanged. On the
contrary, Σ is the context of formulas that are added to the context during the phase (by
introducing a λ -abstraction, or by decomposing a formula already in Σ). It contains the
“new” formulas that were unknown at the beginning of the invertible phase.

5.2.2 Saturation phase – a first look

The saturation phase only starts where all possible invertible rules have been applied. Any
rule we can apply now is non-invertible: it requires making a choice, and it may be the
wrong choice – going to a dead end.

There are two kinds of non-invertible rules: the ones that try to use variables from the
context (for example choosing to call a function from the context, which may fail if we
can’t build a value of the argument’s type), and the ones that try to construct values at the
goal type (if the goal is a sum A1+A2, it would be an injection constructor σi , representing
the choice to either build a A1 or a A2). In the (asymmetric) intuitionistic logic, using the
context is better choice, as failure there does not require backtracking (at worst we do not
manage to call the function, and we continue the proof with something else); thus, we try
to deduce everything we can from the context first, and do a choice on the goal type only
later – this is saturation, done by the SAT rule.

SAT

(n̄, P̄) def
= SelectΓat,Γat ′({(n,P) | (Γat,Γat′ `s n ⇓ 〈P〉−)∧∃x ∈ Γ

at′,x ∈ n})
Γ
at,Γat′; x̄ : P̄ `sinv t : /0 | Qat

Γ
at;Γ

at′ `sat let x̄ = n̄ in t : Qat

The SAT rule is the central and most complex rule of our saturated calculus. We do not
know how to explain it in one go – the current definition evolved by refinement. Instead of
trying to dissect it now, we will use a two-step approach: first describe informally what it
does, assume that it does it correctly to understand the rest of the rules and the big picture

54

ZU064-05-FPR jfp 10 August 2016 17:36

of how the whole type system works, and then go back to its definition once the general
mechanics is in place.

What the SAT rule does is the following: it looks for all the way that a positive formula
can be deduced from the context, that is, proved by a neutral term n : 〈P〉−. It adds all these
deductions to the current context, and goes to the invertible judgments again – where these
positive formulas are decomposed by the invertible rules, before starting another step of
saturation. Note that the goal type is not changed by saturation, it is still positive or atomic,
and is thus not decomposed by the following invertible phase. Only the types just deduced
by saturation change during inversion.

With this description, it looks like the saturation process would never stop. This is where
the separation, in the invertible judgment, between the “old” context and the “new” context
come in. Eventually, it will become the case that all positive formulas deducible from the
context have been deduced, and the next saturation phase will not split on any new formula.
The invertible phase will start, but stop immediately after (no positive formula from the
context to decompose), and call the saturation judgment again with Γat′ being the empty
set /0. When the “new” context is empty, we know that saturation has reached a stable state,
and we allow saturation to stop: instead of the SAT rule, the proof may continue with either
SAT-UP or SAT-DOWN, that escape the saturation judgment by finally trying to construct a
term/proof of the goal type. At this point, we have done all possible deductions from the
context, so we can make arbitrary choices (in fact, try all those choices), as there is nothing
more to learn to help us making those choices.

The rules SAT-UP and SAT-DOWN do not overlap, only one of them is usable depending on
the goal type. If it is a positive formula, we try to prove by a series of introduction rules (in
terms of focusing, this is a right focusing phase). If it is a negative atom, we try to prove it
by a series of elimination rules (in terms of focusing, this is a left focusing phase that ends
on a negative atom).

SAT-UP

Γ
at `s p ⇑ P

Γ
at; /0 `sat p : 〈P〉−

SAT-DOWN

Γ
at `s n ⇓ X−

Γ
at; /0 `sat n : X−

5.2.3 Focused introduction and elimination phases

The judgment Γat `s p ⇑ P, entered from the SAT-UP rule, tries to prove a positive formula
by a series of introduction rules, by building a term out of value constructors. At each step
of this judgment we need to make a non-invertible choice; to enumerate all possible proofs,
we just backtrace on each of those choices. When we reach a (shifted) negative formula
〈N〉+ in the rule SAT-UP-SINV, there are no non-invertible constructors to apply anymore,
so we revert to the invertible judgment.

SAT-UP-INJ

Γ
at `s p ⇑ Pi

Γ
at `s σi p ⇑ P1 +P2

SAT-UP-SINV

Γ
at; /0 `sinv t : N | /0

Γ
at `s t ⇑ 〈N〉+

The judgment Γat `s n ⇓ N, entered from the SAT-DOWN rule, describes a series of
elimination steps (function application or pair projection) applied to a head variable taken
in the context. Unlike all other judgments of natural deduction or sequent calculus, the

55

ZU064-05-FPR jfp 10 August 2016 17:36

rules of this judgment should be read from leaf to root. A proof start from a variable chosen
from the context, in the rule SAT-DOWN-VAR, that is of negative type, and applies a series of
non-invertible elimination rules, passing an argument (if the negative type is a function) or
projecting one component (if the negative type is a product).

SAT-DOWN-VAR

Γ
at,x : N `s x ⇓ N

SAT-DOWN-APP

Γ
at `s n ⇓ P→ N Γ

at `s p ⇑ P

Γ
at `s n p ⇓ N

SAT-DOWN-PROJ

Γ
at `s n ⇓ N1×N2

Γ
at `s πi n ⇓ Ni

Notice that the input type of function is a positive type, and that we look for an argument
as a positive neutral term p by typing it with the non-invertible introduction judgment
Γat `s p ⇑ P. Some proof systems are “less focused”, in that they allow function arguments
to start with a more general invertible phase.

The ending rule of the introduction judgment Γat `s p ⇑ P enforces the fact that an intro-
duction phase ends only when the formula becomes negative (or, in the SAT-UP-ATOM rule,
when we reach a positive axiom). The elimination judgment goes in the other direction, so
it is the “caller” of this judgment (the rule who has the elimination judgment as a premise)
that decides when it can end. In the SAT-DOWN rule, we only consider elimination phases
that end on a negative atom, and in the SAT rule we only consider elimination phases that
end of a (shifted) positive formula.

SAT

(n̄, P̄) def
= SelectΓat,Γat ′({(n,P) | (Γ

at,Γat′ `s n ⇓ 〈P〉−)∧∃x ∈ Γ
at′,x ∈ n})

Γ
at,Γat′; x̄ : P̄ `sinv t : /0 | Qat

Γ
at;Γ

at′ `sat let x̄ = n̄ in t : Qat

SAT-DOWN

Γ
at `s n ⇓ X−

Γ
at; /0 `sat n : X−

5.2.4 The saturation rule – a deeper look

A naive attempt at defining the SAT rule would look as follows:

SAT-1

(n̄, P̄) def
= {(n,P) | (Γat,Γat′ `s n ⇓ 〈P〉−)} Γ

at,Γat′; x̄ : P̄ `sinv t : /0 | Qat

Γ
at;Γ

at′ `sat let x̄ = n̄ in t : Qat

This definition looks for all ways to deduce (by a neutral proof term) a positive from
the current context, adds it to the context, and continues with an invertible phase that will
decompose those positives. It has two independent problems:

1. A single neutral term n will be introduced many times, by all saturation steps where
it is typable – by monotonicity, subsequent saturation steps will introduce all the
proofs of the previous iteration steps, plus some more. This breaks canonicity, which
relies on the fact that each possible neutral (each possible observation of the formal
context) is given a unique name. Consider for example the judgment

x0 : Z+
1 ,x : Z+

1 →
〈
X+
〉− ; /0 `sinv ? : /0 | X+

56

ZU064-05-FPR jfp 10 August 2016 17:36

The first saturation phase will deduce X+ by introducing the proof y1
def
= x x0 of

type X−. It is followed by an invertible phase that will stop immediately, as there
is no connective to decompose in the context or the goal. Then a new saturation
phase starts; because there is no provision in SAT-1 against performing the same
deduction again, the term could introduce y2

def
= x x0 of type X+. This could go on

indefinitely, but forgetting about the termination aspect for a moment, we have a
canonicity problem: it now appear that there are two distinct ways to build the goal
X+, using either y1 or y2 – formal variables in the context are considered distinct.
We need a way to remember which neutrals have been introduced in previous satu-
ration step, not to re-introduce them again; not doing so would break canonicity of
the proof system, and thus soundness of the unicity-deciding algorithm.

2. The present definition introduces, at each saturation steps, all the neutrals of positive
types. Even without taking the previously introduced ones into account, there may
be too much new neutrals, leading saturated proof search into an infinite loop. There
are two different sources of non-termination:

• A single saturation step may, with this definition, introduce infinitely many pos-
itives. Consider for example a variable in context x : N→ P, where N is a type
of natural numbers, defined as N def

= (X−→ X−)→ X−→ X− for example, and
P is some positive type. With such a variable x in the context Γat,Γat′, the set

{(n,P) | (Γat,Γat′ `s n ⇓ 〈P〉−)}

is infinite (it contains x 0, x 1, x 2, etc., with the usual definition of natural con-
stants)). Even if we extended our syntax to accommodate infinitely-wide let-
bindings let x̄ = n̄ in , the following invertible phase would have to decon-
struct infinitely many copies of the type P in context, so there would be no finite
proof (term) in this type system for any goal with x : N→ P in context.
• Even if each saturation step is finite, saturation may keep going on indefinitely if

each step introduces a new variable to use. Consider for example that for some
“stream state” type X+ we have in the typing environment a state value x0 : X+

and a “next” function y : X+→X++Y+ that returns the next state if it exists, or a
value of some type Y+ if there is no next state – we reached the end of the stream.
The first saturation step can use x0 to deduce a new value y x0 of positive type
X++Y+; the invertible phase will pattern-match on this new value, and in the
left branch we will have a new variable x1 : X+ in context. The second saturation
phase can deduce a new value y x1 of positive type, and the second invertible
phase will decompose it and (in the left branch) bind a new variable x2 : X+

in context. This saturation process can continue indefinitely, even though each
saturation step only introduces finitely many positives. This corresponds to the
incremental construction of an infinite term spine, matching over an unbounded

57

ZU064-05-FPR jfp 10 August 2016 17:36

stream:

let x1 = y x0 in

match x1 with∣∣∣∣∣∣∣∣
σ1 x1→ let x2 = y x1 in

match x2 with∣∣∣∣ σ1 x2→ let x3 = y x2 in . . .

σ2 x2→ . . .

σ2 x1→ . . .

In particular, the “new context” Γat′ will always contain at least one new variable
xn of type X+; it will never be empty, and the rules exiting the saturation cycle,
SAT-UP and SAT-DOWN, will never be applicable. No matter what the goal type is
(as long as it is positive, that is there is at least one saturation step), a system
using the rule SAT-1 would have no (finite) proof term as soon as those “state”
and “next” variables are in context.

Those are not canonicity issues (we are not enumerating duplicates), but termination
and completeness issues. If some judgments that should be provable have no finite
proofs, it means that our system is incomplete (even for provability), and also that
proof search and enumeration will not terminate. To prevent this, we must somehow
allow the logic to “drop” some new variables produced by saturation (when it is
correct to do so), so that no single saturation step binds infinitely many variables,
and so that repeated saturation steps eventually reach a stable state with an empty
“new” context. This is done by keeping at most two variables of each type, using
the Corollary 4.6 (Two-or-more approximation) of Section 4 (Counting terms and
proofs).

Avoiding redundant splits An idea to solve the first problem (not splitting on the same
neutral terms in several saturation processes) is to simply index all judgments will the set
of all neutrals split so far, and to remove those neutrals from any following saturation step.
This is, in fact, not necessary, thanks to our structural separation of the context between an
“old” context Γat and a “new” context Γat′. The new context contains exactly the variables
that were split by the last invertible phase, and the old context the older ones, that were
already available during the previous saturation step.

There is thus a very simple characterization of which neutrals n were already split in a
previous saturation step, and should not be split again. They are the neutrals that are already
typable in the old context Γat, or conversely the neutrals that do not use any variable from
the new context Γat′. This is the simplification that justifies keeping the static separation
between the old and new context in the invertible rules.

An improved (but still unsatisfying) reformulation of the preliminary SAT-1 rule, that
avoids redundant splits, is as follows:

SAT-2

(n̄, P̄) def
= {(n,P) | (Γat,Γat′ `s n ⇓ 〈P〉−) and (∃x ∈ Γ

at′,x ∈ n)}
Γ
at,Γat′; x̄ : P̄ `sinv t : /0 | Qat

Γ
at;Γ

at′ `sat let x̄ = n̄ in t : Qat

This new rule forces us to introduce only (and all) the terms that are “new”, in the sense
that they use the new context Γat′ – this is checked by the condition (∃x ∈ Γat′,x ∈ t).

58

ZU064-05-FPR jfp 10 August 2016 17:36

Finite saturation proofs As we have seen with a few examples, some contexts have
saturation processes that split infinitely many new neutrals, either during a single step or
through infinitely many steps never reaching a fixpoint. This is not surprising or wrong:
some types are inhabited by infinitely many distinct programs. However, while we expect
that enumerating all those programs would require infinitely many steps, we would like to
be able to have finite proofs for each of those programs, which our current saturation rules
does not allow.

To have finite proofs even during an infinite saturation process, it suffices to allow some
proofs to use only a subset of the split subterms. Instead of SAT-2, consider the following
rule, which only replaces the (

def
=) in the first premise by a (⊆):

SAT-2-SUB

(n̄, P̄)⊆ {(n,P) | (Γat,Γat′ `s n ⇓ 〈P〉−) and (∃x ∈ Γ
at′,x ∈ n)}

Γ
at,Γat′; x̄ : P̄ `sinv t : /0 | Qat

Γ
at;Γ

at′ `sat let x̄ = n̄ in t : Qat

It may seem that this definition of the saturation rule allow the goal-directed proof
enumeration process to stop the saturation earlier than it should (in particular if we select
n̄ def
= /0, then saturation stops) and thus make the search incomplete. But as the enumeration

process is looking for all possible proof terms of the judgment, it may consider all possible
subsets, and thus not miss a single term; note that each finite term uses only a finite subset
of the split neutrals, so we can always assume n̄ finite.

Unfortunately, this weaker condition also causes a loss of canonicity: two proof terms
may be essentially the same, but differ by the fact that one saturates on a few additional
neutrals – otherwise unused.

Canonicity by deterministic restriction This gets us to the final version of our rule:

SAT

(n̄, P̄) def
= SelectΓat,Γat ′({(n,P) | (Γat,Γat′ `s n ⇓ 〈P〉−)∧∃x ∈ Γ

at′,x ∈ n})
Γ
at,Γat′; x̄ : P̄ `sinv t : /0 | Qat

Γ
at;Γ

at′ `sat let x̄ = n̄ in t : Qat

In this version, the choice of which subset of neutrals to saturate on is fixed once and for
all by the saturation function SelectΓat,Γat ′(). For a given choice of saturation function,
all proof search processes for a given judgment will select the same set of neutrals. This
avoids the previous canonicity issue: two terms cannot differ merely by the choice of which
neutrals to saturate over.

Comparison with the previous approach of Scherer and Rémy [2015] In the previous
presentation of Scherer and Rémy [2015], we did not use a fixed saturation-selection func-
tion; instead, the saturation rule had one extra requirement that all the neutrals introduced
by saturation where “useful” in some sense.

59

ZU064-05-FPR jfp 10 August 2016 17:36

SAT

(n̄, P̄)⊆ {(n,P) | (Γat,Γat′ `s n ⇓ 〈P〉−)∧∃x ∈ Γ
at′,x ∈ n}

Γ
at,Γat′; x̄ : P̄ `sinv t : /0 | Qat ∀x ∈ x̄, t uses x

Γ
at;Γ

at′ `sat let x̄ = n̄ in t : Qat

The (t uses x) judgment, which we have not defined here, corresponds to the fact that the
introduced variable x is used after the first invertible phase.

This condition did not affect proof search, as it is expressed on the proof term t that is
only known after the search for this recursive subgoal has taken place. The set of useful
neutrals was obtained by filtering the saturating neutrals after the fact. This mean that each
possible outcome of the proof search (the term t) was uniquely associated with a “minimal”
saturating set, avoiding any canonicity issue.

However, this side-condition creates a difficulty when we try to combine the canonicity
result for this logic with the “two-or-more” restriction of Section 4 (Counting terms and
proofs) to obtain a system that both is complete for unicity and has terminating proof
search. Indeed, at this point we need to argue that if two distinct derivations of the same
shape exist, then two derivations also exist when the contexts have been restricted to two
distinct variables.

The proof of this result in Section 4 (Counting terms and proofs) relies on the assumption
that, in a proof term of a given shape, all variables at a given type in a context can be used
when the goal is of this type – after restricting our contexts to have at most two variables
of the same type, we replace bound variable occurrences by one of those two variables,
and the shape is unchanged. This assumption becomes invalid in a system where using a
variable or another has consequences on the validity of the whole term, as is the case in
the presence of this usage rule: if your saturation phase introduces three variables x1, x2,
x3 of the same type, it is only valid to keep them in the term of all three are used later.
Rewriting all occurrences of x3 to become either x2 or x1 (to obtain a derivation using at
most two distinct variables of each type) breaks this condition, unless you also remove
the corresponding let-binding. In other words, it would be possible to adapt the proof of
Section 4 (Counting terms and proofs) to this setting, by adding an extra normalization step,
but it adds complexity to the result and is not worth it. Our use of the selection function
nicely side-steps this issue, by preserving the validity of any variable-variable replacement.

5.3 The roles of forward and backward search in a saturated logic

Focusing is a fruitful theoretical tool to propose a more logical understanding of proof
search strategies – see for example Chaudhuri, Pfenning, and Price [2008b], Chaudhuri
[2010], Farooque, Graham-Lengrand, and Mahboubi [2013]. This flexibility is built out of
two components whose interaction can be subtle. On one hand, the way formulas are polar-
ized prevents or enforce certain shapes of proof terms, for example forward- or backward-
chaining, as we detailed in Section 2.2.7 (Polarized atoms). On the other hand, there are
several distinct strategies for proof search, notably the rather natural judgment-directed or
goal-directed backward search, and the inverse method, a form of saturation-based forward
search. The strength of focusing is to move a lot of the sophistication from the search
strategy into the logic itself: a lot of subtle operational ideas on good proof strategies can

60

ZU064-05-FPR jfp 10 August 2016 17:36

be obtained by using one of those two simple strategies with a subtle logic or polarisation
of formulas.

To prove a judgment of the form ∆ ` A, the natural intuition for goal-directed search
procedure is to look at A and search for all possible ways to introduce its head connective.
A focused system has a richer behavior, in that it will also decompose the positives of ∆,
but this reliance on the context remains “superficial” in the sense that only the first positive
layer of those formulas will be peeled of by the invertible phase. The “real” work happens at
the end of the invertible phase, where choices must be made, and typically various attempts
will be made, with a backtracking discipline to roll back the wrong choices, for example
the right introduction on a sum that happened too early.

On the contrary, on a judgment of the form ∆ ` A, an inverse method will, in rough
terms, look as the subformulas of ∆,A as the “search space” of facts to prove. It will try
to build proofs in a leafward-rootward fashion, from elementary deduction in this search
space to more elaborated facts, until maybe a deduction implying the original goal ∆ ` A :
happens.

It is interesting to consider the operational search behavior of our saturated logic when
using a simple judgment-directed backward search implementation.

Goal-directed proof search in our saturated logic starts in a state where all of the context
is “new”, it has not been saturated over: /0;∆ ` A. During the invertible phase, it behaves
like others goal-directed procedures, and extract a negative or atomic context Γat of “new”
formulas, and a refined goal Qat, and start the saturation phase /0;Γat `sat ? : Qat.

The saturation phase does not behave like a goal-directed backward procedure, it is a
phase of forward search. However, there is an important difference with the inverse method
or other approaches that are “full” forward search: the “search space” of the saturation is
not the complete goal Γat ` Qat, it is only Γat. We are not trying to discover arbitrary facts
that will help us in eventually proving our goal Qat, we are restricting the set of deductions
to subformulas of the context Γat. So it is a forward search phase, but it is “localized” by
the use of only a part of the judgment.

After this local saturation phase ends, goal-directed search starts over with non-invertible
steps attempting to prove the goal formula, and the corresponding backtracking behavior
of backward search. The right rules that happen during this right focusing phase will
change the goal formula to a negative subformula of Qat. This creates opportunities for
the following invertible to move parts of the goal into the context, expanding the “horizon”
of the following saturation phases.

To summarize, there is an alternation of backward and forward search phases. The
forward search is bounded by the context, while the backward search is directed by the
goal formula, and transmits new hypothesis to the context, expanding the reach of the
subsequent forward phases.

Interestingly, this mixture of backward and forward search exists in some seemingly
unrelated work on logic programming, in particular in Lollimon López, Pfenning, Polakow,
and Watkins [2005]; we give a detailed comparison in Section 9.1.2 (Lollimon: backward
and forward search together).

61

ZU064-05-FPR jfp 10 August 2016 17:36

6 Canonicity of saturated proofs

6.1 Big-step saturating translation

To prove the main theorems on saturating focused logic, we describe how to convert a
focused λ -term into a valid saturated proof derivation. This can be done either as a small-
step rewrite process, or as a big-step transformation. The small-step rewrite would be very
similar to the preemptive rewriting relation of Scherer [2015a]; we will here use a big-step
transformation, as in Scherer and Rémy [2015], by defining in Figure 22 a type-preserving
translation judgments of the form Γ;Σ `sinv t t ′ : N | Qat, which turns a focused term t
into a valid saturating focused term t ′.

Fig. 22. Saturation translation

REW-SINV-LAM
Γ
at;Σ,x : P `sinv t t ′ : N |

Γ
at;Σ `sinv λx. t λx. t ′ : P→ A | /0

REW-SINV-PAIR
Γ
at;Σ `sinv t1 t ′1 : N1 | /0

Γ
at;Σ `sinv t2 t ′2 : N2 | /0

Γ
at;Σ `sinv (t1, t2)

(
t ′1, t ′2

)
: N1×N2 | /0

REW-SINV-CASE
Γ
at;Γ,x : P1 `sinv t1 t ′1 : N | Qat

Γ
at;Γ,x : P2 `sinv t2 t ′2 : N | Qat

Γ
at;Γ,x : P1 +P2 `sinv match x with

∣∣∣∣ σ1 x→ t1
σ2 x→ t2

 match x with
∣∣∣∣ σ1 x→ t ′1

σ2 x→ t ′2
: N | Qat

REW-SINV-SAT
Γ
at;Γ

at′ `sat f f ′ : (Pat | Qat)

Γ
at;
〈

Γ
at′
〉+at

`sinv f f ′ :
〈
Pat
〉−at | Qat

REW-SAT-INTRO
Γ
at ` p p′ ⇑ P

Γ
at; /0 `sat p p′ : P

REW-SAT-ATOM
Γ
at ` n n′ ⇓ X

Γ
at; /0 `sat n n′ : X

REW-SAT

(n̄, P̄) def= Select
Γat,Γat ′({(n,P) | (Γat,Γat′ ` n ⇓ P)})

∀n ∈ t, (Γat,Γat′ ` n ⇓ P) =⇒ n ∈ n̄
Γ
at,Γat′; x̄ : P̄ `sinv t[x̄/n̄] t ′ : Qat |

Γ
at;Γ

at′ `sat t let x̄ = n̄ in t ′ : Qat

REW-SINTRO-SUM
Γ
at ` p p′ ⇑ Ai

Γ
at ` σi p σi p′ ⇑ A1 +A2

REW-SINTRO-END
Γ
at; /0 `sinv t t ′ : N |
Γ
at ` t t ′ ⇑ 〈N〉+

REW-SINTRO-AXIOM
(x : X+) ∈ Γ

at

Γ
at ` x x ⇑ X+

REW-SELIM-PAIR
Γ
at ` n n′ ⇓ A1×A2

Γ
at ` πi n πi n′ ⇓ Ai

REW-SELIM-ARR
Γ
at ` n n′ ⇓ P→ N Γ

at ` p p′ ⇑ P

Γ
at ` n p n′ p′ ⇓ N

REW-SELIM-START
(x : N) ∈ Γ

at

Γ
at ` x x ⇓ N

(let x = n in t)[y/n] def= t[y/x][y/n]

Backward search for saturated proofs corresponds to enumerating the canonical inhab-
itants of a given type. Our translation can be seen as a restriction of this proof search

62

ZU064-05-FPR jfp 10 August 2016 17:36

process, searching inside the βη-equivalence class of t. Because saturating proof terms
are canonical (to be shown), the restricted search is deterministic – modulo invertible
commuting conversions.

Compared to the focusing translation of Figure 16 used to prove completeness of fo-
cusing with respect to the non-focused λ -calculus in Section 3.3 (Focusing completeness
by big-step translation), this rewriting is simpler as it starts from an already-focused proof
whose overall structure is not modified. The only real change is moving from the left-
focusing rule REW-FOC-ELIM to the saturating rule REW-SAT. Instead of allowing to cut on
any neutral subterm, we enforce a maximal cut on exactly all the neutrals of t that can
be typed in the current environment. Because we know that “old” neutrals have already
been cut and replaced with free variables earlier in the translation, this is fact respects the
saturation condition.

Compared to the focusing translation, the termination of this translation is immedate
induction: thanks to the focused structure of the input, every recursive call happens on a
strictly smaller term. In the REW-SAT rule, the recusive call is on t[x̄/n̄], which is not be
strictly smaller if the n̄ are variables, which can happen for x : 〈P〉−. But this case is only
possible when x is in the “new” context, as this neutral uses no other variable that could be
in the new context; and this variable gets replaced by a variable in the post-saturation new
context at the strictly smaller type P, so it can only happen finitely many times.

Assumptions on the selection function The REW-SAT rule makes an interesting assump-
tion on the selection function:

REW-SAT

(n̄, P̄) def
= SelectΓat,Γat ′({(n,P) | (Γat,Γat′ ` n ⇓ P)})
∀n ∈ t, (Γat,Γat′ ` n ⇓ P) =⇒ n ∈ n̄

Γ
at,Γat′; x̄ : P̄ `sinv t[x̄/n̄] t ′ : Qat |

Γ
at;Γ

at′ `sat t let x̄ = n̄ in t ′ : Qat

This rule can only be applied if all the neutrals of the translated n that are typeable in the
present context happen to be part of the neutrals selected for saturation. This is a require-
ment that most selection functions will not meet: for any choice of selection functions there
are many t such that no valid derivation of the form Γat;Σ `inv t t ′ : N |Qat exist for any
t ′.

However, for any t we can construct some – and in fact many – valuation functions
for which such a Γat;Σ `inv t t ′ : N | Qat exists for some t ′. If we start from an arbi-
trary selection function satisfying SELECT-SPECIF, we can build another selection function
that meets this requirement by simply adding all the neutral subterms that happen during
this translation. As we are only adding new neutrals, the resulting selection still satisfies
SELECT-SPECIF. Any finite derivation of the translation judgment will only add finitely many
new neutrals this way, which means that the returned selection function still returns finite
sets of neutrals for each context.

We say that a selection function is adequate for some term Γat;Σ `inv t : N |Qat if it does
select all neutrals of t, in the sense that there exists a derivation Γat;Σ`inv t t ′ : N |Qat for
some t ′. Note that different adequate selection functions will result in different translations

63

ZU064-05-FPR jfp 10 August 2016 17:36

t ′. In general we will implictly assume that the selection function is adequate for the terms
considered.

Lemma 6.1 (Translation soundness).
If Γat;Σ `inv t : N | Qat and Γat;Σ `sinv t t ′ : N | Qat then t ≈βη t ′.

Proof. By immediate induction. �

Lemma 6.2 (Translation validity).
Suppose that Γat;Σ `inv t : N | Qat holds in the focused logic, and that t has no “old”
neutral: for no n ∈ t do we have Γat ` n ⇓ 〈P〉−. Then, Γat;Σ `sinv t t ′ : N | Qat implies
that Γat;Σ `sinv t ′ : N | Qat in the saturated focusing logic.

Proof. The restriction on “old” neutrals is necessary because the REW-SAT rule would not
know what to do on such old neutrals – it assumes that they were all substituted away for
fresh variable in previous inference steps.

With this additional invariant the proof goes by immediate induction. In the REW-SAT

rule, this invariant tells us that the bindings satisfy the freshness condition of the SAT rule
of saturated logic, and because we select all such fresh bindings we preserve the property
that the extended context Γat,Γat′ has no old neutrals either. �

Lemma 6.3 (Translation determinism).
If the selection function is adequate for Γat;Σ `inv t : N | Qat, then there exists a unique t ′

such that Γat;Σ `sinv t t ′ : N | Qat.

Proof. By immediate induction. �

Note that the indeterminacy of invertible step ordering is still present in saturating
focused logic: a non-focused term t may have several saturated translations that only equal
upto commuting conversions (≈icc). However, there is no more variability than in the
focused proof of the non-saturating focused logic; because we translate from those, we can
respect the ordering choices that are made, and the translation is thus fully deterministic.

Theorem 6.4 (Computational completeness of saturating focused logic).
If we have /0;Σ `inv t : N | Qat in the non-saturating focused logic, then for an adequate
saturation function and some t ′≈βη t we have /0;Σ`sinv t ′ : N |Qat in the saturating focused
logic.

Proof. This is an immediate corollary of the previous results. For an adequate selection
function, there is a unique t ′ such that /0;Σ `sinv t t ′ : N |Qat. By Lemma 6.2 (Translation
validity) we have that /0;Σ `sinv t ′ : N |Qat in the saturating focused calculus – the condition
that there be no old neutrals is trivially true for the empty context /0. Finally, by Lemma 6.1
(Translation soundness) we have that btcfoc ≈βη bucfoc. �

Lemma 6.5 (Determinacy of saturated translation).
For any u1,u2, if we have Γat;Σ `inv t u1 : N | Qat and Γat;Σ `inv t u2 : N | Qat then
we have Γat;Σ `sinv u1 r1 : N | Qat and Γat;Σ `sinv u2 r2 : N | Qat with r1 ≈icc r2.

Proof sketch. There are only two sources of non-determinism in the focused translation:

• an arbitrary choice of the order in which to apply the invertible rules

• a neutral let-extrusion may happen at any point between the first scope where it is
well-defined to the lowest common ancestors of all uses of the neutral in the term.

64

ZU064-05-FPR jfp 10 August 2016 17:36

The first source of non-determinism gives (≈icc)-equivalent derivations. The second
disappears when doing the saturating translation, which enforces a unique placement of
let-extrusions at the first scope where the strictly positive neutrals are well-defined.

As a result, two focused translations of the same term may differ in both aspect, but their
saturated translations differ at most by (≈icc). t

6.2 Normalization and canonicity

Definition 6.1 Normalization by saturation.
For a well-typed (non-focused) λ -term bΓatc± ,bΣc± ` t : b(N | Qat)c±, we write NFsat(t)
for any saturated term t ′′ such that

Γ
at;Σ `inv NFβ (t) t ′ : N | Qat

Γ
at;Σ `sinv t ′ t ′′ : N | Qat

Note that all possible t ′′ are equal modulo (≈icc), by Lemma 6.5 (Determinacy of saturated
translation).

Lemma 6.6 (Saturation congruence).
For any context C[�] and term t we have

NFsat(C[t])≈icc NFsat(C[NFsat(t)])

Proof. We reason by induction on C[�]. Without loss of generality we will assume C[�]
atomic. It is either a redex-forming context

� u πk � match � with

∣∣∣∣ σ1 x→ u1

σ2 x→ u2

or a non-redex forming context

u� σi � (u,�) (�,u)

match u with

∣∣∣∣ σ1 x→�
σ2 x→ u2

match u with

∣∣∣∣ σ1 x→ u1

σ2 x→�

If it is a non-context-forming redex, then we have NFβ (C[t]) =C[NFβ (t)]. The focused
and saturated translations then work over C[NFβ (t)]] just as they work with NFβ (t), pos-
sibly adding bindings before C[�] instead of directly on the (translations of) NFβ (t). The
results are in the (≈icc) relation.

The interesting case is when C[�] is a redex-forming context: a reduction may overlap
the frontier between C[�] and the plugged term. In that case, we will reason on the sat-
urated normal form NFsat(t). Thanks to the strongly restricted structure of focused and
saturated normal form, we have precise control over the possible reductions.

Application case C[�]
def
= � u. We prove that there exist t ′ such that Γat;Σ `inv t t ′ :

P→ N | /0, and a r such that both Γat;Σ `inv t u r : N | /0 and Γat;Σ `inv t ′ u r : N | /0
hold. This implies the desired result – after translation of r into a saturated term. The proof
proceeds by induction on the derivation Γat;Σ `inv t u r : N | /0 (we know that all possible
such translations have finite derivations).

To make the proof easier to follow, we introduce the notation NFfoc(Γ
at;Σ ` t) to denote

a focused translation t ′ of NFβ (t) (that is, Γat;Σ `inv t t ′ : N | Qat, where N, Qat are

65

ZU064-05-FPR jfp 10 August 2016 17:36

uniquely defined by Γat;Σ `inv t ′ : N |Qat)). This notation should be used with care because
it is not well-determined: there are many such possible translations. Statements using the
notation should be interpreted existentially: P(NFfoc(Γ

at;Σ ` t)) means that there exists a
translation t ′ of t such that P(t ′) holds. The current goal (whose statement took the full
previous paragraph) can be rephrased as follows:

NFfoc(Γ
at;Σ ` t u) = NFfoc(Γ

at;Σ ` NFfoc(Γ
at;Σ ` t) u)

We will simply write NFfoc(t) when the typing environment of the translation is clear from
the context.

If Σ contains a sum type, it is of the form (Σ′,x : C1 +C2) and we can get by induction
hypothesis that

NFfoc(Γ
at;Σ

′,x : Ci ` t u) = NFfoc(Γ
at;Σ

′,x : Ci ` NFfoc(t) u)

for i in {1,2}, from which we can conclude with

NFfoc(Γ
at;Γ′,x : C1 +C2 ` t u)

= match x with
∣∣∣∣ σ1 x→ NFfoc(Γ

at;Γ′,x : C1 ` t u)
σ2 x→ . . .C2 . . .

= match x with
∣∣∣∣ σ1 x→ NFfoc(Γ

at;Γ′,x : C1 ` NFfoc(t) u)
σ2 x→ . . .C2 . . .

= NFfoc(Γ
at;Γ′,x : C1 +C2 ` NFfoc(t) u)

Otherwise Σ is of the form
〈
Γat′〉+at

.
Any focused translation of t at type N→ P is thus necessarily of the form λx.NFfoc(t x).

In particular, any NFfoc(NFfoc(t) u), that is, any NFfoc((λx.NFfoc(t x)) u), is equal by
stability of the translation to β -reduction to a term of the form NFfoc(NFfoc(t x)[u/x]).
On the other hand, NFfoc(t u) can be of several different forms.

Note that t u is translated at the same type as t x. In particular, if this is a negative type,
they both begin with a suitable η-expansion (of a product or function type); in the product
case for example, we have NFfoc(t u) = (NFfoc(π1 (t u)),NFfoc(π2 (t u))), and similarly
NFfoc(t x) = (NFfoc(π1 (t x)),NFfoc(π2 (t x))): we can then conclude by induction hypoth-
esis on those smaller pairs of terms πi (t u) and πi (t x) for i in {1,2}. We can thus assume
that t u is of positive or atomic type, and will reason by case analysis on the β -normal form
of t.

If NFβ (t) is of the form λx. t ′ for some t ′, then NFfoc(t u) is equal to NFfoc((λx. t ′) u),
that is, NFfoc(t ′[u/x]). Finally, we have NFfoc(t x)=NFfoc((λx. t ′) x)=NFfoc(t ′), which let
us conclude from our assertion that NFfoc(NFfoc(t) u) is equal to NFfoc(NFfoc(t x)[u/x]).

If NFβ (t) contains a strictly positive neutral subterm n : P (this is in particular always
the case when it is of the form match t ′ with . . . , we can let-extrude it to get

NFfoc(Γ
at;Γ

at′ ` t) = let x = NFfoc(n) in NFfoc(Γ
at,Γat′;x : P ` t[x/n])

66

ZU064-05-FPR jfp 10 August 2016 17:36

But then NFfoc(n) : P is also a strictly positive neutral subterm of (let x = NFfoc(n) in . . .),
so we have

NFfoc(NFfoc(t) u)
= NFfoc((let x = NFfoc(n) in NFfoc(t[x/n])) u)
= let x = NFfoc(n) in NFfoc(NFfoc(t[x/n]) u[x/n])
= let x = NFfoc(n) in NFfoc((t u)[x/n])
= NFfoc(t u)

Finally, if NFβ (t) contains no strictly positive neutral subterm, the rule REW-UP-ARROW

applies: NFfoc(t u) is of the form n NFfoc(u), where n def
= NFfoc(t). In this case we also have

NFfoc(t x) = n x, and thus

NFfoc(NFfoc(t)x u)
= NFfoc(NFfoc(t x)[u/x])
= NFfoc(n u)
= NFfoc(t u)

Projection case C[�]
def
= πi � This case is proved in the same way as the application case:

after some sum eliminations, the translation of t is an η-expansion of the product, which
is related to the translations NFfoc(πi t), which either reduce the product or build a neutral
term πi n after introducing some let-bindings.

Sum elimination case Reusing the notations of the application case, show that

NFfoc(match t with
∣∣∣∣ σ1 x→ u1

σ2 x→ u2
) = NFfoc(match NFfoc(t) with

∣∣∣∣ σ1 x→ u1

σ2 x→ u2
)

In the case of the function application or pair projection, the congruence proof uses
the fact that the translation of t (of function or product type) necessarily starts with a λ -
abstraction or pair construction – in fact, we follow the incremental construction of the first
invertible phase, in particular we start by eliminating sums from the context.

In the case of the sum elimination, we must follow the translation into focused form
further: we know the first invertible phase of NFfoc(t) may only have sum-eliminations
(pair or function introductions would be ill-typed as t has a sum type A+B).

As in the application case, we can then extrude neutrals from t, and the extrusion can be
mirrored in both NFfoc(match t with . . .) and NFfoc(match NFfoc(t) with . . .). Finally,
we reason by case analysis on NFβ (t).

If NFβ (t) is of the form σi t ′, then we have

NFfoc(match NFfoc(t) with
∣∣∣∣ σ1 x→ u1

σ2 x→ u2
)

= NFfoc(match σi NFfoc(t ′) with
∣∣∣∣ σ1 x→ u1

σ2 x→ u2
)

= NFfoc(ui[NFfoc(t ′)/x])

67

ZU064-05-FPR jfp 10 August 2016 17:36

and

NFfoc(match t with
∣∣∣∣ σ1 x→ u1

σ2 x→ u2
)

= NFfoc(match NFβ (t) with
∣∣∣∣ σ1 x→ u1

σ2 x→ u2
)

= NFfoc(match σi t ′ with
∣∣∣∣ σ1 x→ u1

σ2 x→ u2
)

= NFfoc(ui[t ′/x])

What is left to prove is that NFfoc(ui[NFfoc(t ′)/x]) = NFfoc(ui[t ′/x]) but that is equivalent
(by stability of the focusing translation by β -reduction) to NFfoc((λx.ui) NFfoc(t ′)) =
NFfoc((λx.ui) t ′), which is exactly the application case proved previously.

This is in fact the only possible case: when all strictly positive neutrals have been
extruded, then NFβ (t) is necessarily an injection σi t ′ (already handled) or a variable x
(this corresponds to the case where t itself reduces to a strictly positive neutral), but this
variable would be in the context and of strictly positive type, so this case is already handled
as well. �

Theorem 6.7 (Canonicity of saturating focused logic).
If we have Γat;Σ `sinv t : N |Qat and Γat;Σ `sinv u : N |Qat in saturating focused logic with
t�≈icc u, then t�≈βη u.

Proof. By contrapositive: if t ≈βη u (that is, if btcfoc ≈βη bucfoc) then t ≈icc u.
The difficulty to prove this statement is that βη-equivalence does not preserve the

structure of saturated proofs: an equivalence proof may go through intermediate steps that
are neither saturated nor focused or in β -normal form.

We will thus go through an intermediate relation, which we will write (≈sat), defined
as follows on arbitrary well-typed lambda-terms:

/0;Σ `inv t : N | Qat /0;Σ `inv u : N | Qat

/0;Σ `inv NFβ (t) t ′ : N | Qat /0;Σ `inv NFβ (u) u′ : N | Qat

/0;Σ `sinv t ′ t ′′ : N | Qat /0;Σ `sinv u′ u′′ : N | Qat

t ′′ ≈icc u′′

Σ ` t ≈sat u : N | Qat

It follows from the previous results that if t ≈sat u, then t ≈βη u. We will now prove
the converse inclusion: if t ≈βη u (and they have the same type), then t ≈sat u holds. In
the particular case of terms that happen to be (let-expansions of) valid saturated focused
derivations, this will tell us in particular that t ≈icc u holds – the desired result.

The computational content of this canonicity proof is an equivalence algorithm: (≈sat)

is a decidable way to check for βη-equality, by normalizing terms to their saturated (or
maximally multi-focused) structure.

β -reductions It is immediate that (≈β) is included in (≈sat). Indeed, if t ≈β u then
NFβ (t) = NFβ (u) and t ≈sat u is trivially satisfied.

Negative η-expansions We can prove that if t ≈η u through one of the equations

(t : A→ B)≈η λx. t x (t : A×B)≈η (π1 t,π2 t)

68

ZU064-05-FPR jfp 10 August 2016 17:36

then both t and u are rewritten in the same focused proof r. We have both /0;Σ `inv t r :
N | /0 and /0;Σ `inv u r : N | /0, and thus t ≈sat u. Indeed we have:

/0;Σ,x : P `inv NFβ (t x) r : N | /0

/0;Σ `inv t λx.r : P→ N | /0

NFβ ((λx. t x) x) = NFβ (t x) /0;Σ,x : P `inv NFβ ((λx. t x) x) r : N | /0

/0;Σ `inv λx. t x λx.r : P→ N | /0

and

∀i ∈ {1,2}, /0;Σ `inv NFβ (πi t) ri : Ni | /0

/0;Σ `inv t (r1,r2) : (N1,N2) | /0

πi (π1 t,π2 t) = t ∀i ∈ {1,2}, /0;Σ `inv NFβ (πi (π1 t,π2 t)) ri : Ni | /0

/0;Σ `inv (π1 t,π2 t) (r1,r2) : N1×N2 | /0

Positive η-expansion: sum type The interesting case is the positive η-expansion

∀C[� : bP1c±+ bP2c±], C[t]≈η match t with
∣∣∣∣ σ1 x→C[σ1 x]

σ2 x→C[σ2 x]

We do a case analysis on the (weak head) β -normal form of t. If it is an injection of the
form σi t ′, then the equation becomes true by a simple β -reduction:

match σi t ′ with
∣∣∣∣ σ1 x→C[σ1 x]

σ2 x→C[σ2 x]
 β C[σi t ′]

Otherwise the β -normal form of t is a term of sum type that does not start with an
injection. In particular, NFβ (t) is not reduced when reducing the whole term C[t] (only
possibly duplicated): for some multi-hole context C′[x] we have NFβ (C[t]) = C′[NFβ (t)]
and

NFβ (match t with
∣∣∣∣ σ1 x→C[σ1 x]

σ2 x→C[σ2 x]
) =

match NFβ (t) with
∣∣∣∣ σ1 x→C′[σ1 x]

σ2 x→C′[σ2 x]

Without loss of generality, we can assume that NFβ (t) is a neutral term. Indeed, if it is
not, it starts with a (possibly empty) series of non-invertible elimination forms, applied to a
positive elimination – which is itself either a neutral or of this form. It eventually contains
a neutral strict subterm of strictly positive type valid in the current scope. The focused
translation can then cut on this strictly positive neutral. If it is a sum type, the translation
splits on it, and replace occurrences of this neutral with either σ1 z or σ2 z for some fresh
z. This can be done on both terms equated by the η-equivalence for sums, and returns (two
pairs of) η-equivalent terms with one less possible neutral strict subterm.

Let n def
= NFβ (t). It remains to show that the translations of C′[n] is equal modulo (≈icc)

to the translation of match n with

∣∣∣∣ σ1 x→C′[σ1 x]
σ2 x→C′[σ2 x]

. In fact, we show that they translate

69

ZU064-05-FPR jfp 10 August 2016 17:36

to the same focused proof:

Γ
at ` n : P1 +P2 Γ

at ` n n′ ⇓ P1 +P2

Γ
at;x : P1 `inv C′[σ1 x] r1 : /0 | Qat

Γ
at;x : P2 `inv C′[σ2 x] r2 : /0 | Qat

Γ
at;x : P1 +P2 `inv C′[x] match x with

∣∣∣∣ σ1 x→ r1

σ2 x→ r2
: /0 | Qat

Γ
at `foc C′[n] let x = n in match x with

∣∣∣∣ σ1 x→ r1

σ2 x→ r2
: Qat

Γ
at ` n : P1 +P2

Γ
at ` n n′ ⇓ P1 +P2 NFβ (match σi x with

∣∣∣∣ σ1 x→C′[σ1 x]
σ2 x→C′[σ2 x]

) =C′[σi x]

Γ
at;x : P1 `inv C′[σ1 x] r1 : /0 | Qat

Γ
at;x : P2 `inv C′[σ2 x] r2 : /0 | Qat

Γ
at;x : P1 +P2 `inv match x with

∣∣∣∣ σ1 x→C′[σ1 x]
σ2 x→C′[σ2 x]

 match x with
∣∣∣∣ σ1 x→ r1

σ2 x→ r2
: /0 | Qat

Γ
at `foc match n with

∣∣∣∣ σ1 x→C′[σ1 x]
σ2 x→C′[σ2 x]

 let x = n in match x with
∣∣∣∣ σ1 x→ r1

σ2 x→ r2
: Qat

Transitivity Given t ≈sat u and u≈sat r, do we have t ≈sat r? In the general case we have

/0;Σ `inv t : A | /0 /0;Σ `inv u : A | /0
/0;Σ `inv NFβ (t) t ′ : A | /0 /0;Σ `inv NFβ (u) u′1 : A | /0

/0;Σ `sinv t ′ t ′′ : A | /0 /0;Σ `sinv u′1 u′′1 : A | /0
t ′′ ≈icc u′′1

Σ ` t ≈sat u : A

/0;Σ `inv u : A | /0 /0;Σ `inv r : A | /0
/0;Σ `inv NFβ (u) u′2 : A | /0 /0;Σ `inv NFβ (r) r′ : A | /0

/0;Σ `sinv u′2 u′′2 : A | /0 /0;Σ `sinv r′ r′′ : A | /0
u′′2 ≈icc r′′

Σ ` u≈sat r : A

By Lemma 6.5 (Determinacy of saturated translation) we have that u′′1 ≈icc u′′2. Then,
by transitivity of (≈icc):

t ′′ ≈icc u′′1 ≈icc u′′2 ≈icc r′′

Congruence If Σ ` t1 ≈sat t2 : A, do we have that C[t1]≈sat C[t2] for any term context C?
This is an immediate application of Lemma 6.6 (Saturation congruence): it tells us that

NFsat(C[t1]) ≈icc NFsat(C[NFsat(t1)]) and NFsat(C[t1]) ≈icc NFsat(C[NFsat(t2)]). So, by
transitivity of (≈icc) we only have to prove NFsat(C[NFsat(t1)])≈icc NFsat(C[NFsat(t1)]),
which is a consequence of our assumption NFsat(t1) ≈icc NFsat(t2) and congruence of
(≈icc). �

70

ZU064-05-FPR jfp 10 August 2016 17:36

7 Unique inhabitation algorithm

The saturating focused logic corresponds to a computationally complete presentation of the
structure of canonical proofs we are interested in. From this presentation it is extremely
easy to derive a terminating search algorithm complete for unicity – we moved from a
whiteboard description of the saturating rules to a working implementation of the algorithm
usable on actual examples in exactly one day of work. The implementation [Scherer,
2015b] is around 700 lines of readable OCaml code.

In Section 1.9 (Termination), we justified the decidability of inhabitation for proposi-
tional logic. Decidability results for quantifier-free logics are easily obtained by construct-
ing a search space, for the proofs of a given judgment, that is both complete for provability
(it contains a proof it he judgment is at all provable) and finite. Three key observations
were used to exhibit this finite search space:

1. Cut-free proofs in propositional logic have the subformula property, which bounds
the formula appearing in the proof the finite set of sub-formulas of the root judgment.

2. The contexts of the logic are sets of formulas, and in particular the set of contexts
over the finite set of formulas is finite. Thus, the set of possible judgments is finite.

3. We can restrict ourselves to the subset of proof where, along any path of the proof
tree, all judgments occurs at most once – and all provable formulas remain provable
under that restriction. This sub-system of recurrence-free proofs is thus complete for
provability, and is finite – as the set of possible judgments is finite.

In the present section, we would like to justify our implementation by proposing a
similarly finite subsystem of our saturation logic, which enjoys canonical proofs. The goal
is to be able to decide whether a type is uniquely inhabited by exploring this subsystem, so
it should be unicity complete.

The subformula property is preserved in saturated proof terms, which are cut-free proofs
with additional structure. But the two other restrictions above are too brutal for our needs.
They preserve completeness for provability, but they lose many computational behaviors,
they break computational completeness and even unicity completeness. We refine them into
two restrictions that give us finiteness (and, in particular, break computational complete-
ness for types with infinitely many distinct inhabitants) but preserve unicity completeness,
and in fact let us enumerate at least n different inhabitants if they exist.

1. To detect non-unicity, it suffices to keep at most two variables of each type in the
context. This suggest a definition of contexts as 2-bounded multisets of formulas,
which give a finite context space over a finite space of formulas. The fact that this
restriction is unicity complete was proved in Section 4 (Counting terms and proofs).

2. Similarly, we restrict ourselves to the subset of proofs where, along any path of the
proof tree, all judgments occur at most two times. This relaxation of the recurrence-
free criterion suffices to recover completeness for unicity, as we shall prove in this
section.

71

ZU064-05-FPR jfp 10 August 2016 17:36

7.1 Implementing search

7.1.1 Implementation overview

The central idea to cut the search space while remaining complete for unicity is the two-
or-more approximation. We use a plurality monad Plur, defined in set-theoretic terms as
Plur(S) def

= 1+S+S×S, representing zero, one or “at least two” distinct elements of the
set S. Each typing judgment is reformulated into a search function which takes as input the
context(s) of the judgment and its goal, and returns a plurality of proof terms – we search
not for one proof term, but for (a bounded set of) all proof terms. Reversing the usual
mapping from variables to types, the contexts map types to pluralities of formal variables
– just as we did in Section 4 (Counting terms and proofs).

In the search algorithm, the SINV-END rule does not merely pass its new context Γ′ to
the saturation rules, but it also trims it by applying the two-or-more rule: if the old context
Γ already has two variables of a given formula N, drop all variables for N from Γ′; if
it already has one variable, retain at most one variable in Γ′. This amounts to defining
a selection function SelectΓ,Γ′() for use in the SAT rule. This trimming respects the
selection requirement SELECT-SPECIF, as it always keep at least one proof of each formula
provable in either Γ or Γ′. Proving that it is complete for unicity was the topic of Section 4
(Counting terms and proofs).

To effectively implement the saturation rules, a useful tool is an obligation search func-
tion (called select oblis in our prototype) which takes a selection predicate on positive
or atomic formulas Pat, and searches for (a plurality of) each negative formula N from the
context that might be the starting point of an elimination judgment of the form Γ ` n ⇓ Pat,
for a Pat accepted by the selection predicate. For example, if we want to prove X and there
is a formula Y → Z×X , this formula will be part of the search results – although we do
not know yet if we will be able to prove Y . For each such Pat, it returns a proof obligation,
that is either a valid derivation of Γ ` n ⇓ Pat, or a request, giving some formula Q and
expecting a derivation of Γ ` ? ⇑ Qat before returning another proof obligation for Pat.

The rule SAT-ATOM (Γ; /0 `sat ? : X−) uses this obligation search function to search for
all negatives that could potentially be eliminated into a X−, and feeding (pluralities of)
answers to the returned proof obligations (by recursively searching for introduction judg-
ments) to obtain (pluralities of) elimination proofs of X−.

The rule SAT uses the selection function to find the negatives that could be eliminated
in any strictly positive formula and tries to fullfill (pluralities of) proof obligations. This
returns a binding context (with a plurality of neutrals for each positive formula), which is
filtered a posteriori to keep only the “new” bindings – that use the new context. The new
binding are all added to the search environment, and saturating search is called recursively.
It returns a plurality of proof terms; each of them results in a proof derivation (where the
saturating set is trimmed to retain only the bindings useful to that particular proof term).

Finally, to ensure termination while remaining complete for unicity, we do not search
for proofs where a given subgoal occurs strictly more than twice along a given search
path. This is easily implemented by threading an extra “memory” argument through each
recursive call, which counts the number of identical subgoals below a recursive call and
kills the search (by returning the “zero” element of the plurality monad) at two. Note

72

ZU064-05-FPR jfp 10 August 2016 17:36

that this does not correspond to memoization in the usual sense, as information is only
propagated along a recursive search branch, and never shared between several branches.

This fully describes the algorithm, which is easily derived from the logic. It is effective,
and our implementation answers instantly on all the (small) types of polymorphic functions
we tried. But it is not designed for efficiency, and in particular saturation duplicates a lot
of work (re-computing old values before throwing them away).

We can give a presentation of the algorithm as a system of inference rules that is ter-
minating and deterministic. Using the two-or-more counting approximation result of Sec-
tion 4 (Counting terms and proofs), we can prove the correctness of this presentation.

7.1.2 A formal description of the algorithm

In Figure 23 (Saturation algorithm) we present a complete set of inference rules that
captures the behavior of our search algorithm.

Data structures The judgments uses several kinds data-structures.

• 2-sets S,T . . . , are sets restricted to having at most two (distinct) elements; we use
{. . .}2 to build a 2-set, and (∪2) for union of two-sets (keeping at most two elements
in the resulting union). We use the usual notation x ∈ S for 2-set membership. To
emphasize the distinction, we will sometimes write {. . .}∞ for the usual, unbounded
sets. Remark that 2-sets correspond to the “plurality monad” of Section 7.1.1 (Im-
plementation overview): a monad is more convenient to use in an implementation,
but for inference rules we use the set-comprehension notation.

• 2-mappings are mappings from a set of keys to 2-sets. In particular, Γat denotes a
2-mapping from negative or atomic types to 2-sets of formal variables. We use the
application syntax Γat(Nat) for accessing the 2-set bound to a specific key, Nat 7→ S
for the singleton mapping from one variable to one 2-set, and (⊕) for the union of
2-mappings, which applies (∪2) pointwise:

(Γat⊕Γ
at′)(Nat)

def
= Γ

at(Nat)∪2 Γ
at′(Nat)

Finally, we write /0 for the mapping that maps any key to the empty 2-set.
• multisets M are mappings from elements to a natural number count. The “memories”

of subgoal ancestors are such mappings (where the keys are “judgments” of the form
Γat `foc Qat), and our rules will guarantee that the value of any key is at most 2. We
use the application syntax M(Γat `foc Qat) to access the count of any element, and
(+) for pointwise addition of multisets:

(M+M′)(Γat `foc Qat)
def
= M(Γat `foc Qat)+M′(Γat `foc Qat)

• (ordered) lists Σ of strictly positive formulas.

Finally, we use a substraction operation (−2) between 2-mappings, that can be defined
from the 2-set restriction operation S \2 n (where n is a natural number in {0,1,2}). Recall

73

ZU064-05-FPR jfp 10 August 2016 17:36

that cardinal(S) is the cardinal of the set (or 2-set) S.

(Γat′ −2 Γ
at)(Nat)

def
= Γ

at′(Nat) \2 cardinal(Γat(Nat))

S \2 0 def
= S /0 \2 1 def

= /0 {a, . . .}2 \2 1 def
= {a}2 S \2 2 def

= /0

Note that {a,b} \2 1 is not uniquely defined: it could be either a or b, the choice does not
matter. The defining property of S \2 n is that it is a minimal 2-set S′ such as S′ ∪2 T = S
for some set T .

Judgments The algorithm is presented as a system of judgment-directed (that is, directed
by the types in the goal and the context(s)) inference rules. It uses the following five
judgment forms:

• invertible judgments M @ Γat;Γat′;Σ `alginv S : N | Qat

• saturation judgments M @ Γat;Γat′ `algsat S : Qat

• post-saturation judgments M @ Γat `algpost S : Qat

• introduction judgments M @ Γat `alg S ⇑ P
• elimination judgments M @ Γat `alg S ⇓ N

All algorithmic jugments respect the same conventions:

• M is a memory (remembering ancestors judgments for termination), a multiset of
judgments of the form Γ ` A
• Γat,Γat′ are 2-mappings from negative or atomic types to 2-sets of formal variables

(we will call those “contexts”)
• Σ is an ordered list of pairs x : P of formal variables and positive types
• S is a 2-set of proof terms of the saturating focused logic

The S position is the output position of each judgment (the algorithm returns a 2-set of
distinct proof terms); all other positions are input positions; any judgment has exactly one
applicable rule, determined by the value of its input positions.

Sets of terms We extend the term construction operations to 2-sets of terms:

λx.S def
= {λx. t | t ∈ S}2

S T def
= {t u | t ∈ S,u ∈ T}2

(S,T) def
= {(t,u) | t ∈ S,u inT}2

πi S def
= {πi t | t ∈ S}2

σi S def
= {σi t | t ∈ S}2

match x with
∣∣∣∣ σ1 x→ S1

σ2 x→ S2

def
= {match x with

∣∣∣∣ σ1 x→ t1

σ2 x→ t2
| t i ∈ Si}2

Invertible rules The invertible focused rules Γat;Σ `inv ? : N | Qat exhibit “don’t care”
non-determinism in the sense that their order of application is irrelevant and captured by
invertible commuting conversions (see Section 3.2.1). In the algorithmic judgment, we
enforce a specific order through the two following restrictions.

74

ZU064-05-FPR jfp 10 August 2016 17:36

Fig. 23. Saturation algorithm

ALG-SINV-SUM

M @ Γ
at;Γ

at′;x : P1,Σ `alginv S1 : N | Qat

M @ Γ
at;Γ

at′;x : P2,Σ `alginv S2 : N | Qat

M @ Γ
at;Γ

at′;x : P1 +P2,Σ `alginv match x with
∣∣∣∣ σ1 x→ S1

σ2 x→ S2
: N | Qat

ALG-SINV-PROD

M @ Γ
at;Γ

at′; /0 `alginv S1 : N1 | /0
M @ Γ

at;Γ
at′; /0 `alginv S2 : N2 | /0

M @ Γ
at;Γ

at′; /0 `alginv (S1,S2) : N1×N2 | /0

ALG-SINV-ARR

M @ Γ
at;Γ

at′;x : P `alginv S : N | /0

M @ Γ
at;Γ

at′; /0 `alginv λx.S : P→ N | /0

ALG-SINV-RELEASE

M @ Γ
at;Γ

at′⊕ (Nat′ 7→ {x}2);Σ `alginv S : N | Qat

M @ Γ
at;Γ

at′;x :
〈

Nat′
〉+at

,Σ `alginv S : N | Qat

ALG-SINV-END

M @ Γ
at;(Γat′−2 Γ

at) `algsat S : Qat

M @ Γ
at;Γ

at′; /0 `alginv S : /0 | Qat

ALG-SAT-KILL
M(Γat `foc Qat) = 2

M @ Γ
at; /0 `algsat /0 : Qat

ALG-SAT-POST

M(Γat `foc Qat)< 2 M⊕2 (Γ ` P) @ Γ
at `algpost S : Qat

M @ Γ
at; /0 `algsat S : Qat

ALG-POST-INTRO
M @ Γ

at `alg S ⇑ P

M @ Γ
at `algpost S : P

ALG-POST-ATOM
M @ Γ

at `alg S ⇓ X−

M @ Γ
at `algpost S : X−

ALG-SAT
Γ
′ 6= /0

∀(P | P subformula (Γat,Γat′)), SP
def
=
⋃

2
{Sne |M @ Γ,Γ′ `alg Sne ⇓ P}

B def
=
⊕

P
{P 7→ {xn}2 | n ∈ SP}

M @ Γ,Γ′; /0;B `alginv S : /0 | Qat

S′ def=

{
let x̄ = n̄ in t

∣∣∣∣∣ t ∈ S,

(x̄, n̄) def= {(xn,n) | ∃P, xn ∈ B(P)}∞

}
2

M @ Γ
at;Γ

at′ `algsat S′ : Qat

ALG-SINTRO-SUM
M @ Γ

at `alg S1 ⇑ P1
M @ Γ

at `alg S2 ⇑ P2

M @ Γ
at `alg (σ1 S1)∪2 (σ2 S2) ⇑ P1 +P2

ALG-SINTRO-VAR

S def
= {x | (x : X+) ∈ Γ

at}2

M @ Γ
at `alg S ⇑ X+

ALG-SINTRO-END

M @ Γ
at; /0; /0 `alginv S : N | /0

M @ Γ
at `alg S ⇑ 〈N〉−

ALG-SELIM
N subformula Γ

at

Svar
def
= Γ

at(N)

Sproj
def
=
⋃

2
{πi S |M @ Γ

at `alg S ⇓M1×M2, Mi = N}

Sapp
def
=
⋃

2
{S T |M @ Γ

at `alg S ⇓ P→ N, M @ Γ
at `alg T ⇑ P}

M @ Γ
at `alg Svar ∪2 Sproj∪2 Sapp ⇓ N

75

ZU064-05-FPR jfp 10 August 2016 17:36

First, the negative or atomic formulas that are shifted in the positive context Σ are moved
incrementally to a temporary context Γat′. By using an ordered list for the positive context,
we fix the order in which positives are deconstructed. When the head of the ordered list has
been fully deconstructed (it is negative or atomic), the new rule ALG-SINV-RELEASE moves
it into Γat′.

Second, the invertible right-introduction rules are restricted to judgments whose ordered
context Σ is empty. This enforces that left-introductions are always applied fully before
any right-introduction. Note that we could arbitrarily decide to enforce the opposite order
by un-restricting right-introduction rules, and requiring that left-introduction (and releases)
only happen when the succedent is positive or atomic.

After the decomposition of Σ is finished, the final invertible rule ALG-SINV-END uses 2-
mapping substractions Γat −2 Γat′ to trim the new context Γat′ before handing it to the
saturation rules: for any given formula Nat, all bindings for Nat are removed from Γat′

if there are already two in Γat, and at most one binding is kept if there is already one
in Γat. Morally, the reason why it is correct to trim (that is, it does not endanger unicity
completeness is that the next rules in bottom-up search will only use the merged context
Γat ∪2 Γat′ (which is preserved by trimming by construction of (−2)), or saturate with
bindings from Γat′. Any strictly positive that can be deduced by using one of the variables
present in Γat′ but removed from Γat∪2 Γat′ has already been deduced from Γat. It is useful
to trim in this rule (we could trim much more often) because subsequent saturated rules
will test the new context Γat′ −2 Γat for emptyness, so it is interesting to minimize it. In
any case, we need to trim in at least one place in order for typing judgments not to grow
unboundedly.

Saturation rules If the (trimmed) new context is empty, we test whether the judgment
of the current subgoal has already occurred twice among its ancestors; in this case, the
rule ALG-SAT-KILL terminates the search process by returning the empty 2-set of proof
terms. In the other case, the number of occurrences of this judgment is incremented in the
rule ALG-SAT-POST, and one of the (transparent) “post-saturation” rules ALG-POST-INTRO or
ALG-POST-ATOM are applied.

This is the only place where the memory M is accessed and updated. The reason why this
suffices is any given phase (invertible phase, or phase of non-invertible eliminations and
introductions) is only of finite length, and either terminates or is followed by a saturation
phase; because contexts grow monotonously in a finite space (of 2-mappings rather than
arbitrary contexts), the trimming of rule ALG-SINV-END returns the empty context after a
finite number of steps: an infinite search path would need to go through ALG-SAT-POST

infinitely many times, and this suffices to prove termination.
The most important and complex rule is ALG-SAT, which proceeds in four steps. First, we

compute the 2-set SP of all ways to deduce any strict positive P from the context – for any
P we need not remember more than two ways. We know that we need only look for P that
are deducible by elimination from the context Γat,Γat′ – the finite set of subformulas is a
good enough approximation. Because we retain at least one neutral of each newly provable
positive P, this algorithm corresponds to a selection function that satisfies SELECT-SPECIF.

Second, we build a context B binding a new formal variable xn for each elimination
neutral n – it is crucial for canonicity that all n are new and semantically distinct from each

76

ZU064-05-FPR jfp 10 August 2016 17:36

other at this point, otherwise duplicate bindings would be introduced. Third, we compute
the 2-set S of all possible (invertible) proofs of the goal under this saturation context B, and
add the let-bindings to those proof terms in the final returned 2-set.

Non-invertible introduction and elimination rules The introduction rule ALG-SINTRO-SUM

collects solutions using either left or right introductions, and unites them in the result 2-set.
Similarly, all elimination rules are merged in one single rule ALG-SELIM, which corresponds
to all ways to deduce a given formula N: directly from the context, by projection of a
pair, or application of a function. The search space for this sequent is finite, as goal types
grow strictly at each type, and we can kill search for any type that does not appear as a
subformula of the context.

(The inference-rule presentation differs from our OCaml implementation at this point.
The implementation is more effective, it uses continuation-passing style to attempt to
provide function arguments only for the applications we know are found in context and
may lead to the desired result. Such higher-order structure is hard to render in an inference
rule, so we approximated it with a more declarative presentation here. This is the only such
simplification.)

7.2 Correctness

Lemma 7.1 (Termination).
The algorithmic inference system only admits finite derivations.

Proof. We show that each inference rule is of finite degree (it has a finite number of
premises), and that there exists no infinite path of inference rules – concluding with König’s
Lemma.

Degree finiteness The rules that could be of infinite degree are ALG-SAT (which quan-
tifies over all positives P) and ALG-SELIM (which quantifies over arbitrarily many elimi-
nation derivations). But both rules have been restricted through the subformula property
to only quantify on finitely many formulas (ALG-SAT) or possible elimination schemes
(ALG-SELIM).

Infinite paths lead to absurdity We first assert that any given phase (invertible, satura-
tion, introductions/eliminations) may only be of finite length. Indeed, invertible rules have
either the context or the goal decreasing structurally. Saturation rules are either ALG-SAT if
Γat′ 6= /0, which is immediately followed by elimination and invertible rules, or ALG-SAT-KILL

or ALG-SAT-POST if Γat′ = /0, in which case the derivation either terminates or continues
with a non-invertible introduction or elimination. Introductions have the goal decreasing
structurally, and eliminations have the goal increasing structurally, and can only form valid
derivations if it remains a subformula of the context Γat.

Given that any phase is finite, any infinite path will necessarily have an infinite number of
phase alternation. By looking at the graph of phase transitions (invertible goes to saturating
which goes to introductions or eliminations, which go to invertible), we see that each phase
will occur infinitely many times along an infinite path. In particular, an infinite path would

77

ZU064-05-FPR jfp 10 August 2016 17:36

have infinitely many invertible and saturation phases; the only transition between them is
the rule ALG-SINV-END which must occur infinitely many times in the path.

Now, because the rules grow the context monotonically, an infinite path must eventually
reach a maximal stable context Γat, that never grows again along the path. In particular,
for infinitely many ALG-SINV-END we have Γat maximal and thus Γat′ −2 Γat = /0 – if the
trimming was not empty, Γat′ would grow strictly after the next saturation phase, while we
assumed it was maximal.

This means that either ALG-SAT-KILL or ALG-SAT-POST incurs infinitely many times along
the infinite path. Those rules check the memory count of the current (context, goal) pair
Γat `foc Qat. Because of the subformula property (formulas occurring in subderivations
are subformulas of the root judgment concluding the complete proof), there can be only
finitely many different Γat `foc Qat pair (Γat is a 2-mapping which grows monotonically).

An infinite path would thus necessarily have infinitely many steps ALG-SAT-KILL or
ALG-SAT-POST with the same (context, goal) pair. This is impossible, as a given pair can
only go at most twice through ALG-SAT-POST, and going through ALG-SAT-KILL terminates
the path. There is no infinite path. �

Lemma 7.2 (Totality and Determinism).
For any algorithmic judgment there is exactly one applicable rule.

Proof. Immediate by construction of the rules. Invertible rules M @ Γat;Γat′;Σ `alginv S :
N | Qat are directed by the shape of the context Σ and the goal N. Saturation rules M @
Γat;Γat′ `algsat S : Qat are directed by the new context Γat′. If Γat′= /0, the memory M(Γat `foc
Qat) decides whether to kill or post-saturate, in which case the shape of the goal (either
strict positive or atomic) directs the post-saturation rule. Finally, non-invertible introduc-
tions M @ Γat `alg S ⇑ P are directed by the goal P, and there is exactly one non-invertible
elimination rule. �

Remark 7.1. The choice we made to restrict the ordering of invertible rules is not necessary
– we merely wanted to demonstrate an example of such restrictions, and reflect the OCaml
implementation. We could keep the same indeterminacy as in previous systems; totality
would be preserved (all judgments have one applicable rule), but determinism dropped.
There could be several S such that M @ Γat;Γat′;Σ `alginv S : A |, which would correspond to
(2-set restrictions of) sets of terms equal upto invertible commuting conversion. ∗
Lemma 7.3 (Soundness).
For any algorithmic judgment returning a 2-set S, any element t ∈ S is a valid proof term
of the corresponding saturating judgment.

Proof sketch. By induction, this is immediate for all rules except ALG-SAT. This rule is
designed to fit the requirements of the saturated logic SAT rule. t
Definition 7.1 Recurrent ancestors.
Consider a complete algorithmic derivation of a judgment with empty initial memory
/0. Given any subderivation Pleafward, we call recurrent ancestor any other subderivation
Πrootward that is on the path between Πleafward and the root (it has Πleafward as a strict
subderivation) and whose derived judgment is identical to the one of Πleafward except for
the memory M and the output set S.

78

ZU064-05-FPR jfp 10 August 2016 17:36

Lemma 7.4 (Correct Memory).
In a complete algorithmic derivation whose conclusion’s memory is M, each subderivation
of the form M′ @ Γat; /0 `algsat S : Qat has a number of recurrent ancestors equal to

M′(Γat `foc Qat)−M(Γat `foc Qat)

Proof. This is immediately proved by reasoning on the path from the start of the com-
plete derivation to the subderivation. By construction of the algorithmic judgment, each
judgment of the form M′ @ Γat′; /0 `algsat S′ : Qat is proved by either the rule ALG-SAT-KILL,
which terminates the path with the invariant maintained, or the rule ALG-SAT-POST, which
continues the path with the invariant preserved by incrementing the count in memory. �

Lemma 7.5 (Recurrence Decrementation).
If a saturated logic derivation contains n+ 2 occurrences of the same judgment along a
given path, then there is a valid saturated logic derivation with n+ 1 occurrences of this
judgment.

Proof. If t is the proof term with n+ 2 occurrences of the same judgment along a given
path, let u1 be the subterm corresponding to the very last occurrence of the judgment, and
u2 the last-but-one. The term t[u1/u2] is a valid proof term (of the same result as t), with
only n+1 occurrences of this same judgment. �

Note that this transformation changes the computational meaning of the term – it must
be used with care, as it could break unicity completeness.

Theorem 7.6 (Provability completeness).
If a memory M contains multiplicities of either 0 or 1 (never 2 or more), then any algo-
rithmic judgment with memory M is complete for unicity: if the corresponding saturating
judgment is inhabited, then the algorithmic judgment returns an inhabited 2-set.

Proof. If the saturating judgment Γat;Γat′ `sat t : Qat holds for a given t, we can assume
without loss of generality that t contains no two recurring occurrences of the same judg-
ment along any path – indeed, it suffices to repeatedly apply Lemma 7.5 (Recurrence
Decrementation) to obtain such a t with no recurring judgment.

The proof of our result goes by induction on (the saturated derivation of) this no-recurrence
t, mirroring each inference step into an algorithmic inference rule returning an inhabited
set. Consider the following saturated rule for example:

Γ
at ` u ⇑ P1

Γ
at ` σ1 u ⇑ P1 +P2

We can build the corresponding algorithmic rule

M′ @ Γ
at `alg S1 ⇑ P1

M′ @ Γ
at `alg S2 ⇑ P2

M′ @ Γ
at `alg σ1 S1∪2 σ2 S2 ⇑ P1 +P2

By induction hypothesis we have that S1 is inhabited; from it we deduce that σ1 S1 is
inhabited, and thus σ1 S1∪2 σ2 S2 is inhabited.

It would be tempting to claim that the resulting set is inhabited by t. That, in our example
above, u inhabits S1 and thus t = σ1 u inhabits σ1 S1 ∪2 σ2 S2. This stronger statement is

79

ZU064-05-FPR jfp 10 August 2016 17:36

incorrect, however, as the union of 2-sets may drop some inhabitants if it already has found
two distinct terms.

The first difficulty in the induction are with judgments of the form Γat; /0 `sat u : Qat:
to build an inhabited result set, we need to use the rule ALG-SAT-POST and thus check
that Γat `foc Qat does not occur twice in the current memory M′. By Lemma 7.4 (Correct
Memory), we know that M′(Γat `foc Qat) is the sum of the number of recurrent ancestors
and of M(Γat `foc Qat). By definition of t (as a term with no repeated judgment), we know
that Γat `foc Qat did not already occur in t itself – the count of recurrent ancestors is 0.
By hypothesis on M we know that M(Γat `foc Qat) is at most 1, so the sum cannot be 2 or
more.

The second and last subtlety happens at the SINV-END rule for Γat;Γat′ `sinv f : /0 | Qat.
We read saturated derivation of the premise Γat;Γat′ `sat f : Qat, but build an algorithmic
derivation in the trimmed context M @ Γat;(Γat′ −2 Γat) `algsat S : Qat. It is not necessarily
the case that f is well-defined in this restricted context. But that is not an issue for inhabi-
tation: the only variables removed from Γat′ are those for which at least one variable of the
same type appears in Γat. We can thus replace each use of a trimmed variable by another
variable of the same type in Γat, and get a valid derivation of the exact same size. �

Theorem 7.7 (Unicity completeness).
If a memory M contains multiplicities of 0 only, then any algorithmic judgment with
memory M is complete for unicity: if the corresponding saturating judgment has two
distinct inhabitants, then the algorithmic judgment returns a 2-set of two distinct elements.

Proof. Consider a pair of distinct inhabitants t 6= u of a given judgment. Without loss of
generality, we can assume that t has no judgment ocurring twice or more. (We cannot also
assume that u has no judgment occurring twice, as the recurrence reduction of a general u
may be equal to t.)

Without loss of generality, we will also assume that t and u use a consistent ordering for
invertible rules (for example the one presented in the algorithmic judgment); this assump-
tion can be made because reordering inference steps gives a term in the (≈icc) equivalence
class, that is thus βη-equivalent to the starting term.

Finally, to justify the SINV-END rule we need to invoke the “two or more” result of
Section 4 (Counting terms and proofs), as we detail here. Without loss of generality we
assume that t and u never use more than two variables of any given type (additional
variables are weakened as soon as they are introduced). If t and u have distinct shapes
(they are in disjoint equivalent classes of terms that erase to the same logic derivation), we
immediately know that the disequality t 6= u is preserved. If they have the same shape, we
need to invoke Corollary 4.6 (Two-or-more approximation) to know that we can pick two
distinct terms in this restricted space.

We then prove our result by parallel induction on t and u: the saturated judgment is
inhabited by at least two distinct inhabitants. As long as their subterms start with the same
syntactic construction, we keep inducing in parallel. Their head constructor may only differ
in a non-invertible introduction or elimination rule (we assumed that invertible steps were

80

ZU064-05-FPR jfp 10 August 2016 17:36

performed in the same order), for example we may have

Γ
at ` p ⇑ P1

Γ
at ` σ1 p ⇑ P1 +P2

Γ
at ` q ⇑ P2

Γ
at ` σ2 q ⇑ P1 +P2

We then invoke Theorem 7.6 (Provability completeness) on p and q: we can build
corresponding derivations M′ @ Γat `alg S ⇑ A and M′ @ Γat `alg T ⇑ B where S and
T are inhabited, and thus σ1 S ∪2 σ2 T is inhabited by at least two distinct terms. The
memory hypothesis of the provability theorem is fulfilled: because we know that there are
no repetitions in t, and that we iterated in parallel on the structures of t and u, we know
that each judgment was seen at most once during the parallel induction. As we assumed
our starting memory was all 0, the memory M′ at the point where t and u differ is thus, by
Lemma 7.4 (Correct Memory), of at most 1 for any judgment.

There is one difficulty during the parallel induction, which is the SINV-END case. We read
a saturated derivations of premise Γat;Γat′ `sat t : Qat and Γat;Γat′ `sat u : Qat, but build an
algorithmic derivation in the trimmed context M @ Γat;(Γat′ −2 Γat) `algsat S : Qat. This is
why we restricted t and u to not use more than two different variables of each type, so that
they remain well-typed under this restriction. �

Theorem 7.8.
Our unicity-deciding algorithm is terminating and unicity complete.

Proof. Our unicity-deciding algorithm takes a judgment bΣc± ` b(N | X+)c± and returns
the 2-set S uniquely determined by a complete algorithmic derivation of the judgment
/0 @ /0; /0;Γ `alginv S : N | X+ – whose memory is empty. There always exists exactly one
derivation by Lemma 7.2 (Totality and Determinism), and it is finite by Lemma 7.1 (Termination).
Our algorithm can compute the next rule to apply in finite time, and all derivations are
finite, so the algorithm is terminating. This root judgment has an empty memory, hence it
is complete for unicity by Theorem 7.7 (Unicity completeness). �

7.3 Optimizations

The search space restrictions described above are those necessary for termination. Many
extra optimizations are possible, that can be adapted from the proof search literature – with
some care to avoid losing completness for unicity. For example, there is no need to cut
on a positive if its atoms do not appear in negative positions (nested to the left of an odd
number of times) in the rest of the goal. We did not develop such optimizations, except for
two low-hanging fruits we describe below.

Eager redundancy elimination Whenever we consider selecting a proof obligation to
prove a strict positive during the saturation phase, we can look at the negatives that will be
obtained by cutting it. If all those atoms are already present at least twice in the context, this
positive is redundant and there is no need to cut on it. Dually, before starting a saturation
phase, we can look at whether it is already possible to get two distinct neutral proofs of the
goal from the current context. In this case it is not necessary to saturate at all.

This optimization is interesting because it significantly reduces the redundancy implied
by only filtering of old terms after computing all of them. Indeed, we intuitively expect
that most types present in the context are in fact present twice (being unique tends to be the

81

ZU064-05-FPR jfp 10 August 2016 17:36

exception rather than the rule in programming situations), and thus would not need to be
saturated again. Redundancy of saturation still happens, but only on the “frontier formulas”
that are present exactly once.

Subsumption by memoization One of the techniques necessary to make the inverse method
competitive is subsumption [McLaughlin and Pfenning, 2008]: when a new judgment is
derived by forward search, it is only added to the set of known results if it is not subsumed
by a more general judgment (same goal, smaller context) already known.

In our setting, being careful not to break computational completeness, this rule becomes
the following. We use (monotonic) mutable state to grow a memoization table of each
proved subgoal, indexed by the right-hand side formula. Before proving a new subgoal, we
look for all already-computed subgoals of the same right-hand side formula. If one exists
with exactly the same context, we return its result. But we also return eagerly if there exists
a larger context (for inclusion) that returned zero result, or a smaller context that returned
two-or-more results.

Interestingly, we found out – by experimenting with our implementation – that this
optimization would be unsound in presence of the empty type 0. Its equational theory
tells us that in an inconsistent context (0 is provable), all proofs are equal. Thus a type
may have two inhabitants in a given context, but a larger context that is inconsistent (let us
prove 0) will have a unique inhabitant, breaking monotonicity.

8 Evaluation

In this section, we give some practical examples of code inference scenarios that our
current algorithm can solve, and some that it cannot – because the simply-typed theory
is too restrictive.

The key to our application is to translate a type using prenex-polymorphism into a simple
type using atoms in stead of type variables – this is semantically correct given that bound
type variables in System F are handled exactly as simply-typed atoms. The approach, of
course, is only a very first step and quickly shows it limits. For example, we cannot work
with polymorphic types in the environment (ML programs typically do this, for example
when typing a parametrized module, or type-checking under a type-class constraint with
polymorphic methods), or first-class polymorphism in function arguments. We also do not
handle higher-kinded types – even pure constructors.

All the examples mentioned in this section are available as tests in our prototype imple-
mentation [Scherer, 2015b].

8.1 Inferring polymorphic library functions

The Haskell standard library contains a fair number of polymorphic functions with unique
types. The following examples have been checked to be uniquely defined by their types:

fst : ∀αβ . α×β → α curry : ∀αβγ. (α×β → γ)→ α → β → γ

uncurry : ∀αβγ. (α → β → γ)→ α×β → γ

either : ∀αβγ.(α → γ)→ (β → γ)→ α +β → γ

82

ZU064-05-FPR jfp 10 August 2016 17:36

When the API gets more complicated, both types and terms become harder to read
and uniqueness of inhabitation gets much less obvious. Consider the following operators
chosen arbitrarily in the lens [Kmett, 2012] library.

(<.) :: Indexable i p => (Indexed i s t -> r)

-> ((a -> b) -> s -> t) -> p a b -> r

(<.>) :: Indexable (i, j) p => (Indexed i s t -> r)

-> (Indexed j a b -> s -> t) -> p a b -> r

(%@~) :: AnIndexedSetter i s t a b

-> (i -> a -> b) -> s -> t

non :: Eq a => a -> Iso’ (Maybe a) a

The type and type-class definitions involved in this library usually contain first-class
polymorphism, but the documentation [Kmett, 2013] provides equivalent “simple types”
to help user understanding. We translated the definitions of Indexed, Indexable and
Iso using those simple types. We can then check that the first three operators are unique
inhabitants; non is not.

8.2 Inferring module implementations or type-class instances

The Arrow type-class is defined as follows:

class Arrow (a : * -> * -> *) where

arr :: (b -> c) -> a b c

first :: a b c -> a (b, d) (c, d)

second :: a b c -> a (d, b) (d, c)

(***) :: a b c -> a b’ c’ -> a (b, b’) (c, c’)

(&&&) :: a b c -> a b c’ -> a b (c, c’)

It is self-evident that the arrow type (→) is an instance of this class, and no code should
have to be written to justify this: our prototype is able to infer that all those required
methods are uniquely determined when the type constructor a is instantiated with an arrow
type. This also extends to subsequent type-classes, such as ArrowChoice.

As most of the difficulty in inferring unique inhabitants lies in sums, we study the
“exception monad”, that is, for a fixed type X , the functor α 7→ X +α . Our implementation
determines that its Functor and Monad instances are uniquely determined, but that its
Applicative instance is not.

Indeed, the type of the Applicative method ap specializes to the following: ∀αβ . X +

(α→ β)→ X +α→ X +β . If both the first and the second arguments are in the error case
X , there is a non-unique choice of which error to return in the result.

This is in fact a general result on applicative functors for types that are also monads:
there are two distinct ways to prove that a monad is also an applicative functor.

ap :: Monad m => m (a -> b) -> m a -> m b

ap mf ma = do ap mf ma = do

f <- mf a <- ma

a <- ma f <- mf

return (f a) return (f a)

83

https://github.com/ekmett/lens
https://github.com/ekmett/lens/wiki/Types

ZU064-05-FPR jfp 10 August 2016 17:36

Note that the type of bind for the exception monad, namely ∀αβ . X + α → (α →
X +β)→ X +β , has a sum type thunked under a negative type. It is one typical example
of a type which cannot be proved unique by the focusing discipline alone, and which is
correctly recognized unique by our algorithm.

8.3 Artificial examples

Our prototype will correctly detect that

∀αβ . α → (α → β +β)→ β

is uniquely inhabited. This type is an example of uniquely inhabited type that is not “neg-
atively non-duplicated”, as the type β has several occurrences in negative position (nested
to the left of an odd number of arrows); negative non-duplication is a sufficient criterion
used in previous work on unique inhabitation [Aoto and Ono, 1994] that does not scale to
sums.

A more interesting example is the continuation monad. If we define with a monomorphic
return type

Cont γ α
def
= (α → γ)→ γ

then the bind operation on an arbitrary monad Cont A is not uniquely inhabited. In fact,
the identity at this type, Cont A→ Cont A, is already not uniquely inhabited.

In an extension of our prototype with unit and empty type, however, we could check
that if we use 0 as the return type, then both Cont 0→ Cont 0 and the bind operation on
Cont 0 are uniquely inhabited.

This example highlights the interest of properly handling the empty type. The equational
theory is very different from a fixed atom X+ with variable of this type in the environment.
We conjecture that a similar result would be obtained with a definition of continuations
using a polymorphic return type, but handling polymorphism comes at a higher cost in
complexity.

8.4 Non-applications

Here are two related ideas we wanted to try, but that do not fit in the simply-typed lambda-
calculus; the uniqueness algorithm must be extended to richer type systems to handle such
applications.

We can check that specific instances of a given type-class are canonically defined, but
it would be nice to show as well that some of the operators defined on any instance are
uniquely defined from the type-class methods – although one would expect this to often
fail in practice if the uniqueness checker doesn’t understand the equational laws required
of valid instances. Unfortunately, this would require uniqueness check with polymorphic
types in context (for the polymorphic methods).

Another idea is to verify the coherence property of a set of declared instances by trans-
lating instance declarations into terms, and checking uniqueness of the required instance
types. In particular, one can model the inheritance of one class upon another using a pair
type (Comp α as a pair of a value of type Eq α and Comp-specific methods); and the system

84

ZU064-05-FPR jfp 10 August 2016 17:36

can then check that when an instance of Eq X and Comp X are declared, building Eq X
directly or projecting it from Comp X correspond to βη-equivalent elaboration witnesses.
Unfortunately, all but the most simplistic examples require parametrized types and poly-
morphic values in the environment to be faithfully modelled.

8.5 On impure host programs

The type system in which program search is performed does not need to exactly coincide
with the ambiant type system of the host programming language, for which the code-
inference feature is proposed – forcing the same type-system would kill any use from a
language with non-termination as an effect. Besides doing term search in a pure, terminat-
ing fragment of the host language, one could also refine search with type annotations in a
richer type system, for example using dependent types or substructural logic – as long as
the found inhabitants can be erased back to host types.

However, this raises the delicate question of, among the unique βη-equivalence class
of programs, which candidate to select to be actually injected into the host language. For
example, the ordering or repetition of function calls can be observed in a host language
passing impure function as arguments, and η-expansion of functions can delay effects.
Even in a pure language, η-expanding sums and products may make the code less efficient
by re-allocating data. There is a design space here that we have not explored.

9 Related and Future Work

9.1 Previous work on unique inhabitation

The problem of unique inhabitation for the simply-typed lambda-calculus (without sums)
has been formulated by Mints [1981], with early results by Babaev and Soloviev [1982],
and later results by Aoto and Ono [1994], Aoto [1999] and Broda and Damas [2005].

These works have obtained several different sufficient conditions for a given type to
be uniquely inhabited. While these cannot be used as an algorithm to decide unique in-
habitation for any type, they reveal fascinating connections between unique inhabitation
and proof or term structures. Some sufficient criteria are formulated on the types/formulas
themselves, other on terms (a type is uniquely inhabited if it is inhabited by a term of a
given structure).

A simple criterion on types given in Aoto and Ono [1994] is that “negatively non-
duplicated formulas”, that is formulas where each atom occurs at most once in negative
position (nested to the left of an odd number of arrows), have at most one inhabitant. This
was extended by Broda and Damas [2005] to a notion of “deterministic” formulas, defined
using a specialized representation for simply-typed proofs named “proof trees”.

Aoto [1999] proposed a criterion based on terms: a type is uniquely inhabited if it “prov-
able without non-prime contraction”, that is if it has at least one inhabitant (not necessarily
cut-free) whose only variables with multiple uses are of atomic type. Recently, Bourreau
and Salvati [2011] used game semantics to give an alternative presentation of Aoto’s
results, and a syntactic characterization of all inhabitants of negatively non-duplicated
formulas.

85

ZU064-05-FPR jfp 10 August 2016 17:36

Those sufficient conditions suggest deep relations between the static and dynamics se-
mantics of restricted fragments of the lambda-calculus – it is not a coincidence that con-
traction at non-atomic types is also problematic in definitions of proof equivalence coming
from categorial logic [Dosen, 2003]. However, they give little in the way of a decision
procedure for all types – conversely, our decision procedure does not by itself reveal the
structure of the types for which it finds unicity.

An indirectly related work is the work on retractions in simple types (A is a retract of
B if B can be surjectively mapped into A by a λ -term). Indeed, in a type system with a
unit type 1, a given type A is uniquely inhabited if and only if it is a retract of 1. Stirling
[2013] proposes an algorithm, inspired by dialogue games, for deciding retraction in the
lambda-calculus with arrows and products; but we do not know if this algorithm could be
generalized to handle sums. If we remove sums, focusing already provides an algorithm
for unique inhabitation.

9.1.1 Counting inhabitants

Broda and Damas [2005] remark that normal inhabitants of simple types can be described
by a context-free structure. This suggests, as done in Zaoinc [1995], counting terms by
solving a set of polynomial equations. Further references to such “grammatical” approaches
to lambda-term enumeration and counting can be found in Dowek and Jiang [2011].

Of particular interest to us was the recent work of Wells and Yakobowski [2004]. It is
similar to our work both in terms of expected application (program fragment synthesis)
and methods, as it uses (a variant of) the focused calculus LJT [Herbelin, 1994] to perform
proof search. It has sums (disjunctions), but because it only relies on focusing for canonic-
ity it only implements the weak notion of η-equivalence for sums – it is not canonical, as
discussed in Section 5.1.1 (Non-canonicity of simple focusing: splitting points), it counts
an infinite number of inhabitants in presence of a sum thunked under a negative. Their
technique to ensure termination of enumeration is very elegant. Over the graph of all
possible proof steps in the type system (using multisets as contexts: an infinite search
space), they superimpose the graph of all possible non-cyclic proof steps in the logic (using
sets as contexts: a finite search space). Termination is obtained, in some sense, by traversing
the two in lockstep. We took inspiration from this idea to obtain our termination technique:
our bounded multisets can be seen as a generalization of their use of set-contexts.

9.1.2 Non-classical theorem proving and more canonical systems

Automated theorem proving has motivated fundamental research on more canonical repre-
sentations of proofs: by reducing the number of redundant representations that are equiv-
alent as programs, one can reduce the search space – although that does not necessarily
improve speed, if the finer representation requires more book-keeping. Most of this work
was done first for (first-order) classical logic; efforts porting them to other logics (linear,
intuitionistic, modal) are of particular interest, as they often reveal the general idea behind
particular techniques, and are sometimes an occasion to reformulate these techniques in
terms closer to type theory.

86

ZU064-05-FPR jfp 10 August 2016 17:36

An important line of work studies connection-based, or matrix-based, proof methods.
They have been adapted to non-classical logics as soon as Wallen [1987]. It is possible to
present connection-based search “uniformly” for many distinct logics [Otten and Kreitz,
1996], changing only one logic-specific check to be performed a posteriori on connections
(axiom rules) of proof candidates. In an intuitionistic setting, that would be a comparison
on indices of Kripke Worlds; it is strongly related to labeled logics [Galmiche and Méry,
2013]. On the other hand, matrix-based methods rely on guessing the number of duplica-
tions of a formula (contractions) that will be used in a particular proof, and this technique
seems difficult to extend to second-order polymorphism – by picking a presentation closer
to the original logic, namely focused proofs, we hope for an easier extension.

Some contraction-free calculi have been developed with automated theorem proving
for intuitionistic logic in mind. A presentation is given in Dyckhoff [1992] – the idea
itself appeared as early as Vorob’ev [1958]. The idea is that sums and (positive) products
do not need to be deconstructed twice, and thus need not be contracted on the left. For
functions, it is actually sufficient for provability to implicitly duplicate the arrow in the
argument case of its elimination form (A→ B may have to be used again to build the
argument A), and to forget it after the result of application (B) is obtained. More advanced
systems typically do case-distinctions on the argument type A to refine this idea, see
Dyckhoff [2013] for a recent survey. Unfortunately, such techniques to reduce the search
space break computational completeness: they completely remove some programmatic
behaviors. Consider the type Stream(A,B) def

= A× (A→ A×B) of infinite streams of state
A and elements B: with this restriction, the next-element function can be applied at most
once, hence Stream(X ,Y) → Y is uniquely inhabited in those contraction-free calculi.
(With focusing, only negatives are contracted, and only when picking a focus.)

Focusing was introduced for linear logic [Andreoli, 1992], but is adaptable to many other
logics. For a reference on focusing for intuitionistic logic, see Liang and Miller [2007]. Our
programs are lambda-terms, so we use a natural deduction presentation (instead of the more
common sequent-calculus presentation) of focused logic, closely inspired by the work of
Brock-Nannestad and Schürmann [2010] on intuitionistic linear logic.

Some of the most promising work on automated theorem proving for intuitionistic logic
comes from applying the so-called “Inverse Method” (see Degtyarev and Voronkov [2001]
for a classical presentation) to focused logics. The inverse method was ported to linear
logic in Chaudhuri and Pfenning [2005], and turned into an efficient implementation of
proof search for intuitionistic logic in McLaughlin and Pfenning [2008]. It is a “forward”
method: to prove a given judgment, start with the instances of axiom rules for all atoms in
the judgment, then build all possible valid proofs until the desired judgment is reached – the
subformula property, bounding the search space, ensures completeness for propositional
logic. Focusing allows important optimization of the method, notably through the idea of
“synthetic connectives”: invertible or non-invertible phases have to be applied all in one
go, and thus form macro-steps that speed up saturation.

In comparison, our own search process alternates forward and backward-search. At a
large scale we do a backward-directed proof search, but each non-invertible phase performs
saturation, that is a complete forward-search for positives. Note that the search space
of those saturation phases is not the subformula space of the main judgment to prove,

87

ZU064-05-FPR jfp 10 August 2016 17:36

but the (smaller) subformula space of the current subgoal’s context. When saturation is
complete, backward goal-directed search restarts, and the invertible phase may grow the
context, incrementally widening the search space. (The forward-directed aspects of our
system could be made richer by adding positive products and positively-biased atoms; this
is not our main point of interest here. Our coarse choice has the good property that, in the
absence of sum types in the main judgment, our algorithm immediately degrades to simple,
standard focused backward search.)

Maximal multi-focusing An important result for canonical proof structures is maximal
multi-focusing [Miller and Saurin, 2007, Chaudhuri, Miller, and Saurin, 2008a]. Multi-
focusing refines focusing by introducing the ability to focus on several formulas at once,
in parallel, and suggests that, among formulas equivalent modulo valid permutations of in-
ference rules, the “more parallel” ones are more canonical. Indeed, maximal multi-focused
proofs turn out to be equivalent to existing more-canonical proof structures such as linear
proof nets [Chaudhuri, Miller, and Saurin, 2008a] and classical expansion proofs [Chaud-
huri, Hetzl, and Miller, 2012].

In Scherer [2015a] we proposed a multi-focused natural deduction and a λ -calculus
interpretation for it, whose maximal multi-focused terms are canonical for ΛC→,×,+.
Saturating focused proofs are almost maximal muli-focused proofs in this sense. The
difference is that multi-focusing allow to focus on both variables in the context and the goal
in the same time, while our right-focusing rule SAT-INTRO can only be applied sequentially
after SAT (which does multi-left-focusing). To recover the exact structure of maximal multi-
focusing, one would need to allow SAT to also focus on the right, and use it only when the
right choices do not depend on the outcome on saturation of the left (the foci of the same
set must be independent), that is when none of the bound variables are used (typically
to saturate further) before the start of the next invertible phase. This is a rather artificial
restriction from a backward-search perspective. Maximal multi-focusing is more elegant,
declarative in this respect, but is less suited to proof search.

Lollimon: backward and forward search together We described in Section 5.3 (The
roles of forward and backward search in a saturated logic) the way our saturated proof
search mixes backward and forward search. It is interesting to compare it to Lollimon, a
system presented in López, Pfenning, Polakow, and Watkins [2005] which similarly mixes
backward and forward search.

Lollimon is part of the research on logic programming that understands the execution of
logic program as given by the operational behavior of proof search in a well-chosen logic
– typically with uniform proofs or focusing. Cut-elimination is not the only way to give an
operational semantics to proof systems that is suitable for programming, proof search also
has a rich “programmable” operational behavior.

More specifically, the research arc on Concurrent LF and related systems tries to studies
a wider range of logics to capture the operational behavior of interesting systems, typi-
cally concurrent systems with several interacting actors or processes. Lollimon uses a mix
of intuitionistic logic and linear logic – linear logic is suitable to represent consumable
resources and, thus, essential to the modeling of systems with modifiable state.

88

ZU064-05-FPR jfp 10 August 2016 17:36

In Lollimon, as in our case, forward search comes from the behavior of the left-focusing
rule with positive conclusion, that is the forward-chaining rule of the logic. This forward
search ingredient provides an elegant way to describe behaviors that are asynchronous
(they do not necessarily rely on a communication between independent parts of a formula)
but non-invertible – one example is the computation of a future alongside the rest of the
program. Furthermore, when the forward search strategy performs forward search until
saturation is reached, Lollimon can easily describe algorithms that rely on saturation, such
as computing the transitive closure of a graph.

Because of this focus on representing the operation behavior of a variety of system,
the Lollimon logic is not prescriptive: it does not actually enforce saturating or any other
forward-search strategy, it is their implementation of the proof search algorithm that made
specific implementation choices. In contrast, saturated logic is formulated in a strongly
prescriptive way: while the choice of the saturation function gives some leeway, the logic
enforces saturation phase as long as new hypotheses are present, and a form of complete-
ness for provability through the SELECT-SPECIFIC restriction.

Saturated logic is prescriptive because we can afford it: in the more limited applications
that we are interested in, either the search of a unique inhabitant or equivalence checking,
there is a natural choice of selection function that allows some form of “full saturation”
and yet remains terminating, so enforcing (restricted) saturation is practical.

We believe that the consideration of program terms – the type-theoretic rather than
proof-theoretic setting – also gives some intuitions that would be harder to acquire in the
Lollimon setting. Our distinction between “old” and “new” formulas would be possible in
a purely logical setting, but the idea of only saturating on the neutrals that use the “new”
formulas relies on the intuition of considering proof terms as programs – those new neutral
may have new values that we did not know about yet. The saturation selection strategy
used in our unicity-checking algorithm, the “two or more” criterion (we can keep at most
two variables of each type to find out if two distinct programs are possible), would not at
all be natural in a purely proof-theoretic setting.

9.1.3 Equivalence of terms in presence of sums

Ghani [1995] first proved the decidability of equivalence of lambda-terms with sums,
using sophisticated rewriting techniques. The two works that followed [Altenkirch, Dybjer,
Hofmann, and Scott, 2001, Balat, Di Cosmo, and Fiore, 2004] used normalization-by-
evaluation instead. Finally, Lindley [2007] was inspired by Balat, Di Cosmo, and Fiore
[2004] to re-explain equivalence through rewriting. Our idea of “cutting sums as early
as possible” was inspired from Lindley [2007], but in retrospect it could be seen in the
“restriction (A)” in the normal forms of Balat, Di Cosmo, and Fiore [2004], or directly in
the “maximal conversions” of Ghani [1995].

Note that the existence of unknown atoms is an important aspect of our calculus. Without
them (starting only from base types 0 and 1), all types would be finitely inhabited. This
observation is the basis of the promising unpublished work of Ahmad, Licata, and Harper
[2010], also strongly relying on (higher-order) focusing. Finiteness hypotheses also play
an important role in Ilik [2014], where they are used to reason on type isomorphisms in
presence of sums.

89

ZU064-05-FPR jfp 10 August 2016 17:36

In Munch-Maccagnoni and Scherer [2015], we collaborated with Guillaume Munch-
Maccagnoni to rephrase the problem of sum equivalence in a notational framework of
abstract machine calculi called System L. Historically this work comes from both the
search for a term notation that would give a clear computational meaning to classical logic,
and the fine-grained study of weak reduction strategies, notably the duality between call-
by-name and call-by-value reduction. It subsumes both by using a “polarized” reduction
strategy. In a typed setting – System L can also be studied as an untyped calculus – this
“polarization” can be seen as going beyond focusing. In particular, the relation between
System L’s reduction and cut-elimination in strongly focused systems is similar to the rela-
tion between reduction in a direct-style effectful λ -calculus and an indirect-style monadic
calculus.

9.1.4 Elaboration of implicits

The most visible uses of typed-directed code inference for functional languages are type-
classes [Wadler and Blott, 1989] and implicits [Oliveira, Moors, and Odersky, 2010].
Type classes elaboration is traditionally presented as a satisfiability problem (or constraint
solving problem [Stuckey and Sulzmann, 2002]) that happens to have operational conse-
quences. Implicits recast the feature as elaboration of a programming term, which is closer
to our methodology. Type-classes traditionally try (to various degrees of success) to ensure
coherence, namely that a given elaboration goal always give the same dynamic semantics
wherever it happens in the program – often by making instance declarations a toplevel-only
construct. Implicits allow a more modular construction of the elaboration environment, but
have to resort to priorities to preserve determinism [Oliveira, Schrijvers, Choi, Lee, Yi, and
Wadler, 2014].

We propose to reformulate the question of determinism or ambiguity by presenting
elaboration as a typing problem, and proving that the elaborated problems intrinsically
have unique inhabitants. This point of view does not by itself solve the difficult questions
of which are the good policies to avoid ambiguity, but it provides a more declarative
setting to expose a given strategy; for example, priority to the more recently introduced
implicit would translate to an explicit weakening construct, removing older candidates at
introduction time, or a restricted variable lookup semantics.

(The global coherence issue is elegantly solved, independently of our work, by using a
dependent type system where the values that semantically depend on specific elaboration
choices (for example a balanced tree ordered with respect to some specific order) have a
type that syntactically depends on the elaboration witness. This approach meshes very well
with our view, especially in systems with explicit equality proofs between terms, where
features that grow the implicit environment could require proofs from the user that unicity
is preserved.)

9.1.5 Smart completion and program synthesis

Type-directed program synthesis has seen sophisticated work in the recent years, notably
Perelman, Gulwani, Ball, and Grossman [2012], Gvero, Kuncak, Kuraj, and Piskac [2013].
Type information is used to fill missing holes in partial expressions given by the users,

90

ZU064-05-FPR jfp 10 August 2016 17:36

typically among the many choices proposed by a large software library. Many potential
completions are proposed interactively to the user and ordered by ranking heuristics.

Our uniqueness criterion is much more rigid: restrictive (it has far less potential appli-
cations) and principled (there are no heuristics or subjective preferences at play). Com-
plementary, it aims for application in richer type systems, and in programming constructs
(implicits, etc.) rather than tooling with interactive feedback.

An aspect of interaction which could be interesting in our system is the failure case
were at least two distinct inhabitants are found. A first question is, among all the possible
counter-examples our algorithm could provide, which will be the more beneficial to the
user? We suspect that having a computationally-observable difference as early in the terms
as possible is preferable. A second is whether the user could interact with the system to
refine the search space, possibly navigating between alternatives proposed by the system –
for now the only refinement tools are type annotations.

Synthesis of glue code interfacing whole modules has been presented as a type-directed
search, using type isomorphisms [Aponte and Di Cosmo, 1996] or inhabitation search in
combinatory logics with intersection types [Düdder et al., 2014].

Focusing and program synthesis We were very interested in the recent work on Myth,
presented in Osera and Zdancewic [2015], which generates code from both expected type
and input/output examples. It is based on bidirectional type-checking, but we believe that
it is in fact using focusing. The works are complementary: they have interesting proposals
for data-structures and algorithm to make term search efficient, while we bring a deeper
connection to proof-theoretic methods. They independently discovered the idea that sat-
uration must use the “new” context, and present it as an algorithmic improvement called
“relevant term generation”.

This work has been expanded upon in Frankle, Osera, Walker, and Zdancewic [2016],
and at the time of writing there is work underway to strengthen the connection to focusing.
We hope to be able to study the connections in more details. This work, notably, seems
more advanced in terms of study of applicability to real scenarios, so a cooperation could
be very fruitful.

9.2 Future work

9.2.1 Pushing the application front

Despite some interesting experiments with our software prototype, we have not yet pushed
in the direction of practical application of this work to real-world programming language.
We think that supporting richer type systems would help to make it more widely applicable,
but it may already be possible to provide the current capabilities as a code inference tool
for typed functional languages, and thus gather some usage experience.

9.2.2 Substructural logics

Instead of moving to more polymorphic type systems, one could move to substructural
logics. We could expect to refine a type annotation using, for example, linear arrows, to get
a unique inhabitant. We observed, however, that linearity is often disappointing in getting

91

ZU064-05-FPR jfp 10 August 2016 17:36

“unique enough” types. Take the polymorphic type of mapping on lists, for example:
∀αβ .(α → β)→ (List α → List β). Its inhabitants are the expected map composed
with any function that can reorder, duplicate or drop elements from a list. Changing the
two inner arrows to be linear gives us the set of functions that may only reorder the mapped
elements: still not unique. An idea to get a unique type is to request a mapping from
(α ≤ β) to (List α ≤ List β), where the subtyping relation (≤) is seen as a substructural
arrow type.

(Dependent types also allow to capture List.map, as the unique inhabitant of the de-
pendent induction principle on lists is unique.)

9.2.3 Equational reasoning

We have only considered pure, strongly terminating programs so far. One could hope to
find monadic types that uniquely defined transformations of impure programs (e.g. (α →
β)→ M α→ M β). Unfortunately, this approach would not work by simply adding the unit
and bind of the monad as formal parameters to the context, because many programs that are
only equal up to the monadic laws would be returned by the system. It could be interesting
to enrich the search process to also normalize by the monadic laws.3 In the more general
case, can the search process be extended to additional rewrite systems?

9.2.4 Unique inhabitation with polymorphism or dependent types

We have started experimenting with an extension of saturated proof search to System F,
with no strong results so far.

The general problem with polymorphism is the loss of the subformula property, and
thus the loss of termination in our algorithm – or any algorithm, as the problem becomes
undecidable as shown by reducing unicity to inhabitation.4 In the details, this appears when
trying to build a negative neutral out of ∀-quantified formula during a left-focusing phase:
there is an infinite space of possible instantiations choices.

First, remark that the algorithm of Section 5 (Saturation logic for canonicity) directly
extends to the sub-system where ∀-quantifiers are only present in positive subformulas
occurrences – this is the easy subset where no instantiation choices have to be made. Gilles
Dowek and Ying Jiang studied this almost-non-polymorphic fragment in Dowek and Jiang
[2009]; it gives a precise formal status to our handling of prenex polymorphism in our
experiments. Note that formulas with positive ∀ occurrences are a more general fragment
than just prenex polymorphism, although type systems such as Mitchell’s Fη [Mitchell,
1988] bridge the gap by allowing to lift positive quantifiers into prenex position by subtyp-
ing/containment.

3 Sam Lindley remarked that the specific case of monad laws should be relatively easy, as monad
laws can be seen as a weaker form of sum laws. If we consider an abstract monad M A as a sum
0+A, with 0 being an empty type and with the expected implementations of bind and return, the
reduction and weak η-expansion on sums suffice to recover the usual monad laws – the equational
theory of Eugenio Moggi’s computational λ -calculus.

4 Undecidability of inhabitation in System F is an old result recalled in Wells [1994] – an article that
is itself related to the different issue of decidability of typability of a term.

92

ZU064-05-FPR jfp 10 August 2016 17:36

Second, our suggestion for future work would be to replace the problem of “at a use
site, how to instantiate this polymorphic neutral to make further progress”, which leads to
a natural explosion of the saturation dynamics – there will often be infinitely many strict
positives to deduce – by the different question of “at the abstraction site, is there a set of
instantiations that summarizes the polymorphic value in its full generality?”.

For example, if the polymorphic type ∀α,(X+→α)→ (Y+→α)→α is in an invertible
context, we could in a sense “invertibly decompose” it by instantiating it either with X+

or with Y+, as we can easily prove that no other instantiation leads to an inhabited type.
Note that we are taking a “closed world” view here: we are assuming that the context has
no other way to build a value of this type that we have ourselves, and thus that we can
reason on the possible values that were passed to us by enumerating the terms we could
build ourselves at this type.

In a more general setting, this suggests a generalization of Noam Zeilberger’s higher-
order focusing rule [Zeilberger, 2009] that “decomposes” polymorphic hypotheses that
could look like

DRAFT-POLYMORPHIC-HIGHER-ORDER-RULE

∀Σ′, Σ
′,α A(α) =⇒ Γ

at;Σ,Σ′ `inv N | Pat

Γ
at;Σ,∀α,A(α) `inv N | Pat

where the Σ A relation ranges over the minimal set of contexts that must be inhabited for
A to be inhabitable.

We have been trying to find a way to enumerate those “most general contexts” by reusing
our (unicity-aware) proof search procedure on A(α), in a mode that would collect inhabita-
tion constraints (the minimal context is an output, rather than an input, of the enumeration
procedure). If this succeeded, it would give a new understanding of parametricity results
in terms of syntactic proof search.

Note that the interaction between this idea of closed-world proof search and focusing
is unknown and quite likely to be a delicate issue. The fact that ∀-quantifiers in positive
position are invertibly introduced would suggest to consider polymorphic types as nega-
tives, but our higher-order focusing approach instead consider them (in negative position)
as positives.

Finally, on a more technical level, we think that extending our proof search procedure
to System F (and beyond) would benefit from an explicit handling of metavariables as
done in Lengrand, Dyckhoff, and McKinna [2011]. Explicit meta-variables let us explicitly
represent the state of proof search as a derivation, and this let us explore a richer setting
of proof search strategies – choices metavariable instantiation order – notably breadth-first
search strategies. Without this explicit representation of search state, the natural approach
is to have a recursive proof search procedure that provides complete proof of each judgment
when called, so it imposes a depth-first approach. This inflexibility is acceptable in a
simply-typed setting where each search branch terminates, but in a undecidable setting
it makes the system halt as soon as some subspace becomes infinite – we would hope for a
better behavior in this case.

93

ZU064-05-FPR jfp 10 August 2016 17:36

Bibliography

Arbob Ahmad, Daniel R. Licata, and Robert Harper. Deciding coproduct equality with
focusing. Online draft, 2010. 89

Thorsten Altenkirch, Peter Dybjer, Martin Hofmann, and Philip J. Scott. Normalization by
evaluation for typed lambda calculus with coproducts. In LICS, 2001. 4, 49, 89

Jean-Marc Andreoli. Logic Programming with Focusing Proofs in Linear Logic. Journal
of Logic and Computation, 2(3), 1992. 3, 6, 15, 87

Takahito Aoto. Uniqueness of normal proofs in implicational intuitionistic logic. Journal
of Logic, Language and Information, 1999. 85

Takahito Aoto and Hiroakira Ono. Non-Uniqueness of Normal Proofs for Minimal
Formulas in Implication-Conjunction Fragment of BCK. Bulletin of the Section of Logic,
1994. 84, 85

Maria-Virginia Aponte and Roberto Di Cosmo. Type isomorphisms for module signatures.
In PLILP, 1996. 91

Ali Babaev and Sergei Soloviev. A coherence theorem for canonical morphisms in
cartesian closed categories. Journal of Soviet Mathematics, 1982. 85

Vincent Balat, Roberto Di Cosmo, and Marcelo P. Fiore. Extensional normalisation and
type-directed partial evaluation for typed lambda calculus with sums. In POPL, 2004.
4, 8, 49, 89

Pierre Bourreau and Sylvain Salvati. Game semantics and uniqueness of type inhabitance
in the simply-typed λ -calculus. In TLCA, 2011. 85

Taus Brock-Nannestad and Carsten Schürmann. Focused natural deduction. In LPAR-17,
2010. 25, 87

Sabine Broda and Luı́s Damas. On long normal inhabitants of a type. J. Log. Comput.,
2005. 85, 86

Kaustuv Chaudhuri. Magically constraining the inverse method using dynamic
polarity assignment. In LPAR, October 2010. URL https://hal.inria.fr/

inria-T00535948. 60
Kaustuv Chaudhuri and Frank Pfenning. Focusing the inverse method for linear logic. In

CSL, 2005. 87
Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via multi-

focusing. In IFIP TCS, 2008a. 3, 9, 88
Kaustuv Chaudhuri, Frank Pfenning, and Greg Price. A logical characterization of forward

and backward chaining in the inverse method. volume 40, 2008b. 18, 60
Kaustuv Chaudhuri, Stefan Hetzl, and Dale Miller. A Systematic Approach to Canonicity

in the Classical Sequent Calculus. In CSL, 2012. 88
Anatoli Degtyarev and Andrei Voronkov. Introduction to the inverse method. In Handbook

of Automated Reasoning. 2001. 87
Kosta Dosen. Identity of proofs based on normalization and generality. Bulletin of

Symbolic Logic, 2003. 86
Gilles Dowek and Ying Jiang. Enumerating proofs of positive formulae. Comput. J., 52

(7), 2009. 92
Gilles Dowek and Ying Jiang. On the expressive power of schemes. Inf. Comput., 2011.

86

94

http://www.cs.cmu.edu/~adahmad/coproduct_equality.pdf
https://hal.inria.fr/inria-00535948
https://hal.inria.fr/inria-00535948

ZU064-05-FPR jfp 10 August 2016 17:36

Boris Düdder, Moritz Martens, and Jakob Rehof. Staged composition synthesis. In ESOP,
2014. 91

Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. J. Symb. Log.,
1992. 87

Roy Dyckhoff. Intuitionistic decision procedures since gentzen, 2013. Talk notes. 87
Mahfuza Farooque, Stéphane Graham-Lengrand, and Assia Mahboubi. A bisimulation

between dpll(T) and a proof-search strategy for the focused sequent calculus. In LFTMP,
2013. 60

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. Example-
directed synthesis: a type-theoretic interpretation. In POPL, 2016. 91

Didier Galmiche and Daniel Méry. A connection-based characterization of bi-intuitionistic
validity. J. Autom. Reasoning, 2013. 87

Neil Ghani. Beta-Eta Equality for Coproducts. In TLCA, 1995. 4, 49, 89
Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. Complete completion using

types and weights. In PLDI, 2013. 2, 90
Hugo Herbelin. A Lambda-calculus Structure Isomorphic to Gentzen-style Sequent

Calculus Structure. In CSL, 1994. URL https://hal.inria.fr/inria-T00381525.
18, 86

Danko Ilik. Axioms and decidability for type isomorphism in the presence of sums. CoRR,
abs/1401.2567, 2014. URL http://arxiv.org/abs/1401.2567. 89

Edward Kmett. Lens, 2012. URL https://github.com/ekmett/lens. 83
Edward Kmett. Lens wiki – types, 2013. URL https://github.com/ekmett/lens/

wiki/Types. 83
Olivier Laurent. A proof of the focalization property of linear logic. 2004. 33
Stéphane Lengrand, Roy Dyckhoff, and James McKinna. A focused sequent calculus

framework for proof search in Pure Type Systems. Logical Methods in Computer
Science, 7(1), 2011. 93

Chuck Liang and Dale Miller. Focusing and polarization in intuitionistic logic. CoRR,
2007. URL http://arxiv.org/abs/0708.2252. 16, 87

Sam Lindley. Extensional rewriting with sums. In TLCA, 2007. 4, 49, 89
Pablo López, Frank Pfenning, Jeff Polakow, and Kevin Watkins. Monadic concurrent linear

logic programming. In PPDP, 2005. 61, 88
Sean McLaughlin and Frank Pfenning. Imogen: Focusing the polarized inverse method for

intuitionistic propositional logic. In LPAR, 2008. 82, 87
Dale Miller and Alexis Saurin. From proofs to focused proofs: A modular proof of

focalization in linear logic. In CSL, 2007. 88
Grigori Mints. Closed categories and the theory of proofs. Journal of Soviet Mathematics,

1981. 85
John C. Mitchell. Polymorphic type inference and containment. Information and

Computation, 2/3(76), 1988. 92
Guillaume Munch-Maccagnoni and Gabriel Scherer. Polarised intermediate representation

of lambda calculus with sums. In LICS, 2015. URL https://hal.inria.fr/

hal-T01160579. 90
Bruno C. d. S. Oliveira, Adriaan Moors, and Martin Odersky. Type classes as objects and

implicits. In OOPSLA, 2010. 90

95

http://apt13.unibe.ch/slides/Dyckhoff.pdf
https://hal.inria.fr/inria-00381525
http://arxiv.org/abs/1401.2567
https://github.com/ekmett/lens
https://github.com/ekmett/lens/wiki/Types
https://github.com/ekmett/lens/wiki/Types
http://arxiv.org/abs/0708.2252
https://hal.inria.fr/hal-01160579
https://hal.inria.fr/hal-01160579

ZU064-05-FPR jfp 10 August 2016 17:36

Bruno C. d. S. Oliveira, Tom Schrijvers, Wontae Choi, Wonchan Lee, Kwangkeun Yi, and
Philip Wadler. The implicit calculus: A new foundation for generic programming. 2014.
2, 90

Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed program synthesis.
In PLDI, 2015. 91

Jens Otten and Christoph Kreitz. A uniform proof procedure for classical and non-classical
logics. In KI Advances in Artificial Intelligence, 1996. 87

Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. Type-directed
completion of partial expressions. In PLDI, 2012. 2, 90

Gabriel Scherer. Mining opportunities for unique inhabitants in dependent programs, 2013.
2

Gabriel Scherer. Multi-focusing on extensional rewriting with sums. In TLCA, 2015a. URL
http://gallium.inria.fr/~scherer/drafts/multifoc_sums.pdf. 62, 88

Gabriel Scherer, 2015b. URL http://gallium.inria.fr/~scherer/research/

unique_inhabitants/. 71, 82
Gabriel Scherer and Didier Rémy. Which simple types have a unique inhabitant?

In ICFP, 2015. URL http://gallium.inria.fr/~scherer/research/unique_

inhabitants/unique_stlc_sums-Tlong.pdf. 1, 35, 59, 62
Robert J. Simmons. Structural focalization. CoRR, abs/1109.6273, 2011. 33, 35
Colin Stirling. Proof systems for retracts in simply typed lambda calculus. In Automata,

Languages, and Programming - ICALP, 2013. 86
Peter J. Stuckey and Martin Sulzmann. A theory of overloading. In ICFP, 2002. 2, 90
Nikolay Vorob’ev. A new algorithm of derivability in a constructive calculus of statements.

In Problems of the constructive direction in mathematics, 1958. 87
Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In

POPL, 1989. 2, 90
Lincoln A. Wallen. Automated proof search in non-classical logics: Efficient matrix proof

methods for modal and intuitionistic logic, 1987. 87
Joe B. Wells. Typability and type checking in the second-order λ -calculus are equivalent

and undecidable. In LICS, July 1994. 92
Joe B. Wells and Boris Yakobowski. Graph-based proof counting and enumeration with

applications for program fragment synthesis. In LOPSTR, 2004. 86
Marek Zaoinc. Fixpoint technique for counting terms in typed lambda-calculus. Technical

report, State University of New York, 1995. 86
Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching. PhD

thesis, Carnegie Mellon University, 2009. 93
Noam Zeilberger. Polarity in proof theory and programming, August 2013. URL http://

noamz.org/talks/logpolpro.pdf. Lecture Notes for the Summer School on Linear
Logic and Geometry of Interaction in Torino, Italy. 22

96

http://gallium.inria.fr/~scherer/drafts/multifoc_sums.pdf
http://gallium.inria.fr/~scherer/research/unique_inhabitants/
http://gallium.inria.fr/~scherer/research/unique_inhabitants/
http://gallium.inria.fr/~scherer/research/unique_inhabitants/unique_stlc_sums-long.pdf
http://gallium.inria.fr/~scherer/research/unique_inhabitants/unique_stlc_sums-long.pdf
http://noamz.org/talks/logpolpro.pdf
http://noamz.org/talks/logpolpro.pdf

	Introduction
	Why unique?
	Example use cases
	Aside: Parametricity?
	Formal definition of equivalence
	Terminology
	Focusing for a less redundant proof search
	Limitations of focusing
	Our idea: saturating proof search
	Termination
	Contributions

	Introduction to focusing
	Natural deduction and sequent calculus
	Focused proofs as a subset of non-focused proofs
	Structural presentations of focusing
	Polarized formulas
	Defocusing

	Focused -calculus
	Intuitionistic natural deduction, focused
	A focused term syntax: focused lambda-calculus
	Focusing completeness by big-step translation

	Counting terms and proofs
	Terms, types and derivations
	Counting terms in semirings

	Saturation logic for canonicity
	Introduction to saturation for unique inhabitation
	A saturating focused type system
	The roles of forward and backward search in a saturated logic

	Canonicity of saturated proofs
	Big-step saturating translation
	Normalization and canonicity

	Unique inhabitation algorithm
	Implementing search
	Correctness
	Optimizations

	Evaluation
	Inferring polymorphic library functions
	Inferring module implementations or type-class instances
	Artificial examples
	Non-applications
	On impure host programs

	Related and Future Work
	Previous work on unique inhabitation
	Future work

