
Functional programming with λ−tree syntax

Ulysse Gérard, Dale Miller, Gabriel Scherer

Parsifal, Inria Saclay, France

HOPE, September 23rd, 2018

1



Introduction

MLTS is an ongoing language design experiment. WIP!
Extend ML with binder handling constructs from λProlog and Abella.

Theory: in logic programming, computation from proof search.
Binders: a new quantifier in the logic: ∇x , “for a fresh x”.

Implementation: online, compiles to λProlog.
https://voodoos.github.io/mlts/

Look and feel: a funny mix of FreshML and HOAS.
Mobility and λ-Tree Syntax.
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MLTS: datatypes with binders

MLTS extends ML with binders.

Normal ML datatypes are closed.

Example of open datatype:

type lam =

| App of lam * lam

| Abs of lam => lam

;;

(notice: no constructor for variables)

Inhabitants:

λx . x
λx . (x x)
(λx . x) (λx . x)

Abs(X \ X)

Abs(X \ App(X, X))

App(Abs(X \ X), Abs(X \ X))
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MLTS crash course

subst : lam -> lam -> lam

subst t x u is t[x\u].

let rec subst t x u = match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)

| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)
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MLTS crash course

subst : lam -> lam -> lam

subst t x u is t[x\u].

In Abs(Y \ subst (r @ Y) x u), no variable is ever free.
Binders move.

let rec subst t x u = match (x, t) with

| nab X in (X, X) -> u

| nab X Y in (X, Y) -> Y

| (x, App(m, n)) ->

App(subst m x u, subst n x u)

| (x, Abs(r)) -> Abs(Y\ subst (r @ Y) x u)

4



Binder type
(a => b): “open” values of type b under a binder of type a.
introduction X \ t, elimination t @ X.

type lam =

| App of lam * lam

| Abs of lam => lam;;

(X \ X) : lam => lam

Abs(X \ App(X, X)) : lam

(fun r -> Abs(Y \ App(r @ Y, r @ Y))

: (lam => lam) -> lam

Γ,X : A ` t : B

Γ ` X\t : A => B

Γ ` t : A => B (X : A) ∈ Γ

Γ ` t @ X : B

(and in patterns)
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new binder?

How to perform that substitution : (λy . y x)[x\λz . z ]?

subst (Abs(Y\ App(Y, ?))) ? (Abs(Z\ Z));;

We need a way to introduce a nominal to call subst.

new X in subst (Abs(Y\ App(Y, X))) X (Abs(Z\ Z));;

−→ Abs(Y\ App(Y, Abs(Z\ Z)))

new X in: a scope in which a new nominal X is available.

Effect: escape checking / occurs check.
(Safer when returning a closed type.)
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Pure substitution

Γ, x ` t Γ ` u

Γ ` t[u/x ]

let rec subst (t : lam => lam) (u : lam) : lam =

match t with

| X \ X ->

u

| nab Y in (X \ Y) ->

Y

| X \ App (m @ X, n @ X) ->

App (subst m u, subst n u)

| X \ Abs (Y \ r @ X Y) ->

Abs (Y \ subst (X \ r @ X Y) u)
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Beta reduction

let rec beta t =

match t with

| nab X in X -> X

| Abs r -> Abs (Y\ beta (r @ Y))

| App(m, n) ->

let m = beta m in

let n = beta n in

begin match m with

| Abs r -> beta (subst r n)

| _ -> App(m, n)

end

;;
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Pattern matching

Unification modulo α, β0 and η.
β0: (λx .B)y = B[y/x ] provided y is not free in λx .B

Implied restrictions:

Applications lists are distinct nominals.
(nab X1 X2 in C(r @ X1 X2) -> ...).

In r @ X, the nominal X is not free in r.

| X \ App (m @ X, n @ X) ->

App (subst m u, subst n u)

This is called higher-order pattern unification.
Decidable, most general unifiers.
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Interpreter in λProlog: just ML
ML admits type-erasure:
can define an operational semantics on untyped terms.

=⇒ untyped interpreter in λ-prolog, all ML types map to tm.

kind tm type.

type app tm -> tm -> tm.

type lam (tm -> tm) -> tm.

type let tm -> (tm -> tm) -> tm.

type match tm -> clauses -> tm.

type K tm -> ... -> tm -> tm.

type cp tm -> tm -> prop.

type eval tm -> tm -> prop.

eval (let Def Body) VB :-

eval Def VD ,

eval (Body VD) VB.
10



Interpreter in λProlog: MLTS

To extend to MLTS,

transl(a => b) = tm -> transl(b) transl( ) = tm

transl(X \ t) = x \ transl(t) transl(t @ x) = transl(t) x

type newτ (tm -> τ ) -> τ .

eval (newτ T) V :- pi x \ eval (T x) V.
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Demo time?

Implementation by Ulysse Gérard.

Technology: Menhir + his code + Elpi + js of ocaml + Nice web stuff.
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Conclusion & Future work

This treatment of bindings has a clean semantic inspired by Abella.

The interpreter was quite simple to write : ≈140 lines of code

Future work:

More examples in the meta-programming area (a compiler ?)

Provide an operational semantics (small-step?) without primitive
binding constructs.

Statics checks such as pattern matching exhaustivity, use of distinct
pattern variables in pattern application, nominals escaping their
scope, etc.

Design a ”real” implementation. A compiler ? An extension to
OCaml ? An abstract machine ?

https://trymlts.github.io

Thank you
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Concrete syntax typing rules (1/2)

Γ, x : C ` x : C
Γ ` M : A -> B Γ ` N : A

Γ ` (M N) : B

Γ, x : A ` M : B

Γ ` (fun x -> M) : A -> B

Γ, X : A ` M : B open A

Γ ` (new X in M) : B

Γ, X : A ` M : B open A

Γ ` (X \ M) : A => B

Γ ` r : A1 => ... => An => A Γ ` t1 : A1 . . . Γ ` tn : An
Γ ` (r @ t1 ... tn) : A
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Concrete syntax typing rules (2/2)

Γ ` term : B Γ ` B : R1 : A . . . Γ ` B : Rn : A
Γ ` match term with R1 | ... | Rn : A

Γ, X : C ` A : R : B open C

Γ ` A : nab X in R : B

Γ ` L : A ` ∆ Γ,∆ ` R : B

Γ ` A : L -> R : B

Γ ` t1 : A1 ` ∆1 . . . Γ ` tn : An ` ∆n

Γ ` C(t1,...,tn) : A ` ∆1, . . . ,∆n
C of type A1*...*An -> A

Γ ` X1 : A1 . . . Γ ` Xn : An open A1 . . . open An

Γ ` (r @ X1 ... Xn) : A ` r : A1 => ... => An => A

Γ ` x : A ` {x : A}
Γ ` p : A ` ∆1 Γ ` q : B ` ∆2

Γ ` (p,q) : A * B ` ∆1,∆2
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Natural semantics for the abstract syntax
(G-logic [Gacek, 2009, Gacek et al., 2011]) (1/2)

` val V
` V ⇓ V

` M ⇓ F ` N ⇓ U ` apply F U V

` M@N ⇓ V

` (R U) ⇓ V

` apply (lam R) U V

` (R (fixpt R)) ⇓ V

` (fixpt R) ⇓ V

` C ⇓ tt ` L ⇓ V

` cond C L M ⇓ V

` C ⇓ ff ` M ⇓ V

` cond C L M ⇓ V
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Natural semantics for the abstract syntax (2/2)

` ∇x .(E x) ⇓ (V x)

` x\ E x ⇓ x\ V x

` ∇x .(E x) ⇓ V

` new E ⇓ V

` pattern T Rule U ` U ⇓ V

` (match T (Rule :: Rules)) ⇓ V

` (match T Rules) ⇓ V

` (match T (Rule :: Rules)) ⇓ V

` ∃x .pattern T (P x) U

` pattern T (all (x\ P x)) U

` (λz1 . . . λzm.(t =⇒ s)) D (T =⇒ U)

` pattern T (nab z1 . . . nab zm.(t =⇒ s)) U

` λX .(X =⇒ s) D (Y =⇒ U)

` pattern Y (nab X in (X =⇒ s)) U ` U ⇓ V

` match Y with (nab X in (X =⇒ s)) ⇓ V
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