
Debootstrapping without archeology:
Stacked implementations in Camlboot

N. Couranta, J. Lepillerb, and G. Scherera
a INRIA, France
b Yale University, United States

Abstract (following the structure recommended for The Art, Science, and Engineering of Programming)

Context It is common for programming languages that their reference implementation is implemented in
the language itself. This requires a “bootstrap”: the executable form of a previous version of the implementa-
tion is provided along with the sources, to be able to run the implementation itself.

Those bootstrap files are opaque binaries; they could contain bugs, or even malicious changes that could
reproduce themselves when running the source version of the language implementation – this is called the
“trusting trust attack”. A collective project called Bootstrappable was launched in 2016 to remove those boot-
straps, providing alternative build paths that do not rely on opaque binaries.

Inquiry Debootstrapping generally combines a mix of two approaches. The “archaeological” approach
works by locating old versions of systems, or legacy alternative implementations, that do not need the boot-
strap, and by preserving or restoring the ability to run them. The “tailored” approach re-implements a new,
non-bootstrapped implementation of the system to debootstrap. Currently, the “tailored” approach is domi-
nant for low-level system components (C, coreutils), and the “archaeological” approach is dominant among
the few higher-level languages that were debootstrapped.

Approach We advocate for the benefits of “tailored” debootstrapping implementations of high-level lan-
guages. The new implementation needs not be production-ready, it suffices that it is able to run the reference
implementation correctly. We argue that this is feasible with a reasonable development effort, with several
side benefits besides debootstrapping.

Knowledge We propose a specific design of composing/stacking several implementations: a reference
interpreter for the language of interest, implemented in a small subset of the language, and a compiler
for this small subset (in another language). Developing a reference interpreter is valuable independently of
debootstrapping: it may help clarify the language semantics, and can be reused for other purposes such as
differential testing of the other implementations.

Grounding We present Camlboot, our project to debootstrap the OCaml compiler, version 4.07. Once we
converged on this final design, the last version of Camlboot took about two human-months of implementation
effort, demonstrating feasibility. Using diverse double-compilation, we were able to prove the absence of
trusting trust attack in the existing bootstrap of the standard OCaml implementation.

Importance To our knowledge, this document is the first scholarly discussion of “tailored” debootstrap-
ping for high-level programming languages. Debootstrapping is an interesting problem which recently grew
an active community of free software contributors, but so far the interactions with the programming-language
research community have been minimal. We share our experience on Camlboot, trying to highlight aspects
that are of interest to other language designers and implementors; we hope to foster stronger ties between
the Bootstrappable project and relevant academic communities. In particular, the debootstrapping experience
has been an interesting reflection on OCaml design and implementation, and we hope that other language
implementors would find it equally valuable.

Keywords programming language, compilation, bootstrap, ocaml

The Art, Science, and Engineering of Programming

Perspective The Art of Programming

Area of Submission Interpreters, virtual machines and compilers

© N. Courant, J. Lepiller, and G. Scherer
This work is licensed under a “CC BY 4.0” license.
Submitted to The Art, Science, and Engineering of Programming.

https://bootstrappable.org/
https://bootstrappable.org/
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Debootstrapping without archeology:
Stacked implementations in Camlboot

1 Introduction

1.1 Bootstrapped language implementations

Programming language designers and implementors devote themselves to creating
the best possible programming language, and work hard on turning their language
into usable software. What language would they use to implement their ideas? Their
own programming language, of course! OCaml is implemented in OCaml, Haskell
in Haskell, SML in SML, Scala in Scala, Rust in Rust, the list goes on and on. (For a
criticism of the “language implementors should eat their own dogfood” trope, see
Laurence Tratt’s The Bootstrapped Compiler and the Damage Done.)
But then, newcomers ask, how can you run an OCaml program, if you need an

OCaml implementation to run the OCaml implementation? This chicken-and-egg
problem is solved by a bootstrap: along with the sources of the compiler, we carry a
compiled form of the compiler (typically a slightly-older version), which is used to
build the compiler itself from sources, and we update this bootstrap compiler from
time to time. In the old times, a first implementation was written in some pre-existing
programming language, but we replaced it with this bootstrap, which lets us write
our compiler code in the the designer’s favorite programming language, their own.
The problem with this approach is that now we have to carry around this binary

blob, version-control it, and we have to trust it to correctly compile our programming
language. It is opaque: neither its content nor the nature of its changes in the repository
can be inspected in practice. What if the bootstrap compiler has a bug, could this bug
somehow reproduce itself within the compiler compiled from the source? What if
someone malicious was to intentionally insert malicious logic in the bootstrap compiler,
that would compile the source compiler in such a way that it would insert a backdoor
in compiled programs, and survive in later bootstraps?
Bugs surviving through bootstraps occur in practice, although rarely.1 The idea of

malicious backdoors hidden in bootstraps is called a “trusting trust attack” (Thompson,
1983). Proof-of-concepts have been implemented, but we do not know if the attack
has ever been used in practice.

1.2 Reproducibility and non-opaque build paths

The free software community has made a lot of effort to produce operating systems
with reproducible/deterministic builds: building the same source package on different
systems should produce the same binary (ideally bit-for-bit identical to ease compari-
son). This has been a constant effort in some communities, and was recently the main
focus of the Reproducible Builds project started in 2013, which strives to make entire
package distributions bit-for-bit reproducible.

1We heard of two such bugs from personal communication with programming-language
implementers, one in a minimal Scheme and one in an early version of Caml.

2

https://tratt.net/laurie/blog/entries/the_bootstrapped_compiler_and_the_damage_done.html
https://reproducible-builds.org/

N. Courant, J. Lepiller, and G. Scherer

Reproducible builds have obvious practical benefits: if you distribute binary pack-
ages and people don’t know if they can trust you, they can compile the software
independently and compare the hashes of their binaries with yours, to know for sure
that you are distributing the right binaries.
However, even when the software is “reproducible” in this sense, this is achieved in

most cases by building using an identical build environment provided by the untrusted
provider. If the environment itself contains a version of the software you are trying
to rebuild, how can you trust your own results? What if the build environment is
corrupted? You would reproducibly get the same compromised result.
The Bootstrappable Builds project was started in 2016 to solve this issue, trying to

eliminate opaque binaries from build paths, aiming for a more trustable operating
system that can be built from nothing else than source code,2 first in assembly language,
then in increasingly higher-level programming languages.
The Bootstrappable effort is not yet complete, with some binary seeds (build path

dependencies) remaining. For example, the more promising build paths for a large
package ecosystem currently require build artifacts of a Scheme implementation as
part of the seeds. Regular progress is being made to remove those binary seeds.3
Bootstrap binaries inside language implementations are the major source of opaque

seeds in common build paths, so this problem should be of particular interest to
the community of programming-language implementers. In fact, the feasibility of
removing binary bootstraps is also related to language design aspects: this may be a
new concern that language designers should consider.
Removing bootstrap binaries is important in practice because it reduces this build-

environment dependency to source packages. They may still be the target of unin-
tentional bugs or targeted attacks, but could be more effectively verified by humans
or tools. This is also a better practice for system engineering and maintenance: it
makes dependencies better-specified and more general (not “this binary” but “a tool
satisfying <this interface>”), which eases re-implementation, cross-validation, and
maintenance as the build environment evolves.

1.2.1 A note on terminology
The terminology around bootstrap is confusing and confused, with different and
incompatible usage between some language-implementation communities and some
operating-system and package-distribution communities. Many compiler authors call
to bootstrap the act of building their language implementation using an executable
version of itself – a bootstrap binary. In contrast, many operating-system people, in
particular the bootstrappable-builds community, call to bootstrap the fact of building

2 “Source code” is loosely defined as the documents that are designed for human understand-
ing of the program; typically they are the human-written vs. computer-generated artefacts,
but the frontier is very blurry. Here “binary” means non-source. Different definitions on
what is and is not part of source code result in weaker or stronger conditions for an
implementation to be free from non-source bootstrap artifacts.

3 See for example this description of the build path of GNU Guix, the software distribution of
choice of the Bootstrappable people.

3

https://bootstrappable.org/
https://bootstrappable.org/
https://guix.gnu.org/en/blog/2020/guix-further-reduces-bootstrap-seed-to-25/
https://bootstrappable.org/

Debootstrapping without archeology:
Stacked implementations in Camlboot

a toolchain from arbitrary build dependencies (the bootstrap seeds), which preferably
do not include binaries corresponding to programs of the toolchain itself.
To avoid any confusion, we will consistently use a bootstrap to mean the self-

compilation build artifacts, and to debootstrap to mean the act of removing our
dependency on bootstrap binaries, to allow a build from sources. A bootstrapped
compiler uses a bootstrap binary, a non-bootstrapped or debootstrapped compiler does
not.
In this paper, we report on our experience producing camlboot, a debootstrapped

implementation of the OCaml programming language.⁴

1.3 Archaeology or tailored implementations?

The low-level systems debootstrapped by the Bootstrappable project have typically
used tailored new implementations; a key component is GNU Mes (Nieuwenhuizen,
2016), a project to provide a Scheme interpreter (in C) and a small C compiler mescc
(in Scheme) that can host themselves. Mes can be used to deboostrap TinyCC (tcc), a
minimal C compiler, and from there build more standard C compilers.
On the other hand, higher-level components are typically debootstrapped using an

archaeological approach, locating older versions that did not rely on a bootstrap binary,
or legacy alternative implementations. Let us quote the beginning of the description
of the Bootstrappable page on Java, to give an idea of the work involved:

In Guix the Java bootstrap begins with Jikes, a Java compiler written in C++.
We use it to build a simple version of GNU Classpath, the Java standard library.
We chose version 0.93 because it is the last version that can be built with Jikes.
With Jikes and this version of GNU Classpath we can build JamVM, a Java Virtual
Machine. We build version 1.5.1 because it is the last version of JamVM that
works with a version of GNU classpath that does not require ECJ. These three
packages make up the bootstrap JDK.
This is sufficient to build an older version of Ant, [...]

In this work, we propose to use “tailored” implementations for debootstrapping
purpose: software specifically designed for bootstrapping (adapted from existing
projects or written from scratch), striving to remain as simple as possible.
This is more robust to future evolutions of our computing systems (legacy software

in the build path may have trouble adapting to, say, RISC-V machines), and can reduce
the overall complexity and build time of the build path.

1.4 Key metric: human work required to debootstrap

If we assume unlimited work resources, tailored debootstrapping is a trivial problem:
just port your programming-language implementation to another language that has
already been debootstrapped (for example C). But this is a massive effort that may

4 https://github.com/Ekdohibs/camlboot

4

https://bootstrappable.org/
https://bellard.org/tcc/
https://bootstrappable.org/projects/java.html
https://github.com/Ekdohibs/camlboot

N. Courant, J. Lepiller, and G. Scherer

never happen in practice – especially as you have to first convince your language
implementors to work in a different programming language.
Debootstrapping becomes interesting once you consider human effort as a key

metric. Can you debootstrap your language implementation in a reasonable amount
of work?
The idea is to build a naïve implementation of your programming language. It

can be slow, does not necessarily support all language features, its design would not
necessarily scale to a full implementation. It can be produced with a much smaller
effort and suffices to build your compiler.
Language design also matters. In particular, we relied heavily on OCaml’s type-

erasure property; a language has the type-erasure property if its runtime semantics
can be defined independently of its typing derivation, that is if the untyped language
already has a well-defined operational behavior. (Implicit casts/conversions may
preserve this property, but stronger form of implicits such as type-classes do not.) This
property lets you implement an interpreter without type-checking the programs first,
saving the substantial effort of implementing a type-checker.

camlboot is the result of several design iterations, but the latest version was imple-
mented from scratch in two human-months of work.

1.5 Diverse double-compilation

If we cut corners to build a bad debootstrapped implementation of a language, the
maintainers of the better, bootstrapped implementations are not going to throw away
their bootstrap binaries and replace it with our implementation. Have we gained
anything?
Diverse double-compilation (DDC) (Wheeler, 2005) is a technique to use an alter-

native implementation to gain trust in a bootstrap binary, proving the absence of
trusting trust attack. (It needs reproducible/deterministic compiler builds.)

First, we use the bootstrap binary to build the reference implementation from
source, and we check that the resulting binary is identical to the bootstrap binary;
let us call this binary the bootstrapped binary.
Second, we use our debootstrapped implementation to build the reference imple-
mentation under test. The result, the debootstrapped binary, may be very different
from the bootstrapped binary (different or no optimisation, etc., as our deboot-
strapped compiler produces worse code), but it should have the same semantics.
Finally, we use the debootstrapped binary to compile the reference implementation
again, getting a final binary.

The final binary was produced without ever using the bootstrap binary, using the
compiler sources from the reference implementation. If it is bit-for-bit identical to the
bootstrapped binary, then we have proved the absence of trusting trust attack; if it is
not, there may be a malicious backdoor or a self-reproducing bug, but there may also
be a reproducibility issue in the toolchain.
We have successfully performed diverse double-compilation using our deboot-

strapped implementation, and successfully checked that the bootstrap binary of the

5

Debootstrapping without archeology:
Stacked implementations in Camlboot

reference OCaml implementation, version 4.07 (Leroy, Doligez, Frisch, Garrigue, Rémy,
and Vouillon, 2018), is free of trusting trust attack.

1.6 Debootstrapping the OCaml compiler

We used the following approach to debootstrap the OCaml compiler version 4.07.1:
Implement an interpreter for OCaml, that we call interp. More precisely, it covers
the (large) subset of the language used in the reference compiler implementation.
interp is itself written in a smaller subset of OCaml that we intentionally kept small,
and call MiniML. This took a few human-weeks.
Implement a compiler for MiniML in Scheme, that we call minicomp. This also
took a few human-weeks (for a much smaller set of features than our interpreter
supports). The compiler targets the OCaml bytecode, which comes with a pure C
virtual machine.
We can then use our interp interpreter to interpret the reference OCaml compiler
to build itself, without needing a bootstrap binary.
One aspect to be careful about is the other build dependencies than the compiler

itself, notably the lexer and parser generators. OCaml 4.07 uses a parser generator,
ocamlyacc, written in C. The lexer generator, ocamllex, is written in a small fragment of
the language; we extended MiniML to cover it. We still had to “debootstrap” the lexer
generator by writing by hand a lexer that could lex ocamllex’s own input grammar!
The two-stage process (a naive interpreter compiled by a naive compiler) introduces

massive inefficiencies in the build chain: we are spending computer time to save human
time. On a specific build, we measured that running ocamlopt.opt (the OCaml native
compiler, compiled with itself) is 27500x faster than interpreting the same ocamlopt
compiler using our interp interpreter compiled with minicomp. In Section 6.1 we
discuss these performance gaps in detail. Yet the whole debootstrapping process runs
in human-reasonable time, completing under four hours on a developer machine.
We believe that such a staged design may be generalizable to many other language

implementations. First write an interpreter of your language in a simple subset of itself
– this is not too much work, and maximizes developer familiarity. Then implement the
second stage as a compiler, in another language – this is again doable if the chosen
subset is simple enough, and avoids an explosion of inefficiencies.

1.7 Results

We were able to debootstrap the OCaml compiler, and check using diverse double-
compilation the absence of trusting trust attack in the bootstrapped compiler for
OCaml 4.07.1. In total, this effort took less than two human-months. Re-running the
full debootstrap chain to compile the reference compiler takes under four hours. (In
comparison, one standard parallel build of the OCaml distribution took 1m42s, for
6m17s of user time.)

6

N. Courant, J. Lepiller, and G. Scherer

A build recipe for GNU Guix (Courtès, 2013) is provided,⁵ ensuring that anyone in
the future will be able to reproduce this result thanks to very precise dependency
information on the whole operating system configuration.
As a side-result, we produced a reference interpreter for a large fragment of the

OCaml programming language. We ensured that this interpreter is clearly-written
and maintainable on its own; it has explanatory value, and we believe that it will
be reusable in many other research venues. For example, having a small and simple
reference implementation could be useful for fuzzing-based differential testing of
realistic language implementations.
As a take-away for other language communities, we would recommend debootstrap-

ping all implementations (it is challenging, interesting and fun), insist on the practical
benefits of preserving type-erasure as much as possible, and encourage language
maintainers to write simple reference interpreters of their real-world programming
languages.

1.8 Related work

The Bootstrappable Projects website describes heroic efforts to debootstrap various
parts of the free-software ecosystem. It relies on GNU Guix (Courtès, 2013), an oper-
ating system distribution that tracks dependencies in a fine-grained way, providing a
tree of packages that rely on as few bootstrap seeds (non-source forms of programs
required to build the system) as possible. Debootstrapping a bootstrapped program-
ming language means that its bootstrap binary needs not be part of the build seeds
anymore.
Guix is itself implemented in GNU Guile (Wingo, Vollmer, Djurfeldt, Courtés, and

Blandy, 1993), a nice implementation of Scheme. The Guix, Guile and Scheme commu-
nity at large are strong contributors to the Bootstrappable effort. Scheme is a natural
choice for debootstrapping, being arguably the simplest programming language in
which you might want to write a programming language implementation.

It is interesting to look at how other languages have approached debootstrapping.
A short summary is that very few of the higher-level languages that have been relying
on a bootstrap for a long time have been debootstrapped, a few exceptions being C,
Rust and Java (but not Scheme!). OCaml is joining a select group with our work.
Note: in the case of C, Rust and Java, the debootstrapped build path can build the

most recent version of major implementations at the time of writing: gcc 11, openjdk
16.0, rustc 1.56.

Rust The reference Rust compiler, rustc, has been debootstrapped (Tolnay, 2019),
making Rust the most advanced programming language with a good debootstrapping
story so far. The debootstrap relies on mrustc (Hodge, 2016), a partial reimplementa-
tion of Rust in C++. mrustc does not build recent versions of rustc, but it can build
version 1.39.0, released in November 2019. Then 1.39.0 can be used to build 1.40, and

5 https://issues.guix.gnu.org/46806

7

https://en.wikipedia.org/wiki/GNU_Guix
https://bootstrappable.org/projects.html
https://bootstrappable.org/
https://github.com/thepowersgang/mrustc/
https://issues.guix.gnu.org/46806

Debootstrapping without archeology:
Stacked implementations in Camlboot

so on, until release 1.56. Building each rustc version takes about 3 hours on a good
machine, suggesting that the full debootstrapped build would take 1-2 days.
One point of interest is that mrustc implements type-checking for Rust programs

but not lifetime inference, thanks to the “lifetime-erasure” property that lifetimes do
not affect the dynamic semantics of the program. This is the ownership analogue of
the type-erasure property we rely on in our own work.

Java Java has been debootstrapped (Wurmus, 2017b) by finding an elaborate path
through legacy implementations, as we discussed in Section 1.3

Haskell GHC has not been successfully debootstrapped yet. The most elaborate
attempt so far (Wurmus, 2017a) managed to run the nhc98 compiler using the hugs
interpreter – implemented in C. Unfortunately nhc98 lacks many modern Haskell
features required to build the current GHC codebase.

Gcc gcc has been successfully debootstrapped from much simpler implementations.
This required two components:

a C implementation able to build gcc, or rather, the latest version of gcc implemented
in C instead of C++, gcc 4.7 (released in 2014), that can then build newer versions
of gcc. This is provided by the TinyCC compiler, itself running on top of GNU
Mes (Nieuwenhuizen, 2016).
Building gcc, or any modern software, also requires various core utilities (patch,
sed), GNU Make, and a working Bash implementation. Building those without a
modern C compiler is hard! The Guix project was able to remove them from the
bootstrapping base by relying on Gash (Sample and Nieuwenhuizen, 2018), a Guile
implementation of Bash and core utilities.

Scheme To the best of our knowledge, Guile itself is not currently fully deboot-
strapped. Many necessary pieces are present in the Guile implementation (it has a
Scheme interpreter, written in plain Scheme, that can interpret the Guile compiler, and
a plain Scheme interpreter in C that can interpret the interpreter), and the Scheme
interpreter of GNU mes seems close to be able to run guile, but still debootstrapping
has not yet been achieved. The issue comes from its macro-expander, which needs a
pre-expanded version of itself as a bootstrap binary.
Racket had a macro-expander implemented in C until version 6 included (Racket

6.12 was released in 2018). Version 7 moved to a macro-expander implemented in
Racket, which was great for maintainability but introduced a bootstrap.

Down to assembly There is work ongoing to connect GNU Mes “up” with Guile, and
also (mes-m2) to connect it “down” with the stage0 project (Orians, 2017), a project
to build a tower of x86 assemblers from a single 1KB binary.

Summary We found that the approach of writing entirely new implementations for
the purpose of debootstrapping is more rarely used – to our knowledge, the only

8

https://bellard.org/tcc/
https://savannah.nongnu.org/projects/gash
https://git.savannah.gnu.org/cgit/guile.git/tree/module/ice-9/psyntax.scm?h=v3.0.5
https://github.com/racket/racket/blob/v6.12/racket/src/racket/src/compile.c
https://github.com/racket/racket/tree/master/racket/src/expander
https://github.com/racket/racket/tree/master/racket/src/expander
https://github.com/oriansj/mes-m2
https://github.com/oriansj/stage0

N. Courant, J. Lepiller, and G. Scherer

project to have used it before our work is GNU Mes. We hope to inspire more people
to do it!
In the general case, creating a debootstrapped “build path” to a language imple-

mentation may require a mix of legacy implementations, bootstrap replay, and new
alternative implementations. New implementations written for debootstrapping may
in turn become legacy applications if they are not maintained actively – and become
incompatible with newer versions of the reference implementation. The build paths
themselves need to be maintained; they can typically be lengthened by adding extra
steps to build more recent versions of the reference implementation (for Rust, for ex-
ample), or shortened by finding alternative, simpler build paths (by improving mrustc
or, in our case, interp and minicomp). There are interesting maintenance challenges
in there, and only time will tell how effective the Bootstrappable community is at
tackling them.
Debootstrapping build plans are currently evolving rapidly; for example the live-

bootstrap project appears to have recently managed a build of bash and make without
relying on Gash/Guile. The global picture may be much improved by the time you read
this article. But each bootstrapped programming language, OCaml in our case, still
needs to be debootstrapped independently from the rest of the software ecosystem.

SqueakVM Some programming language implementations share the commonality of
being written in their own language, with a small fragment compiled to a pre-existing
language. One notable example is the Squeak VM (Ingalls, Kaehler, Maloney, Wallace,
and Kay, 1997), which was implemented in pure Smalltalk, with its bytecode inter-
preter written in a simple fragment of Smalltalk designed to be directly translatable
to C. However, this does not suffice to debootstrap the language: the compilation
from Smalltalk to its bytecode, which is a more subtle piece of software, remains
implemented in full Smalltalk, and requires a pre-existing VM image to run.⁶ If the
Squeak project wanted to use their “simple fragment” for larger part of the imple-
mentations – ideally all of it – they would probably want to add higher-level features
of Smalltalk to this fragment. This would require a more elaborate compiler from
their mini-Smalltalk to C (or some other target language), and would be closer to our
design.

2 The OCaml compiler implementation

OCaml has one reference implementation that evolves along with the language itself,
and a few alternative implementations that typically reuse some parts of the reference
– to compile to JavaScript, etc.

The reference implementation provides two compilers: the bytecode compiler ocamlc,
and the native compiler ocamlopt. ocamlc produces executables in a custom portable
bytecode format, to be executed by the bytecode interpreter ocamlrun. ocamlopt

6 There is a project to partially debootstrap Squeak: SqueakBootstrapper.

9

https://www.gnu.org/software/mes/
https://bootstrappable.org/
https://github.com/fosslinux/live-bootstrap
https://github.com/fosslinux/live-bootstrap
https://github.com/yoshikiohshima/SqueakBootstrapper

Debootstrapping without archeology:
Stacked implementations in Camlboot

o: parser.mly

MLY
ocamlyacc

MLY ML

M

o: ocyacc/*.c

C
s: gcc

C M

M

o: oclex/lexer.mll

MLL
s: boot/ocamllex

MLL ML

B

s: boot/ocamlc

ML B

B

o: lexer.mll

MLL
ocamllex

MLL ML

B

o: oclex/*.ml

ML

s: boot/ocamlc

ML B

B

o: *.ml

ML

ocamlc.byte

ML B

B

ocamlopt.byte

ML M

B

ocamlopt.opt

ML M

M

B

M

ocam
lrun

o: runtime/*.c

C
s: gcc

C M

M

B: OCaml bytecode. M: machine code. C: C source code. Scm: Scheme source code.
ML: OCaml source code. MLL: OCaml lexer definition. MLY: OCaml parser definition.
o: OCaml compiler sources. red s: bootstrap seeds.

Figure 1 The usual, bootstrapped build of OCaml 4.07

produces native binaries directly, which are more efficient (typically 2x-10x) but not
portable, larger and longer to compile. Back in the days of Caml Light, the bytecode
was famous for its efficiency (among the fastest functional programming languages,
due to its clever support for curried application), but nowadays people exclusively
use the native compiler in production. Executables produced by the bytecode or
native compiler link to a runtime, which is a bunch of C code and some assembly that
implement low-level features the language relies on, in particular garbage collection.

ocamlc and ocamlopt are implemented in OCaml. The runtime, as well as ocamlrun,
are implemented in C code. The OCaml 4.07 compilers also use a parser generator,
ocamlyacc, implemented in C (but the parsers it generates have an OCaml interface),
and a lexer generator, ocamllex, implemented in OCaml.

Bootstrap To bootstrap itself, the OCaml compiler is distributed with bytecode
executables for ocamlc (the bytecode compiler) and ocamllex. They can be executed
by ocamlrun, which is built from C. To build the compiler from sources they also need
to generate an OCaml parser from the yacc grammar, using ocamlyacc built from C.

10

N. Courant, J. Lepiller, and G. Scherer

Before building the compiler sources it first needs to build the OCaml standard library,
distributed with the compiler and used within the compiler sources.
We present in Figure 1 a schematic view of the usual OCaml build plan, using

tombstone diagrams (T-diagrams).⁷ For example, the ocamlyacc-related cluster de-
scribes how ocmalyacc is built as a native, machine program using gcc from its sources
oyacc/*.c, and then used to turn the source grammar parser.mly – the OCaml grammar
– into a .ml file included in the compiler codebase *.ml. We use the (o :) marker to
indicate sources from the standard OCaml distribution, and the red color and (s :)
marker to indicate a bootstrap seed – a non-source program required to build the
system. (Using markers in addition to color preserves the distinction on black&white
medium.)
Note that oclex/lexer.mll represents the ocamllex lexer, used to lex the lexer-description

input format (.mll file), not to be confused with the OCaml lexer lexer.mll.

3 A global view of our debootstrapped build path

Our debootstrapped build path is described in Figure 2. In addition to the previous
conventions, we use the blue color and the (c :) symbol to denote our own Camlboot
code, and the “mL” language (small “m”) to denote ML sources that must stay within
the MiniML fragment.
The build starts with both gcc and guile as seeds. Some parts of the build path of

OCaml can be reused: we build ocamlrun, ocamlyacc and parser.ml the same way.
The first change is the construction of the sources of the compiler, more precisely

the lexer, which was previously generated by boot/ocamllex.byte. We replace it by the
version of ocamllex packaged with the OCaml sources, and compiled by minicomp.
There is a difficulty here as well: these sources contain a lexer themselves, so we
wrote a lexer by hand oclex/boot.ml, that was able to parse ocamllex’s own lexer. We
use it to generate a lexer for ocamllex, and use the result to generate ocamlc’s lexer.⁸
Once we have the lexer and the parser, we can compile our interpreter into in-

terp.minibyte. We use it to interpret the ocamlopt compiler. For performance reasons,
the first program we compile with this ocamlopt is our interpreter itself (see Section
6).⁹ Then, with this natively-compiled interpreter, we interpret ocamlopt again to

7We made some minor renamings and simplifications to the schema to keep it readable. For
example, in the real build system lexer.mll is built using boot/lex, and ocamlopt.byte using
boot/ocamlc.

8 The description of the ocamllex.minibyte build in the figure is highly simplified. We combine
our hand-written lexer with the sources of ocamllex, compile this with minicomp into a
lex.boot.byte. Then we use lex.boot.minibyte to compile the reference lexer for ocamllex,
lex/lexer.mll, and combine it with the other sources to produce our final ocamllex.minibyte.
This two-build process, which is effectively implementing diverse double-compilation for
the lexer, was necessary to ensure that the produced lexers are bit-for-bit” identical to the
reference implementation.

9 In the schema this is represented with two interpretation arrows: interp.minibyte interprets
the sources of ocamlc, but it itself is interpreted by ocamlrun.

11

Debootstrapping without archeology:
Stacked implementations in Camlboot

ocamlopt

ML M

ML

ML

M

interp.opt

ocamlopt

ML M

ML

ocamlc.opt

ML B

M

boot/ocamlc

ML B

B

o: parser.mly

MLY
ocamlyacc

MLY ML

M

o: ocyacc/*.c

C
s: gcc

C M

M

Scm

M

s:G
uile

o: oclex/*.ml

mL

c: oclex/boot.ml

mL

c: minicomp

ML B

Scm

o: lexer.mll

MLL
ocamllex

MLL ML

B

o: *.ml

ML

Scm

M

s:G
uile

c: interp/*.ml

mL
c: minicomp

mL B

Scm

ML

B

interp.m
inibyte

B

M

ocam
lrun

o: runtime/*.c

C
s: gcc

C M

M

mL: miniML source code.
o: OCaml compiler sources. red s: bootstrap seeds. blue c: our Camlboot code.

Figure 2 Our debootstrapped build of OCaml 4.07

compile the sources of ocamlc. With the resulting ocamlc.opt compiler, we can finally
produce debootstrapped binaries to replace the OCaml bootstrap binaries. (We only
represent the build of boot/ocamlc, but boot/ocamllex is rebuilt similarly.)

3.1 Defining the scope of MiniML

We did not define MiniML as a precise subset of OCaml when we started the project,
but we refined it iteratively.
MiniML started with what many people would consider a canonical “toy ML”:

first-class functions, mutual recursion, variant/sum types and records. One notable
limitation was on pattern-matching on variants/sums, the implementation would
restrict to shallow patterns (no nesting of sum constructors) to avoid implementing
pattern-matching compilation, a bulky feature.
(In fact there was a more restricted version of MiniML in our first experiment,

meant to be compiled to C instead of the OCaml bytecode, that would not support

12

N. Courant, J. Lepiller, and G. Scherer

closures. We did not include these earlier implementations, which are gone from the
final artifact, in our work estimates.)
First we wrote the interpreter; we tested it against the compiler codebase (we com-

pile interp with the reference compiler for testing) and tried to support all necessary
OCaml features with a simple, readable codebase.
Then we looked at the features we had used in the interp codebase that were not

supported by minicomp – outside the MiniML subset of the time. For each such feature,
we had the choice to either add it to MiniML and implement it in minicomp, or rewrite
the interpreter to stop using this feature, possibly at the cost of more verbose and
uglier code.
In some cases features were motivated not directly by the interpreter codebase,

but by their usage in the OCaml standard library for modules we wanted to use
in the interpreter. In particular, we implemented functors to be able to use the Set
and Map modules from the OCaml standard library. We want to be able to reuse
the OCaml standard library in our interpreter code as much as reasonably possible,
in the interest of maintainability. An alternative would be to implement our own
specialized sets/maps data structures to not use functors (and in fact we did this in
an intermediate version of our code). But while this makes debootstrapping slightly
easier, it increases the maintenance burden on the project, duplicating code from the
standard library, and it makes it “weird” as an OCaml project. We care very much about
the fact that our interpreter can be taken as-is as a “good reference interpreter for
OCaml”, easy to maintain and usable by other people not interested in bootstrapping.
Moving from shallow patterns to full pattern-matching compilation was probably

the most time-consuming and invasive addition; it required redesigning the minicomp
compiler from one-pass (from AST to bytecode directly!) to a two-pass compiler, with
pattern matching compiled into lower-level control-flow constructs. This took about a
full week of work (using a not-too-naive compilation scheme), compared to a couple
hours to implement full pattern-matching (naively) in the interpreter.
We believe that it is not a coincidence that our compiler and our interpreter con-

sumed roughly the same amount of effort (about four human-weeks each). When
deciding whether to extend the compiler or simplify the interpreter, we considered
the effort involved on either end. Repeatedly going for the lowest estimated effort
tended to evenly balance the time spent on both parts.

3.2 Extending the build path after OCaml 4.07

At the time this work started, 4.07.1 was the most recent version of OCaml, released
in October 2018. The OCaml compiler distribution follows a six-month release cycle,
and several versions have been released since, the most recent at the time of writing
being 4.12.
So far we have stuck with OCaml 4.07 rather than a more recent version, because

OCaml 4.08 and later transitioned to Menhir, a parser generator itself written in
OCaml, making the debootstrapping path more complex.
We leave a 4.12 build path as future work. There are two possible approaches,

one is to try to build 4.12 from our debootstrapped 4.07 implementation, and the

13

Debootstrapping without archeology:
Stacked implementations in Camlboot

other is to update our debootstrapping tools to work with 4.12 directly. The first
option corresponds to considering our implementations as “legacy”, and we would
rather explore the second one. A hybrid approach would be to build Menhir using our
debootstrapped OCaml compiler (we checked that it builds with OCaml 4.07, even
the recent versions used for the 4.12 parser), but upgrade our interpreter and compiler
to support the rest of the 4.12 compiler implementation.

4 interp: Interpreting OCaml in MiniML

Our first software contribution is interp, an interpreter for OCaml written in MiniML, a
reasonably-small subset of OCaml. It takes 3000 lines of code, took about four human-
weeks of work to write, and it covers all features of OCaml used in the standard library
and the compiler, which is almost all the features of the language.1⁰

4.1 A taste of the implementation

The interpreter is written to be reusable in other projects: it strives to be easy to read
and maintain. To get a sense of it, we show the core definition of OCaml run-time
“values”:
1 type value = value_ Ptr.t
2 and value_ =
3 | Int of int
4 | Int32 of int32
5 | Int64 of int64
6 | Nativeint of nativeint
7 | Fun of arg_label * expression option * pattern * expression * env
8 | Function of case list * env
9 | String of bytes
10 | Float of float
11 | Tuple of value list
12 | Constructor of string * int * value option
13 | Prim of (value -> value)
14 | Fexpr of fexpr
15 | ModVal of mdl
16 | InChannel of in_channel
17 | OutChannel of out_channel
18 | Record of value ref SMap.t
19 | Lz of (unit -> value) ref
20 | Array of value array
21 | Fun_with_extra_args of value * value list * (arg_label * value) SMap.t
22 | Object of object_value

10 Some runtime libraries not used inside the compiler, such as ephemerons and bigarrays, are
not supported by our interpreter.

14

N. Courant, J. Lepiller, and G. Scherer

23 and fexpr = Location.t -> (arg_label * expression) list -> expression option

Let us describe some technical details that show up in this type definition. We
find them (mildly) interesting in that they show that writing an interpreter reveals
interesting aspects of the programming-language semantics.
The value defined as value_ Ptr.t, where 'a Ptr.t describes a pointer to a value of type

'a that may be uninitialized, in which case it can be “backpatched” by assigning it
exactly once. This mutable indirection is used to interpret OCaml recursive values.
The two other places wheremutability occurs explicitly are Record of value ref SMap.t,

as record fields may be mutable,11 and Lz of (unit -> value) ref, representing lazy
thunks that mutate themselves when forced.
The Fexpr of fexpr is used to represent certain compiler primitives, in particular

short-circuiting operators a && b and a || b, whose operational semantics is given by
rewriting/desugaring into other expressions, before their arguments are evaluated.
In contrast, most primitives are defined by the Prim of (value -> value) case that take
their arguments as values.
Here are a couple cases of the main evaluation function:

1 let rec eval_expr prims env expr =
2 [...]
3 | Pexp_ifthenelse (e1, e2, e3) ->
4 if is_true (eval_expr prims env e1)
5 then eval_expr prims env e2
6 else
7 (match e3 with
8 | None -> unit
9 | Some e3 -> eval_expr prims env e3)
10 | Pexp_try (e, cs) ->
11 (try eval_expr prims env e
12 with InternalException v ->
13 (try eval_match prims env cs (Ok v)
14 with Match_fail -> raise (InternalException v)))

The eval_expr function evaluates expressions to a result; prims is an environment
to interpreter primitive/intrisic names (it never changes, but its presence breaks a
circularity between expression evaluation and primitive evaluation), env contains the
value of term variables, and expr is the expression to evaluate.
In the Pexp_try case, evaluating a try .. with .. expression, we see that a program

raising an exception is interpreted by raising an exception in the interpreter. We catch
this expression, use eval_match to match its payload against the exception-handling
clauses cs; if none of the exception-handling clauses matches the exception, then we
propagate the exception to the ambient evaluation context.
Note: interp does not embed a parser for the OCaml surface language; it works

directly from a parsetree in the format produced by the compiler parser. This is a

11ML-family languages also have mutable references 'a ref. This is a derived construct in
OCaml, defined as a record: type 'a ref = { mutable contents: 'a }.

15

Debootstrapping without archeology:
Stacked implementations in Camlboot

natural choice for a reference evaluator, using the compiler as a library to parse in a
compatible way, but it also works well in our debootstrapping scenario, where we can
execute the compiler parser produced by ocamlyacc and feed the resulting parsetrees
to our interpreter.
In the rest of this section, we go into the details of two technical issues we had to

solve (among others). They support our impression that writing a reference interpreter
for debootstrapping is full of insights on the language and its implementations.

4.2 Technical focus: module aliases

Writing a reference interpreter will confront yourself to hidden corners of your lan-
guage design, whose operational semantics you may not be completely aware of.
Language changes are proposed by people who are familiar with the reference im-
plementation, a compiler, and may frame changes in terms that are natural from a
compilation perspective, without working out the operational semantics precisely.
One such instance for us was “module aliases”. OCaml has an ML module system,

which supports nested modules and various forms of module bindings (including
modules parametrized over modules). Files passed to the compiler are implicitly
mapped into modules, so the file “foo.ml” will have its content put in a module Foo.
However, these “toplevel module” names must be unique. The linker would reject two
modules of the same name to avoid symbol name clashes. So a common idiom is to
use long filenames for the toplevel modules, prefixed with the library name, and to
provide a short “alias map” module that rebinds them to their shorter name. A library
Lib may for example be implemented by two files Lib__Foo.ml and Lib__Bar.ml, with a
helper file Lib.ml whose content is as follows:
1 module Foo = Lib__Foo
2 module Bar = Lib__Bar

This allows the user to write Lib.Foo, unaware of the long module name Lib__Foo.
(In fact the long module names and the “alias map” module are typically generated
by the build system, so they can be considered as implementation details for a poor
implementation of namespacing.)
There is still a small glitch with this approach: if Lib__Bar actually depends on

Lib__Foo, can it refer to it through the nice name Lib.Foo, or should it use the ugly
internal name Lib__Foo? Using Lib from Lib__Bar was originally rejected, as Lib itself
mentions Lib__Bar and OCaml does not allow circular dependencies among files /
toplevel modules. But users found it inconvenient, so the language semantics was
changed slightly to allow it: the -no-alias-deps option, now widely used by default,
decides that mentioning a module in the right-hand side of a module “aliasing” (re-
binding), such as module Bar = Lib__Bar, does not introduce a strong dependency
on this module: it is okay if the module is only present “later” in linking order. Of
course, any actual usage of the Bar module introduces a strong dependency on its
definition Lib__Bar, but merely mentioning Lib from Lib__Bar does not create a circular
dependency.

16

N. Courant, J. Lepiller, and G. Scherer

When introduced, this feature was described from a compiler perspective: weak ver-
sus strong dependencies, linking order, etc. Giving its actual semantics as a reduction
relation (big-step or small-step) turns out to be non-obvious.
Our first attempt was to model aliases using just variables. Evaluating a module

name M, for example on the right-hand side of the binding module Foo = Lib__Foo,
would just return “the free module name M”, whether or not M had already been
provided in the current environment. (We are evaluating modules in linking order, and
a module is defined in the environment if it has already been evaluated.) Operations
that require accessing the module structure, field access M.x for example, would then
“force” module names into proper structures, failing if the module is not available
in the current module environment. But this does not work in presence of functors,
which capture their definition-time module environment. If you pass “the free name M”
as an argument to a functor, and the functor was defined in an environment where M
is not available, then the functor will be unable to access the structure of its argument,
while the caller of the functor may have had access to the definition of M.

In the end we gave up with trying to devise gentle semantics for -no-alias-deps. The
toplevel modules of an OCaml program are big mutually-recursive definitions, where
modules can be defined but not used before they have been evaluated. More precisely,
toplevel module names evaluate to a mutable cell that starts uninitialized, and gets
“backpatched” into a complete structure when the module evaluation succeeds.

Lesson 1. Maintaining a reference interpreter forces you to think about the semantic im-
pact of compiler implementation changes. We recommend it for more informed language
evolution.
Otherwise it is surprisingly easy to design, discuss, evaluate and integrate features

described in terms of their compilation/elaboration semantics, without realizing that
their direct operational semantics (as a rewrite relation, or in a reference interpreter)
may be delicate.

Note: Module aliases as a language feature lie on the boundary between the lan-
guage constructs proper and the surrounding tooling (dependency management,
linking semantics, etc.); we suspect that similar semantics difficulties may lie in this
grey area for other languages as well.

4.3 Technical focus: interpreting ocamlc or ocamlopt?

The bytecode and native compilers, ocamlc and ocamlopt, share the same frontend
(parser, type-checker, pattern-matching compilation, first pass of simplifications/opti-
mizations). They have two different backends, with ocamlc having a much simpler
backend. To give some numbers, the frontend is about 50K lines of code, the bytecode
backend is 4K lines of code, and the native backend about 40K lines of code. Bytecode
compilation is also noticeably faster than native compilation, typically twice faster.
When we set out to interpret the OCaml compiler, we thus started interpreting

the bytecode compiler: less code to interpret, and the interpreted compiler would be
faster to compile. Our attempt was thwarted by an unexpected coupling between the
compiler and the language runtime.

17

Debootstrapping without archeology:
Stacked implementations in Camlboot

In the object files (library archives or executables) produced by the bytecode
compiler, there is not only the bytecode instructions for the program, but also various
side-data such as tables of constant values and debug information. Most of these
file formats are defined (in the compiler implementation) in a precise way, to be
parsed by the bytecode interpreter ocamlrun: a header with a magic word and section
tables in a precise binary format, bytecode instructions in a precise byte encoding,
etc. But the constant tables and debug information are serialized using OCaml’s built-
in polymorphic pickling/marshaling operation (input_value and output_value), and
inserted as-is in the bytecode object file.
This works fine with the reference implementation of the language, which uses

the same implementation of (un)marshalling as ocamlrun: they are both using the
implementation provided by the OCaml runtime system. But this does not work with
our interpreter, which interprets the marshaling primitives differently: it calls the
marshalling function on the interpreter representation of the value, which differs from
the native representation, and thus we get different rules. If we use our interpreter
to interpret the code of ocamlc, then the call to output_value in ocamlc source code
(producing the bytecode artifact) will produce a serialized value in a different format,
and ocamlrun will crash when trying to deserialize this part of the bytecode executable
and consume it.
To work around this issue, we could have modified the implementation of ocamlc

and ocamlrun to stop using OCaml’s built-in marshaling functions, and instead use a
precisely-defined binary serialization format for constant tables and debug information.
But this would be a non-trivial change from the reference implementation, and it is
unclear that the upstream maintainers would have been willing to integrate it. We
would like our debootstrapping process to be maintainable alongside the reference
implementation, rather than requiring the application of nontrivial patches to get a
debootstrappable compiler.
So we decided to give up interpreting the bytecode compiler ocamlc, and interpret

the native compiler ocamlopt instead. The native compiler produces binaries in its
standard system format (ELF on Linux), without any implementation-defined parts.
We had to extend our interpreter with a sizeable amount of language features used in
the ocamlopt codebase but not in ocamlc, notably OCaml objects. The backend uses
class inheritance to factorize code over several architectures – for example, instruction
selection is defined in a main class, that is inherited in each backend to implement
architecture-specific refinements.

Lesson 2. The implementation of your compiler may of course use various primitives of
your language with implementation-defined behavior. But it is not a good idea to have
its output artifact format be implementation-defined. They should be defined so that
different implementations can easily achieve cross-compatibility.

4.4 interp language coverage

We implemented OCaml features “on demand” by iteratively trying to run the compiler
sources, which would fail on unsupported features. If we had been able to run the

18

N. Courant, J. Lepiller, and G. Scherer

bytecode compiler, we would probably have left objects (used only in the native-
compiler backend) unsupported, as interpreting them was a fair amount of work.
Here are the OCaml features that are currently missing from interp, and not used

in the compiler codebase:
lazy patterns (lazy p will force its scrutinee and match its value with p),
a couple minor pattern features (polymorphic variant type patterns #foo, local
module open in patterns M.(p),
direct object expressions (object .. end outside a class declaration),
and recursive modules.

Most of these would be fairly easy to add; recursive modules may be a more sizeable
addition, but we already support recursive compilation units.

5 minicomp: Compiling MiniML to the OCaml bytecode

Our second contribution is minicomp, a compiler for MiniML to OCaml bytecode,
written in Scheme (more specifically, guile). It is comparable in terms of complexity
to interp, taking about 3300 lines of code and having taken about four human-weeks
of work to write. The feature set is more restricted than for interp: it does not han-
dle objects, classes, lazy values, first-class modules or format strings; functors are
generative and compiled by defunctionalization, and type-based disambiguation of
constructor names or record labels is unsupported as well.
For the frontend, minicomp uses the lalr-scm parser generator, and a handwritten

lexer. In the backend, minicomp produces OCaml bytecode, so that:
We can use OCaml primitives, especially the ones used by the generated lexer and
parser.
We get good integration with an efficient garbage collector.
We get efficient support for closures and curried functions.

An early experiment compiled MiniML to C code linked with the OCaml runtime
instead; it produced less efficient code, due to having to register every intermediate
value as a GC root and having to check for exceptions at each call. In addition, it did
not handle closures, which made programming inside its MiniML subset quite painful.
The compiler itself is divided into two passes: a first pass, lowering, simplifies input

expressions by compiling pattern matching to lower-level constructs, handles function
application (recognition of tail calls, primitive calls, reordering labeled arguments),
and transforms constructors and records into blocks with a fixed integer tag. The
second pass compiles these simpler expressions and outputs the result directly to
a bytecode file (no intermediate representation of bytecode exists in the compiler),
backpatching labels as necessary. Most constructions of the lowered expressions map
directly to bytecode, and we only need to take care of the scope of variables (local,
belonging to the environment of a closure or global), and to the size of the stack.
Here are a few cases of the second compilation pass:

1 (define (compile-expr env stacksize expr)
2 (match expr

19

Debootstrapping without archeology:
Stacked implementations in Camlboot

3 [...]
4 (('LTailApply e args)
5 (let* ((nargs (length args)))
6 (compile-args env stacksize args)
7 (bytecode-put-u32-le PUSH)
8 (compile-expr env (+ stacksize nargs) e)
9 (bytecode-put-u32-le APPTERM)
10 (bytecode-put-u32-le nargs)
11 (bytecode-put-u32-le (+ stacksize nargs))))
12 (('LIf e1 e2 e3)
13 (let* ((lab1 (newlabel))
14 (lab2 (newlabel)))
15 (compile-expr env stacksize e1)
16 (bytecode-put-u32-le BRANCHIFNOT)
17 (bytecode-emit-labref lab1)
18 (compile-expr env stacksize e2)
19 (bytecode-BRANCH-to lab2)
20 (bytecode-emit-label lab1)
21 (compile-expr env stacksize e3)
22 (bytecode-emit-label lab2)))

The compile-expr function takes as input an environment for locating the variables,
the current size of the stack, and a lowered expression to compile. It compiles the
input by directly writing bytecode opcodes to the output file, with functions such
as bytecode-put-u32-le. The functions bytecode-emit-label and bytecode-emit-labref
work by recording the current position for future references to the label, and modifying
the output file (using seek) to overwrite any previous reference to the label with its
actual position.

6 Compiling OCaml with our interpreter

Once we had all the pieces in place, we could put them together and debootstrap the
OCaml compiler. The idea is to compile the programs ocamlc and ocamllex from the
reference implementation using the reference ocamlopt native compiler, interpreted
from source by our interp interpreter, itself compiled into OCaml bytecode by our mini-
comp compiler and then interpreted by the reference ocamlrun bytecode interpreter,
Phew!
In this section, we adopt precise yet concise notations to talk about a particular way

to run a particular implementation. For an OCaml program foo, we write foo.opt for
the native binary produced by ocamlopt, foo.byte for the bytecode binary produced by
ocamlc, and foo.minibyte for the bytecode produced by our naive minicomp compiler.
“Running” any of those programsmeans either running the native code directly, or using
ocamlrun to run the bytecode. We also write f (foo) to talk about the action of running
foo interpreted by an interpreter f . To reformulate the previous paragraph, this section
is about running interp.minibyte(ocamlopt) to compile ocamlc into ocamlc.opt, and

20

N. Courant, J. Lepiller, and G. Scherer

First Optimized Parallel
ocamlrun 1m

interp.minibyte 2m
interp.opt 8h56m 2h02m
stdlib.opt 4h40m 48m 23m

ocamlc.opt 25h40m 4h08m 1h31m
Total 30h23m 13h55m 3h59m

Table 1 Timing of our Three Build Plans

from there produce clean binaries to replace the bootstrapping copies of ocamlc.byte
and ocamllex.byte.
You will not be surprised to hear that naively interpreting a large, complex program

is slow, and that running that interpreter as a naively-compiled program becomes really
slow. Therefore, we iterated over several build plans in order to make the experiment
fast enough to be reproducible.
All our build plans start by building ocamlrun from the C sources of the OCaml

compiler distribution, which takes around one minute, and then run minicomp to
compile interp into interp.minibyte. This step takes around two minutes – in any case,
these times are negligible compared to the time taken for the other steps. The complete
timings for the build plans are summarized in Table 1. All times were measured on
a machine equipped with an Intel(R) Core(TM) i7-8665U CPU @ 1.90GHz CPU (4
cores, 8 threads) and 16 GB of RAM.

First build plan Our first complete debootstrapped build took the following steps:
1. Run interp.minibyte(ocamlopt) to compile the OCaml standard library, a depen-

dency of the compiler sources.
2. Run interp.minibyte(ocamlopt) to compile ocamlc into ocamlc.opt.

At this point we were not completely finished, but we knew we could use ocamlc.opt
to continue the debootstrap in reasonable time (building the whole compiler codebases
from it takes a few minutes at most). However, the total running time was around 30
hours, which we needed to optimize.

Improved build plan We improved the code generation of minicomp slightly, which
gave us a 10-20% performance improvement in interp.minibyte, and we added an extra
step: instead of using interp.minibyte(ocamlopt) to compile the standard library then
ocamlc, we would use it to compile interp.opt first, and then use that faster interpreter
for the remaining compilation steps. This improved build plan is as follows:
1. Run interp.minibyte(ocamlopt) to compile the interp into interp.opt.
2. Run interp.opt(ocamlopt) to compile the standard library.
3. Run interp.opt(ocamlopt) to compile ocamlc.
This extra step shrinks the total build time from around 30 hours to around 14 hours.

21

Debootstrapping without archeology:
Stacked implementations in Camlboot

Parallelized build plan None of the many implementations discussed here are doing
any active effort to parallelize builds, but compiling a codebase in independent
files/modules leads itself naturally to makefile-level parallelism. With parallel builds
enabled, we got actually reasonable build times: the total build time shrank from
around 14 hours to around 4 hours.
At this point it is reasonable to expect other people to reproduce the experiment, and

check that our scripted diverse double-compilation confirms the absence of trusting
trust attack in the reference bootstrap binaries.

6.1 Performance analysis

We compare compile times for the interp codebase, without any parallelism:
with ocamlopt.opt: 1.7s
with ocamlopt.byte: 5.8s (3.4x slower)
with interp.opt(ocamlopt): 2h30 (1551x slower than 5.8s with ocamlopt.byte)
with interp.minibyte(ocamlopt): 13h (5.2x slower than 2h30 with interp.opt)

This suggests that the performance gap between interpretation and compilation is
much larger than between bad compilation and better compilation.
On other (smaller) compile targets, we observed that
interp.byte is around 2.5x slower than interp.opt, and
interp.minibyte is in turn 2.2x slower than interp.byte.

It is interesting that the performance cost of bytecode compared to native code is
similar to the performance cost of our “naive bytecode generation” compared to
the decent optimization and code-generation work of ocamlc. This suggests that
we could improve performance of our debootstrapping toolchain by improving the
bytecode generated by minicomp. Unfortunately, the lack of convenient profiling tools
for bytecode programs makes it hard to determine what are our main sources of
inefficiencies in the produced bytecode.

6.1.1 Implementing an interpreter in Scheme?
Our approach implements both an interpreter and a compiler. Should we instead
implement an interpreter directly in another, simpler programming language?
To evaluate this design alternative, we implemented a naive Scheme interpreter

for a small fragment of OCaml – essentially MiniML. Before doing performance
measurements, we did not know whether it would turn out faster or slower than our
compiled-interpreter approach:

Our MiniML interpreter is compiled using our naive minicomp compiler, introducing
inefficiences compared to a production implementation. In contrast, our Scheme
interpreter is run with Guile, which is a reasonable implementation of Scheme.
Guile compiles its programs to a bytecode internally (just as our compiler does),
and even provides a JIT – performs Just-in-Time code generation.
On the other hand, using a dynamic language typically incurs a performance
overhead, due to extra dynamic checks and less compact, more self-describing

22

N. Courant, J. Lepiller, and G. Scherer

representations of data structure. Some implementations use advanced speculative
optimizations to remove this overhead, but Guile is not that sophisticated yet.
On a small test program, we observed that
interp.minibyte is 6.1x slower than interp.opt. (This is roughly consistent with our
measurements interpreting the whole interp codebase.)
guile interp.scm, our Scheme interpreter running with Guile, is 4.0x slower than
interp.minibyte.
One could try to run the interpreter with another Scheme implementation, or

switch to an implementation language without dynamic overhead, such as C. In
any case, our conclusion is that our compiler+interpreter design is in fact sensible,
performance-wise.
Note that performance was not the only guiding factor in our choice:
Writing the interpreter in OCaml itself has value for OCaml programmers needing
a reference interpreter.
Targeting the OCaml bytecode lets us reuse the OCaml runtime system, which
greatly simplify the implementation of runtime primitives in our interpreter: we
can let runtime primitives be implemented by themselves.
If we wanted to complete our Scheme interpreter to support a reasonable frag-
ment of OCaml, we would have to either reimplement those runtime primitives
in Scheme, or convert value representations to the native OCaml representation
one to use FFI bindings to the runtime. This may be more work than our approach
of implementing a naive compiler to OCaml bytecode, and would again incur a
performance overhead.

7 Conclusion

Debootstrapping a language implementation by writing new code is a highly rewarding
adventure. Our approach was to write an interpreter in the language itself, staying
inside a simple enough fragment that we could write a compiler for. Of course, you
now also have the possibility of using OCaml to implement your interpreter.
As a side-result, we wrote a simple interpreter for a large subset of OCaml, that

already forced us to think hard about the operational semantics of newer language
features. We expect that it will find various unplanned use-cases in the future.
We checked the absence of trusting trust attack in the version 4.07 of the OCaml

compiler. In the medium-term future, we want to debootstrap more recent versions of
OCaml as well, and think about how to maintain our debootstrap toolchain to follow
the evolution of the language and its reference implementation.

23

Debootstrapping without archeology:
Stacked implementations in Camlboot

References

Ludovic Courtès. Functional package management with guix. In 6 th European Lisp
Symposium, page 4, 2013.

John Hodge. mrustc: a rust compiler in c++, 2016.
Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the
future: The story of squeak, a practical smalltalk written in itself. In OOPSLA, 1997.

Xavier Leroy, Damien Doligez, Alain Frisch, Jacques Garrigue, Didier Rémy, and Jérôme
Vouillon. The OCaml system release 4.07, 2018.

Jan Nieuwenhuizen. Gnu mes, 2016.
Jeremiah Orians. stage0, 2017.
Timothy Sample and Jan Nieuwenhuizen. Gash, 2018.
Ken Thompson. Reflections on trusting trust. In ACM Turing award lectures. 1983.
David Tolnay. Bootstrapping rustc from source, 2019.
David A Wheeler. Countering trusting trust through diverse double-compiling. In 21st
Annual Computer Security Applications Conference (ACSAC’05), pages 13–pp. IEEE,
2005.

Andy Wingo, Marius Vollmer, Mikael Djurfeldt, Ludovic Courtés, and Jim Blandy. Gnu
guile, 1993.

Ricardo Wurmus. Bootstrapping haskell: part 1, 2017a.
Ricardo Wurmus. Building the jdk without java, 2017b.

24

https://github.com/thepowersgang/mrustc/
http://dx.doi.org/10.1145/263698.263754
http://dx.doi.org/10.1145/263698.263754
https://www.gnu.org/software/mes/
https://github.com/oriansj/stage0
https://savannah.nongnu.org/projects/gash/
https://github.com/dtolnay/bootstrap/
http://www.gnu.org/software/guile/guile.html
http://www.gnu.org/software/guile/guile.html
https://elephly.net/posts/2017-01-09-bootstrapping-haskell-part-1.html
https://www.freelists.org/post/bootstrappable/Building-the-JDK-without-Java

N. Courant, J. Lepiller, and G. Scherer

A Feedback from OCaml programmers on Guile for compiler implementation

(One of our readers asked for more details on our experience using Guile for debootstrap-
ping. We are not sure the subjective opinion of the authors has value; and we certainly
suffer from a familiarity bias in favor of statically-typed functional programming lan-
guages. But here it is.)
We have good things to say about Scheme in general and Guile in particular, they

are certainly nice languages. The usability of Guile is good, the tooling is solid, and
we found nice libraries for our needs, in particular the lalr macro is very pleasant.

Our main source of frustration was the absence of static typing. Writing a compiler
involves a lot of choices of data representation that create coupling between different
parts of the program (typically: the generator of some part of the IR, the consumer
of the same part of the IR); it happened time and time again that we would change
one of these data representations, and have the code break in various places with
errors that were always obvious (and fairly immediate thanks to test coverage) but
also always more painful to understand and act upon than a static typing error.
Typed Racket would definitely have been an improvement for this — but there are

less Racket users interested in debootstrapping than Guile users, so it sounds like a
more risky choice. A systematic use of contracts would also have helped, and may be
something to consider in the medium term for our project. We hope that eventually a
Typed Guile will exist.

25

	1 Introduction
	1.1 Bootstrapped language implementations
	1.2 Reproducibility and non-opaque build paths
	1.2.1 A note on terminology

	1.3 Archaeology or tailored implementations?
	1.4 Key metric: human work required to debootstrap
	1.5 Diverse double-compilation
	1.6 Debootstrapping the OCaml compiler
	1.7 Results
	1.8 Related work

	2 The OCaml compiler implementation
	3 A global view of our debootstrapped build path
	3.1 Defining the scope of MiniML
	3.2 Extending the build path after OCaml 4.07

	4 interp: Interpreting OCaml in MiniML
	4.1 A taste of the implementation
	4.2 Technical focus: module aliases
	4.3 Technical focus: interpreting ocamlc or ocamlopt?
	4.4 interp language coverage

	5 minicomp: Compiling MiniML to the OCaml bytecode
	6 Compiling OCaml with our interpreter
	6.1 Performance analysis
	6.1.1 Implementing an interpreter in Scheme?

	7 Conclusion
	A Feedback from OCaml programmers on Guile for compiler implementation

