
Proof theory for type systems

Gabriel Scherer

Parsifal, INRIA Saclay (Paris area)

January 22, 2018

1

advanced questions

advanced systems
(MLTT, Iris...)

unsolvable terms

complexity of
β-reduction

probabilistic
reductions

?

untyped (pure)
λ-calculus

simply-typed
System F ?

decidable checking?
consistency?

2

advanced questions

advanced systems
(MLTT, Iris...)

unsolvable terms

complexity of
β-reduction

probabilistic
reductions binders

effects
proof nets

term equivalence
canonicity

untyped (pure)
λ-calculus

simply-typed
System F ?

decidable checking?
consistency?

2

advanced questions

advanced systems
(MLTT, Iris...)

unsolvable terms

complexity of
β-reduction

probabilistic
reductions binders

effects
proof nets

term equivalence
canonicity

untyped (pure)
λ-calculus

simply-typed
System F ?
linear logic

decidable checking?
consistency?

2

advanced questions

advanced systems
(MLTT, Iris...)

unsolvable terms

complexity of
β-reduction

probabilistic
reductions binders

effects
proof nets

equivalence
canonicity

untyped (pure)
λ-calculus

simply-typed
System F ?
linear logic

decidable checking?
consistency?

2

Section 1

Focusing

3

Focusing

Focusing is a technique from proof theory [Andreoli, 1992].

It studies invertibility of connectives
to structure the search space.

Type theory perspective: canonical representations.

t ≈βη u
?

=⇒ t ≈α u

4

Γ ` A Γ,B ` C

Γ,A→ B ` C
–

Γ,A ` B

Γ ` A→ B

Γ,Ai ` C

Γ,A1 × A2 ` C
–

Γ ` A1 Γ ` A2

Γ ` A1 × A2

Γ,A1 ` C Γ,A2 ` C

Γ,A1 + A2 ` C

Γ ` Ai

Γ ` A1 + A2
+

Γ, 0 ` C
+

Γ ` 1
–

Invertible vs. non-invertible rules. Positives vs. negatives.

N,M ::= A→ B | A× B | 1 P,Q ::= A + B | 0

A,B ::= P | N | α Pa,Qa ::= P | α Na,Ma ::= N | α

5

Γ ` A Γ,B ` C

Γ,A→ B ` C
–

Γ,A ` B

Γ ` A→ B

Γ,Ai ` C

Γ,A1 × A2 ` C
–

Γ ` A1 Γ ` A2

Γ ` A1 × A2

Γ,A1 ` C Γ,A2 ` C

Γ,A1 + A2 ` C

Γ ` Ai

Γ ` A1 + A2
+

Γ, 0 ` C
+

Γ ` 1
–

Invertible vs. non-invertible rules. Positives vs. negatives.

N,M ::= A→ B | A× B | 1 P,Q ::= A + B | 0

A,B ::= P | N | α Pa,Qa ::= P | α Na,Ma ::= N | α
5

Invertible phase

?

α + β ` α
α + β ` β + α

If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible
– and their order does not matter.

Imposing this restriction gives a single proof of (α→ β)→ (α→ β)
instead of two (λf . f and λf . λx . f x).

After all invertible rules, negative context Γna, positive goal Pa.

6

Invertible phase

?

α + β ` α
α + β ` β + α

If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible
– and their order does not matter.

Imposing this restriction gives a single proof of (α→ β)→ (α→ β)
instead of two (λf . f and λf . λx . f x).

After all invertible rules, negative context Γna, positive goal Pa.

6

Non-invertible phases

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be
applied as long as possible – until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial !
Example of removed redundancy:

α2, β1 ` A

α2 × α3 , β1 ` A

α2 × α3, β1 × β2 ` A

α1 × α2 × α3 , β1 × β2 ` A

7

Non-invertible phases

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be
applied as long as possible – until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial !
Example of removed redundancy:

α2, β1 ` A

α2 × α3 , β1 ` A

α2 × α3, β1 × β2 ` A

α1 × α2 × α3 , β1 × β2 ` A

7

Non-invertible phases

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be
applied as long as possible – until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial !
Example of removed redundancy:

α2, β1 ` A

α2 × α3 , β1 ` A

α2 × α3, β1 × β2 ` A

α1 × α2 × α3 , β1 × β2 ` A

7

This was focusing:

invertible as long as a rule matches, until Γna ` Pa

then pick a formula

then non-invertible as long as a rule matches, until polarity change

Completeness:

Γ ` A =⇒ Γ `foc A

8

a focused natural deduction

N,M ::= A→ B | A× B | 1 P,Q ::= A + B | 0

A,B ::= P | N | α Pa,Qa ::= P | α Na,Ma ::= N | α

Γna ::= ∅ | Γna,Na

Γna; ∆ `inv A invertible phase (decomposes ∆, A)

Γna `foc Pa choice of focus

Γna;N ⇓ Ma non-invertible negative rules

Γna ⇑ P non-invertible positive rules

(inspired by Brock-Nannestad and Schürmann [2010])

9

Γna; ∆,P `inv N
Γna; ∆ `inv P → N

(Γna; ∆ `inv N i)
i

Γna; ∆ `inv N1 × N2

(Γna; ∆,Q i `inv A)i

Γna; ∆,Q1 + Q2 `inv A

Γna; ∆, 0 `inv A Γna; ∆ `inv 1

Γna, Γ
′
na `foc Pa

Γna; Γ′
na `inv Pa

Γna ⇑ P

Γna `foc P
Γna,N;N ⇓ α
Γna,N `foc α

Γna,N;N ⇓ P Γna;P `inv Qa

Γna,N `foc Qa

Γna ⇑ P i

Γna ⇑ P1 + P2 Γna, α ⇑ α
Γna; ∅ `inv N

Γna ⇑ N

Γna;N ⇓ N

Γna;N ⇓ Ma1 ×Ma2

Γna;N ⇓ Mai

Γna;N ⇓ P → M Γna ⇑ P

Γna;N ⇓ M

(some simplifications, see Scherer [2016] for full details)
10

Section 2

Focused λ-calculus

11

β-normal forms (negative)

β-short normal forms:

π1 (t, u) = t

v ,w ::= λx . v | (v ,w) | n
n,m ::= πi n | n v | x

β-short η-long:

(y : α→ β) = λx : α. (y x : β)

v ,w ::= λx . v | (v ,w) | (n : α)
n,m ::= πi n | n v | x

12

β-normal forms (negative)

β-short normal forms:

π1 (t, u) = t

v ,w ::= λx . v | (v ,w) | n
n,m ::= πi n | n v | x

β-short η-long:

(y : α→ β) = λx : α. (y x : β)

v ,w ::= λx . v | (v ,w) | (n : α)
n,m ::= πi n | n v | x

12

β-normal forms (negative)

β-short normal forms:

π1 (t, u) = t

v ,w ::= λx . v | (v ,w) | n
n,m ::= πi n | n v | x

β-short η-long:

(y : α→ β) = λx : α. (y x : β)

v ,w ::= λx . v | (v ,w) | (n : α)
n,m ::= πi n | n v | x

12

What about sums?

v ,w ::= λx . v | (v ,w) | σi v | (n : α)

n,m ::= πi n | n v |
(
match n with

∣∣∣∣ σ1 y1 → v1
σ2 y2 → v2

)
| x

Does not work:

 match n with∣∣∣∣ σ1 y1 → λz . v1
σ2 y2 → λz . v2

 v
match n with∣∣∣∣ σ1 x → σ2 x
σ2 x → σ1 x

13

Focusing to the rescue

v ,w ::= λx . v | (v ,w) | (n : α)
n,m ::= πi n | n v | x

⇓

v ,w ::= λx . v | (v ,w) | ()

| absurd(x) |
(
match x with

∣∣∣∣ σ1 y1 → v1
σ2 y2 → v2

)
| (Γna ` f : Pa)

n,m ::= πi n | n p | x
p, q ::= σi p | (v : Na)

f ::= (n : α) | (p : P) | let x = (n : P) in v

(See also Munch-Maccagnoni [2013])
14

Completeness of focusing

Logic:

Γ ` A =⇒ Γ `foc A

Programming:

Γ ` t : A =⇒ ∃v , Γ `foc v : A
v ≈βη t

15

Completeness of focusing

Logic:

Γ ` A =⇒ Γ `foc A

Programming:

Γ ` t : A =⇒ ∃v , Γ `foc v : A
v ≈βη t

15

Canonicity

Focused normal forms are canonical for the impure λ-calculus.

Proof in Zeilberger [2009], using ideas from Girard’s ludics.

Not canonical for the pure calculus.

let x = n in C
[
let x ′ = n′ in v

]
let x ′ = n′ in C [let x = n in v]

Solution: “saturation” [Scherer, 2017]

f ::= let x̄ = n̄ in v | (n : α) | (p : P)

inspired by multi-focusing [Chaudhuri, Miller, and Saurin, 2008].

16

Canonicity

Focused normal forms are canonical for the impure λ-calculus.

Proof in Zeilberger [2009], using ideas from Girard’s ludics.

Not canonical for the pure calculus.

let x = n in C
[
let x ′ = n′ in v

]
let x ′ = n′ in C [let x = n in v]

Solution: “saturation” [Scherer, 2017]

f ::= let x̄ = n̄ in v | (n : α) | (p : P)

inspired by multi-focusing [Chaudhuri, Miller, and Saurin, 2008].

16

Canonicity

Focused normal forms are canonical for the impure λ-calculus.

Proof in Zeilberger [2009], using ideas from Girard’s ludics.

Not canonical for the pure calculus.

let x = n in C
[
let x ′ = n′ in v

]
let x ′ = n′ in C [let x = n in v]

Solution: “saturation” [Scherer, 2017]

f ::= let x̄ = n̄ in v | (n : α) | (p : P)

inspired by multi-focusing [Chaudhuri, Miller, and Saurin, 2008].

16

Recap

Γna; ∆ `inv v : A v ,w ::= λx . v | (v ,w) | ()

| absurd(x) | match x with

∣∣∣∣ σ1 y1 → v1
σ2 y2 → v2

| (Γna ` f : Pa)

Γna ` n ⇓ Na n,m ::= πi n | n p | x
Γna ` p ⇑ Pa p, q ::= σi p | (v : Na)

Γna `foc f : A f ::= let x̄ = ¯(n : P) in v
| (n : α) | (p : P)

(plus saturation conditions)

(decision diagrams!
Altenkirch and Uustalu [2004], Ahmad, Licata, and Harper [2010])

17

Applications

A clean way to extend our understanding to positives (+, 0).

evaluation order in presence of effects

which types have a unique inhabitant?

decidability of equivalence

Böhm separation results: contextual and (βη) coincide

λ-definability?

(your result here!)

18

Section 3

Questions

19

Saturation for System F?

Termination of saturation: subformula property. Not in F!

Γ,A[B/α] ` C

Γ 3 ∀α.A ` C

Equivalence is undecidable in F: no decidable canonical forms.

Could we have a partial algorithm that works sometimes?

20

Eliminating polymorphism

Idea: probe the structure of ∀α.A through proof search.

Γ ` A Γ ` B

Γ
def
= A→ B → α ` α

`∀α. (A→ B → α)→ α

Γ ` A ⊕ Γ ` B

Γ
def
= A→ α,B → α ` α

` ∀α. (A→ α)→ (B → α)→ α

Γ ` α
⊕

Γ ` α→ α Γ ` α
Γ ` α

Γ
def
= α→ α, α ` α

` ∀α. (α→ α)→ α→ α

(Ongoing discussions with Li-Yao Xia and Jean-Philippe Bernardy)

21

Eliminating polymorphism

Idea: probe the structure of ∀α.A through proof search.

Γ ` A Γ ` B

Γ
def
= A→ B → α ` α

`∀α. (A→ B → α)→ α

Γ ` A ⊕ Γ ` B

Γ
def
= A→ α,B → α ` α

` ∀α. (A→ α)→ (B → α)→ α

Γ ` α
⊕

Γ ` α→ α Γ ` α
Γ ` α

Γ
def
= α→ α, α ` α

` ∀α. (α→ α)→ α→ α

(Ongoing discussions with Li-Yao Xia and Jean-Philippe Bernardy)

21

Eliminating polymorphism

Idea: probe the structure of ∀α.A through proof search.

Γ ` A Γ ` B

Γ
def
= A→ B → α ` α

`∀α. (A→ B → α)→ α

Γ ` A ⊕ Γ ` B

Γ
def
= A→ α,B → α ` α

` ∀α. (A→ α)→ (B → α)→ α

Γ ` α
⊕

Γ ` α→ α Γ ` α
Γ ` α

Γ
def
= α→ α, α ` α

` ∀α. (α→ α)→ α→ α

(Ongoing discussions with Li-Yao Xia and Jean-Philippe Bernardy)

21

The place of bi-directional systems?

Bidirectional systems: natural fit for normal forms.

∆ ∈ (x : T)

∆ ` x = x ∈ T

∆ ` n1 = n2 ∈ (T → U) ∆ ` T 3 v1 = v2

∆ ` n1 v1 = n2 v2 ∈ U

∆, x : T ` U 3 v1 x = v2 x

∆ ` T → U 3 v1 = v2

∆ ` n1 = n2 ∈ α
∆ ` α 3 n1 = n2

General programs? Program equivalence? Type inference?

22

Saturation in practice?

Is it possible to be efficient?

(in presence of software libraries?)

relations to program synthesis

23

Positives in richer systems?

η for sums:

C [� : A + B] = match � with

∣∣∣∣ σ1 x1 → C [σ1 x1]
σ2 x2 → C [σ2 x2]

η for natural numbers sounds very difficult!

C [� : N] = rec(�, t0,D1)

C ◦ S = D1 ◦ H
C ◦ 0 = t0

24

Positives in richer systems?

η for sums:

C [� : A + B] = match � with

∣∣∣∣ σ1 x1 → C [σ1 x1]
σ2 x2 → C [σ2 x2]

η for natural numbers sounds very difficult!

C [� : N] = rec(�, t0,D1)

C ◦ S = D1 ◦ H
C ◦ 0 = t0

24

Arbob Ahmad, Daniel R. Licata, and Robert Harper. Deciding coproduct equality with
focusing. Online draft, 2010.

Thorsten Altenkirch and Tarmo Uustalu. Normalization by evaluation for lambda-2. In
FLOPS, 2004.

Jean-Marc Andreoli. Logic Programming with Focusing Proof in Linear Logic. Journal
of Logic and Computation, 2(3), 1992.

Taus Brock-Nannestad and Carsten Schürmann. Focused natural deduction. In
LPAR-17, 2010.

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via
multi-focusing. In IFIP TCS, 2008.

Guillaume Munch-Maccagnoni. Syntax and Models of a non-Associative
Composition of Programs and Proofs. PhD thesis, Univ. Paris Diderot, 2013.

Gabriel Scherer. Which types have a unique inhabitant? Focusing on pure program
equivalence. PhD thesis, Université Paris-Diderot, 2016.

Gabriel Scherer. Deciding equivalence with sums and the empty type. In POPL, 2017.

Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching.
PhD thesis, Carnegie Mellon University, 2009.

25

http://www.cs.cmu.edu/~adahmad/coproduct_equality.pdf

	Focusing
	Focused -calculus
	Questions

