Proof theory for type systems

Gabriel Scherer

Parsifal, INRIA Saclay (Paris area)

January 22, 2018

advanced questions

unsolvable terms
complexity of
(B-reduction

probabilistic
reductions

decidable checking?
consistency?

untyped (pure)
A-calculus

simply-typed
System F ?

advanced systems
(MLTT, Iris...)

advanced questions

unsolvable terms
complexity of
(B-reduction

probabilistic
reductions

binders
effects

decidable checking?
consistency?

untyped (pure)
A-calculus

simply-typed
System F ?

advanced systems
(MLTT, Iris...)

advanced questions

unsolvable terms

complexity of

decidable checking?

advanced systems

(B-reduction
probabilistic
reductions binders
effects
proof nets
consistency?
untyped (pure) simply-typed
A-calculus System F ?

linear logic

2

(MLTT, Iris...)

advanced questions

unsolvable terms

complexity of

decidable checking?

advanced systems

[B-reduction
probabilistic
reductions binders
effects
proof nets
equivalence
canonicity
consistency?
untyped (pure) simply-typed
A-calculus System F ?

linear logic

2

(MLTT, Iris...)

Section 1

Focusing

Focusing is a technique from proof theory [Andreoli, 1992].

It studies invertibility of connectives
to structure the search space.

Type theory perspective: canonical representations.

r’-A T,BFC
A= BFC

MAFC M-A TFA
MALx A FC [Ar x A

TALFC TLAKRC M- A
AL+ Ak C [AL+ A
rorc . r-1

Invertible vs. non-invertible rules. Positives vs. negatives.

[FFA rBFC

A-BFC
A+ C Fr-A, TFA
AL xAFC M Ap x Ay
FAFC T AFC M- A
F,A1+A2r—C FI—A1+A2
EOFC+ r-1

Invertible vs. non-invertible rules. Positives vs. negatives.

NM:=A—-B|AxB|1 P,Q:=A+B|0
AB:=P|N|« P, Qs =P |« Ny, My =N |«

5

Invertible phase

?
a+ Bk a
a+BF B+«
If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible
— and their order does not matter.

?
a+ Bk a
a+BF B+«
If applied too early, non-invertible rules can ruin your proof.

Focusing restriction 1: invertible phases

Invertible rules must be applied as soon and as long as possible
— and their order does not matter.

Imposing this restriction gives a single proof of (v —) — (o —)
instead of two (Af.f and A\f. Ax.f x).

After all invertible rules, negative context I',,,, positive goal P,.

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.

Non-invertible phases

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be
applied as long as possible — until its polarity changes.

After all invertible rules, negative context, positive goal.

Only step forward: select a formula, apply some non-invertible rule on it.

Focusing restriction 2: non-invertible phase

When a principal formula is selected for non-invertible rule, they should be
applied as long as possible — until its polarity changes.

Completeness: this restriction preserves provability. Non-trivial !
Example of removed redundancy:

ao, B1EA
Qo X a3, ﬂlFA
ar X3, P1xpr FA

011XOé2XOz3,B1><B2|—A

This was focusing:
@ invertible as long as a rule matches, until '\, F P,
@ then pick a formula

@ then non-invertible as long as a rule matches, until polarity change

Completeness:

Nr-A — [Mfoc A

NM:=A—-B|AxB|1 P,Q:=A+B]|0
AB:=P|N|a«a P, Q, =P |« NayyM, =N |«
Mha 1= 0| Tnay N,
Mha; A Finy A invertible phase (decomposes A, A)
IMa Ffoc Pa choice of focus
Ma; N { M, non-invertible negative rules
ha 17 P non-invertible positive rules

(inspired by Brock-Nannestad and Schiirmann [2010])

Mnai A, P Finy N (Tha; A Finy ;) (Tha; A, Qi Finy A)'
I_na;Al_inv P—N I_na;A|_inv Nl X N2 rna;Aa Q1+Q2 l_invA

rnay r;a '_foc Pa

I_na; Aao l_inv A I_na; A l_inv 1 rna; r;a l_inv Pa
Mha t P Mha, Ny N)« Mha, N; N | P Mha; P Finv Qa
Mna Ffoc P Mha, N e @ Mnas N Feoc Q.
P i P; [Mha; 0 Finv N
Mna M P1+ P2 Mha, ot Fna N

Mha; N U My x Mys Ma; NI P—>M Ma P
Ma; NN Mha; N U M, Mha; N M

(some simplifications, see Scherer [2016] for full details)

10

Section 2

Focused M-calculus

11

B-normal forms (negative)

B-short normal forms:

vV, w
n,m :

m (t,u) =t

= Ax.v|(v,w)]|n
= min|nv|x

12

B-normal forms (negative)

B-short normal forms:

m (t,u) =t
v,w = Ax.v|(v,w)|n
n,m = min|nv|x

[B-short n-long:

(yia—=p)=Xx:a.(yx:p)

12

B-normal forms (negative)

B-short normal forms:

m (t,u) =t
v,w = Ax.v|(v,w)|n
n,m = min|nv|x

[B-short n-long:
(y:a—=pB)=Ix:a.(yx:pB)
v,w o= v (v,w) | (n: a)

n,m = min|nv|x

12

What about sums?

v,w = v (v,w) |oiv|(n:a)

n,m == min|nv||match nwith

01Yy1— Vi | x
02 Yy — V2

Does not work:
match n with match n with

01y1 = Az. vy v 01X — 02 X
02 Yo = AZ. V2 02 X — 01 X

13

Focusing to the rescue

viw = Ax.v | (v,w) | (n:)
n,m = min|nv|x
I
v,w = Ax.v | (v,w) | ()
| absurd(x) | (match xwith | Y1V >
02 Y2 =7 V2
| (Tha F 2 Py)
nym:i=min|npl|x
p,q ==o0;p|(v:N,)
f uw=(m:a)|(p:P)|letx=(n:P)inv

(See also Munch-Maccagnoni [2013])

14

Completeness of focusing

Logic:

MN=A - [foc A

15

Completeness of focusing

Logic:

MN=A -

Programming:

Mr-t: A ==

15

[foc A

MFeoc VA
V%Ignt

Focused normal forms are canonical for the impure A-calculus.

Proof in Zeilberger [2009], using ideas from Girard’s ludics.

16

Focused normal forms are canonical for the impure A-calculus.
Proof in Zeilberger [2009], using ideas from Girard’s ludics.

Not canonical for the pure calculus.

1etx:ninC[1etX':n’inv]

let X' = n’ in C[let x = n in v]

16

Focused normal forms are canonical for the impure A-calculus.
Proof in Zeilberger [2009], using ideas from Girard’s ludics.

Not canonical for the pure calculus.
1etx:ninC[1etX':n’inv]
let X' = n’ in C[let x = n in v]
Solution: “saturation” [Scherer, 2017]
f n= letx=ninv |(n:a) |(p:P)

inspired by multi-focusing [Chaudhuri, Miller, and Saurin, 2008].

16

Ma;AFpnv:A v,w = Ax.v | (v,w) | ()

| absurd(x) | match x with o1y1 V1
02 Yo — V2
| (Tha b f: Pa)
Matnl N, nm: =m;n|np|x
MaFp1fPa p,qg :=o;ip|(v:Ny)
Mabfoc 1A f =1letx= (n:_P) in v
| (n:a)|(p:P)

(plus saturation conditions)

(decision diagrams!
Altenkirch and Uustalu [2004], Ahmad, Licata, and Harper [2010])

17

A clean way to extend our understanding to positives (+, 0).

evaluation order in presence of effects

which types have a unique inhabitant?

decidability of equivalence

Bohm separation results: contextual and (n) coincide
A-definability?

(your result here!)

18

Section 3

Questions

19

Termination of saturation: subformula property. Not in F!

I, AB/a]l C
[>Va. AR C

Equivalence is undecidable in F: no decidable canonical forms.

Could we have a partial algorithm that works sometimes?

20

Eliminating polymorphism

Idea: probe the structure of Va. A through proof search.

Mr=A M-B

r“Aa5B85akFa

FVa.(A— B — a) = «a

21

Idea: probe the structure of Va. A through proof search.

Mr=A M- B r'-A @& I'FB

r“a-B8-ara ra-5a,8-akFa

FVa.(A— B = a) = « FVYa.(A—a) = (B—a)—«

21

Idea: probe the structure of Va. A through proof search.

A T+B A @ I+B
r“a-B8-ara ra-5a,8-akFa
FVa.(A— B = a) = « FVYa.(A—a) = (B—a)—«

N+a— « Mo
@

Mo Mo

def
NrN=a—aatka

FVoa. (o = a) > a—«

(Ongoing discussions with Li-Yao Xia and Jean-Philippe Bernardy)

21

Bidirectional systems: natural fit for normal forms.

AE(X:T) Al—nlzngé(T—)U) AFT>3vi=wv
Abx=xe€T AbFnvi=nvyel
Ax: THEU>vix=vyx AbFn=nca
AFT—=>U>3vi=wv AFa>sn =n

General programs? Program equivalence? Type inference?

22

Is it possible to be efficient?

(in presence of software libraries?)

relations to program synthesis

23

Positives in richer systems?

7 for sums:

01 X1 — C[Ul X1]

Cl[O0: A+ B] =match O with
02 Xo — C[O’2 X2]

7 for natural numbers sounds very difficult!

24

Positives in richer systems?

7 for sums:

01 X1 — C[Ul X1]

Cl[O0: A+ B] =match O with
02 Xo — C[O’2 X2]

7 for natural numbers sounds very difficult!

C|O: N] = rec(O, to, D1)

CoS=DyoH
Co0=1tg

24

Arbob Ahmad, Daniel R. Licata, and Robert Harper. Deciding coproduct equality with
focusing. Online draft, 2010.

Thorsten Altenkirch and Tarmo Uustalu. Normalization by evaluation for lambda™2. In
FLOPS, 2004.

Jean-Marc Andreoli. Logic Programming with Focusing Proof in Linear Logic. Journal
of Logic and Computation, 2(3), 1992.

Taus Brock-Nannestad and Carsten Schiirmann. Focused natural deduction. In
LPAR-17, 2010.

Kaustuv Chaudhuri, Dale Miller, and Alexis Saurin. Canonical sequent proofs via
multi-focusing. In IFIP TCS, 2008.

Guillaume Munch-Maccagnoni. Syntax and Models of a non-Associative
Composition of Programs and Proofs. PhD thesis, Univ. Paris Diderot, 2013.

Gabriel Scherer. Which types have a unique inhabitant? Focusing on pure program
equivalence. PhD thesis, Université Paris-Diderot, 2016.

Gabriel Scherer. Deciding equivalence with sums and the empty type. In POPL, 2017.

Noam Zeilberger. The Logical Basis of Evaluation Order and Pattern-Matching.
PhD thesis, Carnegie Mellon University, 2009.

25

http://www.cs.cmu.edu/~adahmad/coproduct_equality.pdf

	Focusing
	Focused -calculus
	Questions

