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The illustrated guide to a Ph.D.

Matt Might
matt.might.net
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Imagine a circle that contains all of human knowledge:
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By the time you finish elementary school, you know a little:
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By the time you finish high school, you know a bit more:
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With a bachelor’s degree, you gain a specialty:

6



A master’s degree deepens that specialty:

7



Reading research papers takes you to the edge of human knowledge:
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Once you’re at the boundary, you focus:
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You push at the boundary for a few years:
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Until one day, the boundary gives way:
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And, that dent you’ve made is called a Ph.D.:

Ph.D.
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Of course, the world looks different to you now:
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So, don’t forget the bigger picture:

Ph.D.
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Keep pushing.
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Debriefing

This is written by a PhD, for PhD students.

It does not say that PhD know more,
They only are expert in one sub-sub-field of science
– experience is not depicted here, and at least as important.

There is a lot more, good and bad, to understand about research.

But it’s still a pretty good high-level description.
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(photo by David Van Horn, CC-By)
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Section 1

Research
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What is research about?

Working on hard problems with no known solution

Can we detect and remove all/most bugs in a large codebase?

Can the computer check that my implementation respects a
specification?

Can concurrent programs be both efficient and correct?

Can this program running on my server leak personal information?

(What is a research problem? Sometimes we get them wrong.)

Presenting results using the Scientific Method
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Scientific Method

Not set in stone, but a sheaf of social conventions:
Research is what researchers do – collectively.

Precisely describe your contribution – what is new.

Prove that your idea works.
(The accepted notion of proof depends on the field.)

Know the previous and related work. Discuss it copiously.

Highlight the limitations of your work.
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Hard problems

There is increasing demand for customizable applications. As applications
became more complex, customization with simple parameters became
impossible: users now want to make configuration decisions at execution
time; users also want to write macros and scripts to increase productivity
[1,2,3,4].

How do we build a system that manipulates and stores information whose
secrecy and integrity must be preserved?
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Precisely describe your contribution

Lua – an extensible extension langage – 1996

This paper describes Lua, an extensible procedural language with powerful
data description facilities, designed to be used as a general purpose
extension language.

The SLam Calculus: Programming with Secrecy and Integrity – 1998

The SLam calculus is a typed λ-calculus that maintains security
information as well as type information. [...] We prove that the type
system prevents security violations and give some examples of its power.
[...]
Our work is not the first to use a programming language framework for
security. [...] The main novelties of our work are the use of both access
protection and information ow, and the incorporation of higher-order
functions and data structures these are both essential for a development of
practical languages that provide mechanis
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Prove that your idea works

Lua – an extensible extension langage – 1996

Currently, Lua is being extensively used in production for several tasks,
including user configuration, general-purpose data-entry, description of
user interfaces, storage of structured graphical metafiles, and generic
attribute configuration for finite element meshes.

The SLam Calculus: Programming with Secrecy and Integrity – 1998

Theorem 4.1 (Non-interference) Suppose ∅ ` e : (t, (r , ir)) and
∅ ` C [e] : (t ′, (r ′, ir ′)), t ′ is a transparent ground type and ir 6v ir ′. If e ′ is
an expression where ∅ ` e ′ : (t, (r , ir)), then C [e] ' C [e ′].
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Cite related work

Python [23] is an interesting new language that has also been proposed as
an extension language. However, according to its own author, there is still
a need for “improved support for embedding Python in other applications,
e.g., by renaming most global symbols to have a ‘Py’ prefix” [24]. Python
is not a tiny language, and has many features not necessary in extension
languages, like modules and exception handling. These features add extra
cost to applications using the language.
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Know your limitations

Lua, with more adequate data types and pre-compilation, runs 10 to 20
times faster than Tcl. [...] On the other hand, Lua is approximately 20
times slower than C.

The system we have presented is vulnerable to timing attacks.

[SLAM] deals with the essence of computing with secure information, but
a number of important issues remain:

the type system we have presented is monomorphic; clearly this is too
restrictive [...]

Second, our type system is static, but the security of objects changes
dynamically; [...]

Third, [we] must provide ways to reduce the amount of type
information that must be specified by a programmer; [...]
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Section 2

Pragmatics of research
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Foreground (in parallel)

A few months thinking about your question and other stuff
Whiteboard, corridor talks, implementation, experiments, failures

A few weeks writing about it (for a deadline)

Submission, rejected or accepted, with reviews

Presenting one’s results at a conference
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Background

Teaching

Listening to talks

Learning about other people’s questions. Ideas, links, collaborations.

Reviewing articles
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Roles

PhD: what is your (first) question?

Full-time researchers: watch out for administrativia

Post-docs: publications pressure, the position game

Interns: learn about stuff, pretend to do as well

Research engineers: a delicate cooperation

Users: not planned for
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Section 3

Programming languages and research
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Some research areas

Compilation, Optimization, Runtimes (GC, targeting GPUs, debugging).
Adding expressive programming features without a performance cost.
Benefiting from advanced hardware capabilities without productivity cost.

New language constructs (pattern matching, restartable exceptions).
Give us new means of expression.

Type systems and program analysis (System F, Astrée)
Helping program design, construction, documentation and maintenance.

Formal proofs (Coq, Compcert, SeL4)
The pursuit of Bug-free software – at a cost.
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Research and Industry

Stereotypes:

engineers are ignorant of what has been done in research

researchers don’t care about practical problems and lack practical
experiences

Real world:

engineers working on hard problems very much care about research;
dev teams for the Javascript engines at Mozilla, Google, Microsoft or
Apple read and comment research articles

a lot of researchers are also very good programmers; Xavier Leroy
implemented the threading library used by glibc between 1998 and
2004; in my lab, people write code daily

Yet, research solution are not always practical, and communication is not
always easy. Bridging the two worlds is an art.
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Inertia

1930-201x: first-class anonymous functions demanded – 80 years

1960-199x: garbage collection expected – 35 years

1973-1998: Actors message-passing concurrency inspiring – 35 years

197x-200x: Generics (still source of trouble), type inference – 30 years

1989-2004: monads inspiring – 15 years

We’re actually getting better!

OCaml, Haskell, F], Scala,
Rust, Ceylon, Julia, . . .
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Section 4

My sub-domain
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Formalisation

How can we study programming languages?

Say you want to study a programming language L:

write a very precise description of what is a valid L program

write a very precise description of what it means to run a L program

We have a time-honored setting to express things very precisely:
mathematics.

Our approach: formalize (parts of) programming languages in maths, and
prove things about them. Maths can be cool when you have good
intuitions about the objects of study.

(Not the only approach; you may do statistics on a wide body of existing
programs, for example. Or ask cognitive scientists how programming
constructs relate to current theories about how our mind work.)
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Semantics

The set of rules for valid programs is called the static semantics of a
language: what you can tell without running the code. const, private,
List<A>, static cast. . .

The set of rules for running programs is called the dynamic semantics of
the language. Functions, loops, exceptions, assignments, serialization,
reflection. . .

Few existing languages have precisely defined semantics.
Standards documents (C, C++) are often a bit too vague.
Without standards or spec, look at the implementation (Python, Ruby)
Things are more complex than they should be (Python’s nonlocal)
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Section 5

Some projects in my lab
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OCaml

Xavier Leroy, Damien Doligez,
Alain Frisch, Jacques Garrigue, Didier Rémy, Jérôme Vouillon

A general-purpose programming language.

functional, statically-typed, with algebraic datatypes

efficient compiler, highly optimized GC

expressive yet relatively-simple type system

clunky syntax

object-oriented programming possible

Active research until 2000, mostly maintenance now.
Free software (contribute!)
Large codebases depend on it, in research and/or industry.

We don’t have much time for things people want: nice IDEs, etc.
Rely on the community.
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Mezzo

François Pottier, Jonathan Protzenko, Thibaut Balabonski

To reason about memory management and concurrent programs, most
programmers think about ownership of data.

Mezzo brings this (unspoken) invariant directly in the type system.
Aliasing mutable data without explicit checks is an error.
Race-free concurrency by construction.

Mostly an experiment so far (there is an implementation, but it’s still a
prototype).
Long-term, we think robust languages will support this.

The theory of separation logic is complex. Presenting it as a functional
language helped get a coherent design.
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Type systems

Didier Rémy, François Pottier, Julien Cretin, Gabriel Scherer. . .

Type inference: can we guess the type annotation needed for my program
to compile? In a non-ambiguous way?

Coercions: when can we say that a type is more general than another?
Can we forget about the difference during compilation?

Code inference: can typing information help us write the code? In a
non-ambiguous way?
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Compcert

Xavier Leroy,
Sandrine Blazy, Zaynah Dargaye, Jacques-Henri Jourdan, and
Jean-Baptiste Tristan

A compiler for C that comes with its correctness proof.
Backends for ARM, x86 and PowerPC.
Performance close to gcc -O1.

(Silly? John Regher found hundreds of bugs in production compilers
(GCC, Clang, ICC, etc.) by random testing – hard)

High-level idea:

write a dynamic semantics of your source and target language

prove that your compilation function preserves the semantics

In practice, a dozen of small passes (as in any compiler), with their proof.
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But also. . .

Verified compilation can be applied to high-level languages (functional
langages, C++. . . ) and more exotic settings. Thomas Braibant has
worked on verified compilers for hardware circuits.

Today’s CPUs are so complex that we need experimental science to model
their behaviour. Luc Maranget tests and formalizes so-called weak memory
models. Jacques-Pascal Deplaix helps testing the new C11 atomic memory
operations.

Manycore systems with shared memory need new data structures and
algorithm to express synchronization in parallel algorithms. Umut Acar,
Arthur Charguéraud and Mike Rainey.

Language verification technology requires copious amounts of automated
reasoning. Damien Doligez works on the Zenon automatic prover, and
TLA+ temporal logic system.
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Conclusion

Research is great – as plenty of other things you can get paid for.

Researchers alone aren’t that useful.
We need people to create problems.

Research implies communication of knowledge.
Anyone should take advantage of that.

Questions?

43


	Research
	Pragmatics of research
	Programming languages and research
	My sub-sub-domain
	Some projects in my lab

