Normalization by realizability

Pierre-Évariste Dagand, Lionel Rieg, Gabriel Scherer

April 30, 2021

In this work

We study the

computational meaning

of the *adequacy lemma* of

classical realizability

without using extraction, but direct

dependently-typed programming

using Curien-Herbelin

 $\mu \tilde{\mu}$

calculi as our realizer language.

Section 1

Classical realizability

Classical realizability: minimal history

Classical realizability is a *realizability* interpretation of logics where formulas are "realized" by λ -calculus abstract machines.

Introduced in the 1990s by Jean-Louis Krivine, providing a simple approach to "realize" classical axioms as control operators.

Later work focused on realizing more "classical" axioms, in particular the family of axioms of choice.

To a programming-language-research person, classical realizability looks like a unary logical relation defined in a systematic, symmetric way.

Classical realizability: overview

A soundness technique for abstract machines formed of a pair $\langle t | e \rangle$ (in \mathbb{M}) of a term t (in \mathbb{T}) and a co-term (context) e (in \mathbb{E}).

Classical realizability: overview

A soundness technique for abstract machines formed of a pair $\langle t | e \rangle$ (in \mathbb{M}) of a term t (in \mathbb{T}) and a co-term (context) e (in \mathbb{E}).

For the right definitions, we prove an adequacy lemma saying that:

- well-typed terms t: A belong to a set of truth witnesses |A|
- ullet well-typed co-terms e : A belong to a set of falsity witnesses $\|A\|$
- well-typed machines $\langle t | e \rangle$ belong to a *pole* $\perp \!\!\! \perp$.

Those sets capture *good* (sound) terms/coterms/machines.

Here, we define $\perp \!\!\! \perp$ as the set of machines that reduce to a valid machine in normal form.

Classical realizability: overview

A soundness technique for abstract machines formed of a pair $\langle t | e \rangle$ (in \mathbb{M}) of a term t (in \mathbb{T}) and a co-term (context) e (in \mathbb{E}).

For the right definitions, we prove an adequacy lemma saying that:

- well-typed terms t: A belong to a set of truth witnesses |A|
- ullet well-typed co-terms e : A belong to a set of falsity witnesses $\|A\|$
- well-typed machines $\langle t | e \rangle$ belong to a *pole* $\perp \!\!\! \perp$.

Those sets capture *good* (sound) terms/coterms/machines.

Here, we define $\perp\!\!\!\perp$ as the set of machines that reduce to a valid machine in normal form.

We will define |A| and |A| such that $t \in |A|$ and $e \in ||A||$ imply $\langle t | e \rangle \in \bot$.

Orthogonality is central to this:

$$\mathcal{T}^{\perp} \triangleq \{e \mid \forall t \in \mathcal{T}, \ \langle t \mid e \rangle \in \bot \bot\} \qquad \mathcal{E}^{\perp} \triangleq \{t \mid \forall e \in \mathcal{E}, \ \langle t \mid e \rangle \in \bot \bot\}$$

Classical realizability: abstract machines

 λ -terms:

$$t \triangleq x \mid \lambda x. t \mid t u \qquad (\lambda x. t) u \rightsquigarrow t[u/x]$$

Abstract machines (for now):

$$\begin{array}{lll} e & \triangleq & \star \mid u \cdot e \\ t & \triangleq & x \mid \lambda x. \, t \mid t \, u \\ m & \triangleq & \langle t \mid e \rangle \end{array} \qquad \begin{array}{ll} \langle t \, u \mid e \rangle & \leadsto & \langle t \mid u \cdot e \rangle \\ \langle \lambda x. \, t \mid u \cdot e \rangle & \leadsto & \langle t [u/x] \mid e \rangle \end{array}$$

Simulation: if $\langle \lfloor t \rfloor \mid \star \rangle \rightsquigarrow^* \langle \lfloor u \rfloor \mid \star \rangle \not \rightsquigarrow$ then $t \rightsquigarrow^* u \not \rightsquigarrow$.

Classical realizability: abstract machines

 λ -terms:

$$t \triangleq x \mid \lambda x. t \mid t u \qquad (\lambda x. t) u \leadsto t[u/x]$$

Abstract machines (for now):

Simulation: if $\langle \lfloor t \rfloor \mid \star \rangle \leadsto^* \langle \lfloor u \rfloor \mid \star \rangle \not \leadsto$ then $t \leadsto^* u \not \leadsto$.

$$\begin{array}{ccc} \langle \left(\lambda x.\, t \right) \, u \, | \, \star \, \rangle & \leadsto & \langle \, \lambda x.\, t \, | \, u \cdot \star \, \rangle \\ & \leadsto & \langle \, t[u/x] \, | \, \star \, \rangle \end{array}$$

Classical realizability: realizability structure

A realizability structure is a triple $(\mathbb{T},\mathbb{E},\perp\!\!\!\perp)$ where

- ullet ${\mathbb T}$ is a set of machine terms
- ullet is a set of machine contexts

such that:

ullet \mathbb{T},\mathbb{E} are closed by terms and context constructors, for example:

$$\star \in \mathbb{E}$$
 $t \in \mathbb{T} \land e \in \mathbb{E} \implies (t \cdot e) \in \mathbb{E}$

• ⊥⊥ is closed by anti-reduction:

$$\langle t' | e' \rangle \in \bot$$
 $\land \langle t | e \rangle \leadsto \langle t' | e' \rangle \implies \langle t | e \rangle \in \bot$

Classical realizability: truth and falsity witnesses

The function type $A \rightarrow B$ is a *negative* type.

It is determined by its falsity witnesses that are values: $||A \rightarrow B||_V$.

The rest follows by orthoginality. For example:

$$||A \to B||_{V} \triangleq |A| \cdot ||B||_{V}$$
$$|A \to B| \triangleq ||A \to B||_{V}^{\perp}$$
$$||A \to B|| \triangleq |A \to B|^{\perp}$$

For a positive type we could have, for example:

$$|A+B|_V \triangleq |A|_V + |B|_V$$

In general, for positives P and negatives N we have:

$$||P|| \triangleq |P|_{V}^{\perp} \qquad |N| \triangleq ||N||_{V}^{\perp}$$

$$|P| \triangleq |P|_{V}^{\perp\perp} \qquad ||N| \triangleq ||N||_{V}^{\perp}$$

Reminder: $\mathcal{T}^{\perp} \triangleq \{e \mid \forall t \in \mathcal{T}, \langle t \mid e \rangle \in \bot \}$

Classical realizability: the adequacy lemma

$$\Gamma \vdash t : A \implies \forall \rho \in |\Gamma|, \ \lfloor t \rfloor \in |A|$$
 where: $\rho \in |\Gamma| \iff \forall (x : A) \in \Gamma, \ \rho(x) \in |A|$

Example proof case:

$$\frac{\Gamma, x : A \vdash t : B}{\Gamma \vdash \lambda x . t : A \to B}$$

$$(\lambda x. t)[\rho] \in |A \to B| = ||A \to B||_{V}^{\perp}$$

$$\iff \forall e' \in ||A \to B||_{V}, \quad \langle (\lambda x. t)[\rho] | e' \rangle \in \bot$$

$$\iff \forall u \in |A|, e \in ||B||_{V}, \quad \langle (\lambda x. t)[\rho] | u \cdot e \rangle \in \bot$$

$$\iff \forall u \in |A|, e \in ||B||_{V}, \quad \langle t[\rho, u/x] | e \rangle \in \bot$$

$$\iff \forall u \in |A|, e \in ||B||_{V}, \quad t[\rho, u/x] \in |B|, \quad e \in ||B||_{V}$$

$$\iff \text{ind. hyp.}$$

Classical realizability: weak normalization

Let us define:

- ullet T as the set of *closed* terms
- E as the set of closed contexts (may contain ★)
- ullet us the set of weakly-normalizing machines

$$m \in \bot \bot \triangleq \exists m_1, \ldots, m_n, t, m \rightsquigarrow m_1 \rightsquigarrow \ldots \rightsquigarrow m_n = \langle \lambda x. t | \star \rangle$$

This forms a realizability structure (note: antireduction). From the adequacy lemma we get weak normalization:

```
 \begin{array}{ccc} & \vdash t : A \\ \Longrightarrow & t \in |A| & \text{adequacy lemma} \\ \Longrightarrow & \langle t | \star \rangle \in \bot & \star \in \|A\| \\ \Longrightarrow & t \text{ normalizes} & \text{simulation} \end{array}
```

Section 2

Our work: computational content

General approach

To study the computational content of the proof, we *implement* it in a dependently-typed meta-language.

Note: not program extraction. (Various previous work.)

Relevant definitions

We turn the proposition $\langle t | e \rangle \in \bot \bot$ into a datatype of *concrete evidence*:

$$({}_{\scriptscriptstyle{-}}\!\in\bot\!\!\!\bot):\mathbb{M}\to\mathsf{Type}$$

$$m \in \bot\bot \triangleq \{m_n \in \mathbb{M}_N \mid m \leadsto m_1 \leadsto \ldots \leadsto m_n\}$$

Relevant definitions

We turn the proposition $\langle t | e \rangle \in \bot$ into a datatype of *concrete evidence*:

$$(_{\scriptscriptstyle{-}}\in \bot\!\!\!\bot): \mathbb{M} \to \mathsf{Type}$$

$$m \in \bot \bot \triangleq \{m_n \in \mathbb{M}_N \mid m \leadsto m_1 \leadsto \ldots \leadsto m_n\}$$

Truth and falsity value witnesses have specific shapes:

$$||A \rightarrow B||_V \triangleq |A| \cdot ||B||_V$$

$$\pi \in \|A \to B\|_V \triangleq egin{array}{c} \operatorname{match} \pi & \operatorname{with} \\ u \cdot e \to u \in |A| imes e \in \|B\| \\ - \to \bot \end{array}$$

Relevant definitions

We turn the proposition $\langle t | e \rangle \in \bot\bot$ into a datatype of *concrete evidence*:

$$(_{\scriptscriptstyle{-}}\in \bot\!\!\!\bot): \mathbb{M} \to \mathsf{Type}$$

$$m \in \bot \bot \triangleq \{m_n \in \mathbb{M}_N \mid m \rightsquigarrow m_1 \rightsquigarrow \ldots \rightsquigarrow m_n\}$$

Truth and falsity value witnesses have specific shapes:

$$||A \rightarrow B||_V \triangleq |A| \cdot ||B||_V$$

$$\pi \in \|A \to B\|_V \triangleq egin{array}{c} \operatorname{match} \pi & \operatorname{with} \\ u \cdot e \to u \in |A| imes e \in \|B\| \\ - \to \bot \end{array}$$

The notion of orthogonality is also made computational:

$$\mathcal{T}^{\perp} \triangleq \{e \mid \forall t \in \mathcal{T}, \ \langle t \mid e \rangle \in \bot \}$$
$$e \in |A|^{\perp} \triangleq \forall \{t : \mathbb{T}\}. \ t \in |A| \to \langle t \mid e \rangle \in \bot$$

Conclusion

We are done: the way we defined truth and value witnesses (the shape of values) *completely determines* the evaluation strategy and its implementation.

We found it rather fun – I'll try to show you a bit of it.

Simplification

 $m \in \bot\bot$ is dependent on the machine m, $t \in |A|$ on t, etc. As a first step, we can remove this dependency by defining, for each predicate $_\in T$, a non-dependent type $\mathcal{J}(T)$.

$$m \in \bot \bot \triangleq \{m_n \in \mathbb{M}_N \mid m \leadsto m_1 \leadsto \ldots \leadsto m_n\}$$

$$\mathcal{J}(\bot \bot) \triangleq \mathbb{M}_N$$

Simplification

 $m \in \bot\bot$ is dependent on the machine m, $t \in |A|$ on t, etc. As a first step, we can remove this dependency by defining, for each predicate $_\in T$, a non-dependent type $\mathcal{J}(T)$.

$$m \in \bot \bot \triangleq \{m_n \in \mathbb{M}_N \mid m \leadsto m_1 \leadsto \ldots \leadsto m_n\}$$

$$\mathcal{J}(\bot\bot) \triangleq \mathbb{M}_N$$

$$u \cdot e \in ||A \to B||_V \triangleq u \in |A| \times e \in ||B||$$

$$\mathcal{J}(||A \to B||_V) \triangleq \mathcal{J}(|A|) \times \mathcal{J}(||B||_V)$$

Simplification

 $m \in \bot\bot$ is dependent on the machine m, $t \in |A|$ on t, etc. As a first step, we can remove this dependency by defining, for each predicate $_ \in T$, a non-dependent type $\mathcal{J}(T)$.

$$m \in \bot \triangleq \{m_n \in \mathbb{M}_N \mid m \leadsto m_1 \leadsto \ldots \leadsto m_n\}$$

$$\mathcal{J}(\bot) \triangleq \mathbb{M}_N$$

$$u \cdot e \in ||A \to B||_V \triangleq u \in |A| \times e \in ||B||$$

$$\mathcal{J}(||A \to B||_V) \triangleq \mathcal{J}(|A|) \times \mathcal{J}(||B||_V)$$

$$t \in ||A||^{\bot} \triangleq \forall \{e : \mathbb{E}\}. e \in ||A|| \to \langle t \mid e \rangle \in \bot$$

$$\mathcal{J}(||A||^{\bot}) \triangleq \mathcal{J}(||A||) \to \mathcal{J}(\bot)$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A|$$
$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\begin{aligned} \operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A| \end{aligned}$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea}(t^{A\to B} u^A) \, \bar{\rho}^{|\Gamma|} \, \triangleq \, {?:\mathcal{J}(|B|)}$$

$$\mathcal{J}(|B|) = \mathcal{J}(\|B\|_V) \to \mathcal{J}(\perp \!\!\!\perp)$$

$$\begin{aligned} \operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A| \end{aligned}$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea}\left(t^{A\to B}\;u^A\right)\bar{\rho}^{|\Gamma|}\;\triangleq\qquad \lambda\bar{\pi}^{\quad \|B\|_V}.\; \ref{eq:constraints}: \mathcal{J}(\bot\!\!\!\bot)$$

$$\mathcal{J}(|B|) = \mathcal{J}(\|B\|_V) \to \mathcal{J}(\perp \!\!\!\perp)$$

$$\begin{aligned} \operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A| \end{aligned}$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea}\left(t^{A\to B}\ u^A\right)\bar{\rho}^{|\Gamma|}\ \triangleq \qquad \lambda\bar{\pi}^{-\|B\|_V}.\ ?: \mathcal{J}(|A\to B|) \quad (?: \mathcal{J}(\|A\to B\|_V))$$

$$\mathcal{J}(|B|) = \mathcal{J}(||B||_V) \rightarrow \mathcal{J}(\perp \perp)$$

$$\begin{aligned} \operatorname{rea} : \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A| \end{aligned}$$

$$\operatorname{rea} : \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea}\left(t^{A\to B}\ u^A\right)\bar{\rho}^{|\Gamma|}\ \triangleq \qquad \lambda\bar{\pi}^{-\|B\|_V}.\ \ref{eq:constraints}\ \ref{eq:constraints} : \mathcal{J}(|A\to B|) \ \ (?:\mathcal{J}(\|A\to B\|_V))$$

$$\mathcal{J}(|B|) = \mathcal{J}(|B||_V) \rightarrow \mathcal{J}(\perp \perp)$$

$$\begin{aligned} \operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A| \end{aligned}$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea}\left(t^{A\to B}\ u^{A}\right)\bar{\rho}^{|\Gamma|}\ \triangleq \qquad \lambda\bar{\pi}^{-\|B\|_{V}}.\operatorname{rea}\ t\ \bar{\rho} \qquad \qquad (?:\mathcal{J}(\|A\to B\|_{V}))$$

$$\mathcal{J}(|B|) = \mathcal{J}(||B||_V) \rightarrow \mathcal{J}(\perp \perp)$$

$$\begin{aligned} \text{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A| \end{aligned}$$

$$\text{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea}\left(t^{A\to B}\;u^{A}\right)\bar{\rho}^{|\Gamma|}\;\triangleq\qquad \lambda\bar{\pi}^{-\|B\|_{V}}.\operatorname{rea}\;t\;\bar{\rho} \tag{?:}\;\mathcal{J}(\|A\to B\|_{V})$$

$$\mathcal{J}(|B|) = \mathcal{J}(\|B\|_{V}) \to \mathcal{J}(\bot\!\!\bot) \qquad \mathcal{J}(\|A \to B\|_{V}) = \mathcal{J}(|A|) \times \mathcal{J}(\|B\|_{V})$$

$$\begin{aligned} \operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A| \end{aligned}$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea}\left(t^{A\to B}\;u^A\right)\bar{\rho}^{|\Gamma|}\;\triangleq\qquad \lambda\bar{\pi}^{\quad \|B\|_V}.\operatorname{rea}\;t\;\bar{\rho}\qquad \qquad \left(\operatorname{rea}\;u\;\bar{\rho},\bar{\pi}\right)$$

$$\mathcal{J}(|B|) = \mathcal{J}(\|B\|_{V}) \to \mathcal{J}(\bot\!\!\bot) \qquad \mathcal{J}(\|A \to B\|_{V}) = \mathcal{J}(|A|) \times \mathcal{J}(\|B\|_{V})$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A|$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea}\left(t^{A\to B}\ u^A\right)\bar{\rho}^{|\Gamma|}\ \triangleq \qquad \lambda\bar{\pi}^{\quad \|B\|_V}.\operatorname{rea}\ t\ \bar{\rho} \qquad \qquad \left(\operatorname{rea}\ u\ \bar{\rho},\bar{\pi}\right)$$

(now let's un-simplify things)

$$\begin{aligned} \operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A| \end{aligned}$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea}\left(t^{A\to B}\;u^A\right)\bar{\rho}^{|\Gamma|}\;\triangleq\qquad \lambda\bar{\pi}^{\quad \|B\|_V}.\operatorname{rea}\;t\;\bar{\rho}\qquad \qquad \left(\operatorname{rea}\;u\;\bar{\rho},\bar{\pi}\right)$$

$$t \in ||B||_{V}^{\perp} \triangleq \forall \{t : \mathbb{T}\}. \ t \in |A| \rightarrow \langle t | e \rangle \in \bot$$

$$\begin{aligned} \operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A| \end{aligned}$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea}\left(t^{A\to B}\;u^A\right)\bar{\rho}^{|\Gamma|}\;\triangleq\qquad \lambda\bar{\pi}^{\quad \|B\|_V}.\operatorname{rea}\;t\;\bar{\rho}\qquad \qquad \left(\operatorname{rea}\;u\;\bar{\rho},\bar{\pi}\right)$$

$$t \in ||B||_V^{\perp} \triangleq \forall \{t : \mathbb{T}\}. \ t \in |A| \to \langle t | e \rangle \in \bot$$

$$\begin{aligned} \operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A| \end{aligned}$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea}\left(t^{A\to B}\ u^A\right)\bar{\rho}^{|\Gamma|}\ \triangleq\ \lambda\{\pi\}\lambda\bar{\pi}^{\pi\in\|B\|_V}.\operatorname{rea}\ t\ \bar{\rho}\qquad \qquad \left(\operatorname{rea}\ u\ \bar{\rho},\bar{\pi}\right)$$

$$t \in ||B||_V^{\perp} \triangleq \forall \{t : \mathbb{T}\}. \ t \in |A| \to \langle t | e \rangle \in \bot$$

$$\begin{aligned} \operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A| \end{aligned}$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea}\left(t^{A\to B}\ u^A\right)\bar{\rho}^{|\Gamma|}\ \triangleq\ \lambda\{\pi\}\lambda\bar{\pi}^{\pi\in\|B\|_V}.\operatorname{rea}\ t\ \bar{\rho}\qquad \qquad \left(\operatorname{rea}\ u\ \bar{\rho},\bar{\pi}\right)$$

$$t \in ||B||_V^{\perp} \triangleq \forall \{t : \mathbb{T}\}. \ t \in |A| \to \langle t | e \rangle \in \bot$$

$$\begin{aligned} \operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A| \end{aligned}$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea} \left(t^{A \to B} \ u^A \right) \bar{\rho}^{|\Gamma|} \, \triangleq \, \lambda \{\pi\} \lambda \bar{\pi}^{\pi \in \|B\|_V} \cdot \operatorname{rea} t \; \bar{\rho} \qquad \qquad \left(\operatorname{rea} u \; \bar{\rho}, \bar{\pi} \right)$$

$$\langle t \; u \, | \, \pi \, \rangle \in \bot\!\!\!\bot$$

$$t \in ||B||_{V}^{\perp} \triangleq \forall \{t : \mathbb{T}\}. \ t \in |A| \rightarrow \langle t | e \rangle \in \bot$$

Adequacy, computationally

$$\begin{aligned} \operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A| \end{aligned}$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea}(t^{A \to B} u^{A}) \, \bar{\rho}^{|\Gamma|} \, \triangleq \, \lambda \{\pi\} \lambda \bar{\pi}^{\pi \in \|B\|_{V}}. \, \operatorname{rea} t \, \bar{\rho} \qquad \qquad (\operatorname{rea} u \, \bar{\rho}, \bar{\pi})$$

$$\langle t \, u \, | \, \pi \, \rangle \in \bot \qquad \qquad \langle t \, | \, u \cdot \pi \, \rangle \in \bot$$

$$t \in ||B||_{V}^{\perp} \triangleq \forall \{t : \mathbb{T}\}. \ t \in |A| \rightarrow \langle t | e \rangle \in \bot$$

Adequacy, computationally

$$\begin{aligned} \operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \rho \in |\Gamma| \to t[\rho] \in |A| \end{aligned}$$

$$\operatorname{rea}: \forall \{\Gamma\} \ t \ \{A\} \ \{\rho\}. \ \{\Gamma \vdash t : A\} \ \to \mathcal{J}(|\Gamma|) \to \mathcal{J}(|A|)$$

$$\operatorname{rea}\left(t^{A\to B}\;u^{A}\right)\bar{\rho}^{|\Gamma|}\;\triangleq\;\lambda\{\pi\}\lambda\bar{\pi}^{\pi\in\|B\|_{V}}.\operatorname{rea}\;t\;\bar{\rho}\qquad \qquad \left(\operatorname{rea}\;u\;\bar{\rho},\bar{\pi}\right)$$

$$\left\langle t\;u\,|\,\pi\,\right\rangle\in\,\bot\!\!\!\!\bot\qquad \qquad \qquad \left\langle \;t\,|\,u\cdot\pi\,\right\rangle\in\,\bot\!\!\!\!\bot$$

We can change the definition of truth and value witnesses. For example:

(old)
$$||A \to B||_V \triangleq |A| \times ||B||_V$$
 (new) $||A \to B||_V \triangleq |A|_V \times ||B||_V$
 $|A \times B|_V \triangleq |A| \times |B|$ $|A \times B|_V \triangleq |A|_V \times |B|_V$

We can change the definition of truth and value witnesses. For example:

(old)
$$||A \to B||_V \triangleq ||A| \times ||B||_V$$
 (new) $||A \to B||_V \triangleq ||A||_V \times ||B||_V$
 $||A \times B||_V \triangleq ||A|| \times ||B||$ $||A \times B||_V \triangleq ||A||_V \times ||B||_V$

We can change the definition of truth and value witnesses. For example:

(old)
$$||A \to B||_V \triangleq |A| \times ||B||_V$$
 (new) $||A \to B||_V \triangleq |A|_V \times ||B||_V$
 $|A \times B|_V \triangleq |A| \times |B|$ $|A \times B|_V \triangleq |A|_V \times |B|_V$

It gives us different evaluation strategies: (new) call-by-value arrow. They are forced by the *typing obligations* of the dependent version.

We can change the definition of truth and value witnesses. For example:

(old)
$$||A \to B||_V \triangleq |A| \times ||B||_V$$
 (new) $||A \to B||_V \triangleq |A|_V \times ||B||_V$
 $|A \times B|_V \triangleq |A| \times |B|$ $|A \times B|_V \triangleq |A|_V \times |B|_V$

It gives us different evaluation strategies: (new) call-by-value arrow. They are forced by the *typing obligations* of the dependent version.

When we have both positive and negative types, some definitions are by case-distinction on the polarity.

Hints of a *polarized* evaluation order.

CBN version

CBV version

$$\begin{array}{lll} \operatorname{rea} & x^{A} & \bar{\rho} & \triangleq & \bar{\rho}(x)^{\bot\bot} \\ \operatorname{rea} & (\lambda x^{A}.\,t^{B}) & \bar{\rho} & \triangleq & \lambda(\bar{v}^{|A|v},\bar{e}^{\parallel B\parallel}).\,\langle\operatorname{rea}\,t\;\bar{\rho}[x\mapsto\bar{v}]\,|\,\bar{e}\,\rangle_{B} \\ \operatorname{rea} & (t^{A\to B}\,u^{A}) & \bar{\rho} & \triangleq & \lambda\bar{\pi}^{\parallel B\parallel v}.\,\langle\operatorname{rea}\,u\;\bar{\rho}\,\Big|\,\lambda\bar{v}_{u}^{|A|v}.\operatorname{rea}\,t\;\bar{\rho}\;(\bar{v}_{u},\bar{\pi}^{\bot\bot})\,\Big\rangle_{A} \\ & & \operatorname{rea}\left(t^{A},u^{B}\right)\;\bar{\rho} & \triangleq \\ \lambda\bar{\pi}^{\parallel A\times B\parallel}.\,\Big\langle\operatorname{rea}\,t\;\bar{\rho}\,\Big|\,\lambda\bar{v}_{t}^{|A|v}.\,\Big\langle\operatorname{rea}\,u\;\bar{\rho}\,\Big|\,\lambda\bar{v}_{u}^{|B|v}.\bar{\pi}\;(\bar{v}_{t},\bar{v}_{u})\,\Big\rangle_{B}\,\Big\rangle_{A} \\ & & \operatorname{rea}\left(\operatorname{let}\left(x,y\right)=t^{A\times B}\,\operatorname{in}\,u^{C}\right)\;\bar{\rho} & \triangleq \end{array}$$

 $\lambda \bar{\pi}^{\|C\|_V} \cdot \langle \operatorname{rea} t \ \bar{\rho} \ | \ \lambda(\bar{x}, \bar{y})$. rea $u \ \bar{\rho}[x \mapsto \bar{x}, y \mapsto \bar{y}] \ \bar{\pi} \rangle_{A \times B}$

Extraction

(Years) after writing all this on paper, we implemented it in Coq – mechanized type-checking.

We hoped that extraction would return the "simplified" code back.

$$m \in \bot\bot \triangleq \{m_n \in \mathbb{M}_N \mid m \leadsto m_1 \leadsto \ldots \leadsto m_n\}$$

Extraction

(Years) after writing all this on paper, we implemented it in Coq – mechanized type-checking.

We hoped that extraction would return the "simplified" code back.

$$m \in \bot\bot \triangleq \{m_n \in \mathbb{M}_N \mid m \rightsquigarrow m_1 \rightsquigarrow \ldots \rightsquigarrow m_n\}$$

```
Record FamR (A : Type) : Type :=
  In { J: Type :
         R: A \rightarrow J \rightarrow Prop \}.
Definition belong \{A\}: FamR A \rightarrow A \rightarrow Type :=
  fun T t \Rightarrow { t0 : J(T) | R(T) t t0 }.
Definition pole: FamR machine:=
  In machine
     (fun m m' \Rightarrow Util.many red m m' \land \neg(exists m'', red m' m'').
Definition orthT (P: FamR term): FamR stack :=
  In (forall t: term, belong t P \rightarrow J(pole))
      (fun e k \Rightarrow forall t t<sub>P</sub>, R(pole) (t , e) (k t t<sub>P</sub>)).
```

Related work: NbE

Hugo Herbelin (informally) explains that realizability and normalization-by-evaluation (NbE) are two sides of the same coin.

The computational aspect of NbE was already obvious - duh!

The end.

Thanks!

Any questions?

Auxiliary definitions

$$\begin{array}{cccc}
 & \xrightarrow{\bot\bot} & : & \mathcal{J}(|P|_{V}) \to \mathcal{J}(|P|) \\
 & (\overline{v}^{|P|_{V}})^{\bot\bot} & \triangleq & \lambda \overline{e}^{\parallel P\parallel}. \overline{e} \ \overline{v} \\
\end{array}$$

$$\begin{array}{cccc}
 & \xrightarrow{\bot\bot} & : & \mathcal{J}(\parallel N\parallel_{V}) \to \mathcal{J}(\parallel N\parallel_{V}) \\
 & (\overline{\pi}^{\parallel N\parallel_{V}})^{\bot\bot} & \triangleq & \lambda \overline{t}^{\mid N\mid}. \overline{t} \ \overline{\pi} \\
\end{array}$$

$$\begin{array}{cccc}
 & \xrightarrow{\bot\bot} & : & \mathcal{J}(\parallel A\parallel_{V}) \to \mathcal{J}(\parallel A\parallel) \\
 & (\overline{v}^{\mid P\mid_{V}})^{\bot\bot} & \triangleq & \overline{v}^{\bot\bot} \\
 & (\overline{t}^{\mid N\mid})^{\bot\bot} & \triangleq & \overline{t} \\
\end{array}$$

$$\begin{array}{cccc}
 & \xrightarrow{\bot\bot} & : & \mathcal{J}(\parallel A\parallel_{V}) \to \mathcal{J}(\parallel A\parallel) \\
 & (\overline{e}^{\parallel P\parallel_{V}})^{\bot\bot} & \triangleq & \overline{e} \\
 & (\overline{\pi}^{\parallel N\parallel_{V}})^{\bot\bot} & \triangleq & \overline{\pi}^{\bot\bot}
\end{array}$$