Normalization by realizability

Pierre-Evariste Dagand, Lionel Rieg, Gabriel Scherer

April 30, 2021

P-E Dagand, L. Rieg, G. Scherer Normalization by realizability April 30, 2021



In this work

We study the

computational meaning
of the adequacy lemma of
classical realizability
without using extraction, but direct
dependently-typed programming

using Curien-Herbelin

calculi as our realizer language.
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Section 1

Classical realizability
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Classical realizability: minimal history

Classical realizability is a realizability interpretation of logics
where formulas are “realized” by A-calculus abstract machines.

Introduced in the 1990s by Jean-Louis Krivine, providing
a simple approach to “realize” classical axioms as control operators.

Later work focused on realizing more “classical” axioms, in particular
the family of axioms of choice.

To a programming-language-research person, classical realizability

looks like a unary logical relation defined in a systematic, symmetric way.
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Classical realizability: overview

A soundness technique for abstract machines formed of a pair (t|e) (in
M) of a term t (in T) and a co-term (context) e (in E).
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Classical realizability: overview

A soundness technique for abstract machines formed of a pair (t|e) (in
M) of a term t (in T) and a co-term (context) e (in E).
For the right definitions, we prove an adequacy lemma saying that:

@ well-typed terms t : A belong to a set of truth witnesses |A|

o well-typed co-terms e : A belong to a set of falsity witnesses || A||

o well-typed machines (t|e) belong to a pole 1L.

Those sets capture good (sound) terms/coterms/machines.

Here, we define 1L as the set of machines that reduce to a valid machine
in normal form.
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Classical realizability: overview

A soundness technique for abstract machines formed of a pair (t|e) (in
M) of a term t (in T) and a co-term (context) e (in E).
For the right definitions, we prove an adequacy lemma saying that:

@ well-typed terms t : A belong to a set of truth witnesses |A|

o well-typed co-terms e : A belong to a set of falsity witnesses || A||

o well-typed machines (t|e) belong to a pole 1L.

Those sets capture good (sound) terms/coterms/machines.

Here, we define 1L as the set of machines that reduce to a valid machine
in normal form.

We will define |A| and [|A|| such that
t € |Al and e € ||A]| imply (t]e) € 1.

Orthogonality is central to this:

TL2{e|VteT, (tle)eld}  E 2{t|Veck, (tle)el}
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Classical realizability: abstract machines
A-terms:

t 2 x|Ax.t|tu (Ax.t) u~ tfu/x]

Abstract machines (for now):

e = x|u-e

R (tule) ~ (tlu-e)
t £ x|Ax.t|tu
m o2 (tle) (Ax.t|u-e)y ~ (tlu/x]|e)

Simulation: if ([t]|*) ~* (|u] |*) 7 then t ~* u +.
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Simulation: if ([t]|*) ~* (|u] |*) 7 then t ~* u +.

((Ax.t) u|*) (Ax.t|u-x)

(tlu/x]|*)

~
N
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Classical realizability: realizability structure

A realizability structure is a triple (T, E, L) where
@ T is a set of machine terms
o [E is a set of machine contexts
@ 1l is a set of machines

such that:
o T,E are closed by terms and context constructors, for example:

*ecE teT AN ecE = (t-e)cE
@ 1l is closed by anti-reduction:

(t|e)edl A (tle)~(t|e) = (tle)el
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Classical realizability: truth and falsity witnesses

The function type A — B is a negative type.

It is determined by its falsity witnesses that are values: ||A — B||y.

The rest follows by orthoginality. For example:

|A— Bllv |Al-[|Bllv
|A — B] IA— By
|IA—=B| %2 |A— Bt

lI>

For a positive type we could have, for example:
A+Blv = [Alv+Blv
In general, for positives P and negatives N we have:

IPI 2 1Py n 2
£ |Ply g 2

Reminder: T+ 2 {e|Vte T, (tle)c 1}
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Classical realizability: the adequacy lemma
r-t:A = Vpelll, |t] €A
where: p € [T| <= V(x: A) €T, p(x) € |A]|

Example proof case: Mx:A-t:B
N=XAx.t:A—=B

(Ax.t)[p] € |A = Bl =|A = By
= veelAsBlly, (Oxt)p]le)el
— VuelAle€|Blly, ((xt)p]]u-e)el
=
=
P

Vuel|Al,e € ||B|v, (tlp,u/x]|e)e 1L
Vue |Al,e€|Bllv, tlp,u/x]€|B|, e€cl]B|v
ind. hyp.
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Classical realizability: weak normalization

Let us define:
@ T as the set of closed terms
o E as the set of closed contexts (may contain x)

@ 1l as the set of weakly-normalizing machines
mell 2 dmy,...,mpt, me~smps o my = (Xt x)

This forms a realizability structure (note: antireduction).
From the adequacy lemma we get weak normalization:

Ft: A
= telA adequacy lemma
= (t|*x)el * € || Al
—> t normalizes simulation
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Section 2

Our work: computational content
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General approach

To study the computational content of the proof,

we implement it in a dependently-typed meta-language.

Note: not program extraction. (Various previous work.)
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Relevant definitions
We turn the proposition (t|e) € L into a datatype of concrete evidence:

(Le ) : M — Type

me 2 {m, eMpy | m~ mg~ ...~ m,}
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Relevant definitions

We turn the proposition (t|e) € L into a datatype of concrete evidence:

(Le ) : M — Type

me 2 {m, eMpy | m~ mg~ ...~ m,}

Truth and falsity value witnesses have specific shapes:

IA = Bllv = |Al-[|Bllv

match 7w with
Tc||[A=B|lvE |u-esucl|A xec|B|
- =1
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Relevant definitions

We turn the proposition (t|e) € 1L into a datatype of concrete evidence:

(Lel):M — Type

me 2 {m, eMpy | m~ mg~ ...~ m,}
Truth and falsity value witnesses have specific shapes:
|A— Bllv = |Al-[IBllv
match 7 with

Tc||[A=B|lvE |u-esucl|A xec|B|
- =1

The notion of orthogonality is also made computational:

TL2{e|VteT, (t|e)e l}

ec A EV{t:TLte|Al — (t|e) el
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Conclusion

We are done: the way we defined truth and value witnesses (the shape of
values) completely determines the evaluation strategy and its
implementation.

We found it rather fun — I'll try to show you a bit of it.

P-E Dagand, L. Rieg, G. Scherer

Normalization by realizability April 30, 2021 14 /1



Simplification
m € 1l is dependent on the machine m, t € |A| on t, etc.

As a first step, we can remove this dependency by defining, for each
predicate _ € T, a non-dependent type J(T).

me 2 {m, EMpy | m~ my~ ...~ m,}
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As a first step, we can remove this dependency by defining, for each
predicate _ € T, a non-dependent type J(T).

me 2 {m, EMpy | m~ my~ ...~ m,}
J(1L) £ My
u-ec||[A—=Blly2uc|A xec|B|

J(IA— Blv) = J(Al) x T(|IBllv)
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Simplification

m € 1L is dependent on the machine m, t € |A| on t, etc.

As a first step, we can remove this dependency by defining, for each
predicate _ € T, a non-dependent type J(T).

me 2 {m, EMpy | m~ my~ ...~ m,}

u-ec||[A—=Blly2uc|A xec|B|
JI(IA = Blv) = J(Al) < T(IBllv)
te||Alt 2V{e:E}.ec|A| = (t]e)e L

T(IAI%) £ T(IAI) = T (L)
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Adequacy, computationally

rea:V{I'} t {A} {p}. {THt:A} = pelll|—t[p] €|A

rea:V{I'} t {A} {p}. {TH1t: A} = IT(r) — T(A])
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Adequacy, computationally

rea:V{I'} t {A} {p}. {THt:A} = pelll|—t[p] €|A

rea: V{I'} t {A} {p}. {T+Ht: A} = T(l) — T(A])

rea ("8 A T 2 2. 7(|B))

J(IB[) = IJ(Bllv) = J(1L)
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A=B Ay AT &
u) plfl &

rea (t M BV reat (rea u p, )
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Adequacy, computationally

rea:V{I'} t {A} {p}. {THt:A} = pelll|—t[p] €|A
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AZB AT & M BV reat (rea u p,T)

rea (t

(now let's un-simplify things)
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(Slightly) more in the paper

We can change the definition of truth and value witnesses. For example:

(old) A= Bllv = [Alx [IBlly  (new) [[A— Bllv = |Alv x[Blv

|Ax Bly £ A x |B] [Ax Bly £ |Alv x |Bly
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(Slightly) more in the paper

We can change the definition of truth and value witnesses. For example:
IA = Bllv £ |Alv x [|Bllv

= |Alx[[Blv  (new)

|A— Bllv
|Ax Blv £ |Aly x |Blv

(old)
|Ax Bly = |A| x |B]
It gives us different evaluation strategies: (new) call-by-value arrow.

They are forced by the typing obligations of the dependent version.
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(Slightly) more in the paper

We can change the definition of truth and value witnesses. For example:
(old) [|A— Bllv = |A[x [Blly (new) [[A— Bllv = |Aly x |Bllv
Ax Bly 2 |4 x |B] Ax Bl 2 Al x |Blv

It gives us different evaluation strategies: (new) call-by-value arrow.
They are forced by the typing obligations of the dependent version.

When we have both positive and negative types, some definitions are by
case-distinction on the polarity.
Hints of a polarized evaluation order.
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CBN version

|04 TUAD) = T(IAN) — T(L)

(tle)p = 1

(Fle)y £ et
rea xA p = p(x)
rea (WA tB) 5 & @A elBly. (reat pix — d]| &),
rea (t"7BuA) 5 2 MalBIlV.reat (rea u p, 7_1'J-J-)
rea (tA, uB) p £ (reatp,reaup)tt

rea (let (x,y) = t"*B in uC) 5 £

A=IIClv (reat p|A(X,¥). reau plx = X,y = ¥ T)avp
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CBV version

rea x” p L ﬁ(X)J_J_
rea (WA tB) p £ )\(V\A|v, éIIBH)_ (rea t p[x — V]| &)g
rea (t"7But) p 2 M-Tnsuv.<rea u [—,}le\lv.rea t 5 (70 7Y >A

rea (tA,uB> p =

ARlIAXBI <rea t ﬁ‘AV'tAW. <rea u ﬁ‘AV'uBW.Tr (Ve, ) >B>
A

rea (let (x,y) = t"B in u%)

AL

AMICIV (rea t pIA(X,7). rea u plx = X,y 7] T)arp
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Extraction

(Years) after writing all this on paper, we implemented it in Coq —
mechanized type-checking.

We hoped that extraction would return the “simplified” code back.

me 2 {m, eMpy | m~ mg~ ...~ m,}
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Extraction

(Years) after writing all this on paper, we implemented it in Coq —
mechanized type-checking.

We hoped that extraction would return the “simplified” code back.

mell 2 {m, EMpy|m~smg~ ...~ mp}

Record FamR (A : Type) : Type :=
In { J: Type ;
R: A — J — Prop }.
Definition belong {A} : FamR A — A — Type :=
fun Tt= {t0:J(T)|R(T) tt0 }.
Definition pole : FamR machine :=
In machine

(fun m m’ = Util.Lmany red m m" A —(exists m"’, red m’ m"").
Definition orthT (P : FamR term): FamR stack :=
In (forall t: term, belong t P — J(pole))
(fun e k = forall t tp, R(pole) (t, e) (k t tp)).
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Related work: NbE

Hugo Herbelin (informally) explains that realizability and
normalization-by-evaluation (NbE) are two sides of the same coin.

(rea) Ft:A—telA
(NbE) (Ft:A— IFA) AN (IFA—={vNF| Fv:A})

The computational aspect of NbE was already obvious — duh!
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The end.

Thanks!

Any questions?
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Auxiliary definitions

11

(FPV)LL 2

11

JI(|Plv) = J(IPI)

M\elPll &

J(INllv) = T(INllv)

(7INIV)LL 2 A\EN F 7

L

(\7|P|v)J-J- £

(E\N|)LL AL
_LJ- .
(&lPlvyLL 2
(ﬁIINllv)LL £
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T ([Alv) = J(IA])
oLl

t

J(IAllv) = T(lIAl)

@
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