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Abstract

One of the most popular induction scheme for supervised learning is also one of the oldest.
It builds a classi3er in a top-down fashion, following the minimization of a so-called index
criterion. While numerous papers have reported experiments on this scheme, little has been
known on its theoretical aspect until recent works on decision trees and branching programs
using a powerful classi3cation tool: boosting.
In this paper, we look at this problem from a worst-case computational (rather than informa-

tional) standpoint. Our conclusions for the ranking of these indexes’ minimization follow almost
exactly that of boosting (with matching upper and lowerbounds), and provide extensions to
more classes of Boolean formulas such as decision lists, multilinear polynomials and symmetric
functions. Our results also exhibit a strong worst-case for the induction scheme, as we build par-
ticularly hard samples for which the replacement of most index criteria, or the class of concept
representation, even when producing the same ranking as boosting does for the indexes, makes
no di8erence at all for the concept induced. This is clearly not a limit of previous analyses, but
a consequence of the induction scheme.
c© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Classi3er induction refers to a process which builds, from labeled examples, a
formula whose inputs are observations, and whose outputs are classes [15]. The set
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of labeled examples is called a learning sample. It is drawn from a set called a domain,
whose size is typically huge compared to the learning sample’s. The goodness of 3t
of a formula is evaluated by the discrepancies on the classes between the concept it
induces over the domain, and an unknown target concept which governs the labeling of
the domain. The problem is obviously to minimize these discrepancies. Conventional
approaches to this problem proceed by minimizing the empirical risk, i.e. the error on
the learning sample. In this paper, we are concerned with the strategies adopted by
some popular induction algorithms to succeed in this task.
It is hard to exaggerate in Machine Learning and Classi3cation the inFuence of

an induction scheme among the most popular, which builds the 3nal classi3er from
scratch, in a greedy, top-down fashion. Algorithms integrating as 3rst stage such a
mechanism are numerous, and some date back to the early eighties. The most popular
induce decision trees (DT) [1,13], and others induce branching programs [2], decision
lists [11], multilinear polynomials [10], symmetric functions [12]. All these algorithms
share another property: the criterion they minimize through their local choices is not
the empirical error, but an upperbound known as an index criterion.
Apart from the choice of the concepts they induce, a prominent di8erence between

all these algorithms is the choice of the index criterion they optimize. Since recent
works on a powerful new classi3cation tool known as boosting [4], very little was
known about the true inFuence of the choice of index on the minimization of the error
and size. In fact, recent works have shown that, from the classi3cation standpoint, it is
crucial. Kearns and Mansour [7] have proven that the eIciency of any index criterion
on DT induction depends on its concavity, and a careful choice (Matsushita error) may
even bring optimality from an informational standpoint. Most importantly, their results
are basically suIcient conditions for the control of the error=size by the index, and as
they argue, their results do not yield necessary conditions (matching bounds). Better
than comparing di8erent indexes for a single concept representation class, Mansour and
McAllester [8] have compared, for a single index, the interest in switching the class.
They have shown that a class with larger expressive power may lead to huge gaps
in size for the same guarantees on the decrease of the empirical error. Again, these
results are suIcient conditions for the gap, as they do not provide matching bounds
for its systematic existence.
In this paper, we compare again index criteria, classes of concept representations

and induction algorithms, but our tool is much di8erent: complexity theory. We obtain
a ranking according to the minimization’s hardness for each index which, interestingly,
follows that of boosting [7], unless some widely believed complexity assumption is
false. We also observe that the index criterion which yields optimality from the in-
formational standpoint of Kearns and Mansour [7] also yields optimality from our
computational standpoint. Finally, we somewhat extend in our setting their results on
DT to other classes of concept representations. This similar behavior which appears
from two di8erent theoretical standpoints is, we think, an advocacy for the theoretical
eIciency of boosting and these index criteria-based induction methods.
However, a closer look at our results emphasizes original phenomena with respect to

the conclusions of Mansour and McAllester [8], Kearns and Mansour [7]. Our technique
relies on building a particular family of learning samples, and for each of them, for any
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applicable class of formulas, and any index criterion (with one notable exception), there
is no impact at all in terms of size and=or error for the classi3er induced. This is neither
a paradox, nor a limit of boosting-type analyzes [7,8]. Rather, it is a consequence of the
relationship between the index criteria and the error. This makes that one has certainly
to care about the index criterion used in a DT induction algorithm from the theoretical
standpoint, but she=he cannot prevent the existence of datasets for which the theoretical
di8erence between criteria and=or formulas shall not be borne out from the induction’s
results.
This paper is formatted to present our results at 3rst on DT, following Kearns and

Mansour [7]. In Section 2, we present the basis of the comparison criteria on the
indexes. Afterwards, Section 3 presents our family of learning samples and some char-
acteristics which yields simplifying hypotheses on the DTs induced. Section 4 presents
our results on the comparison of the index criteria, that are extended in Section 5, in
particular to other classes of concept representation. Section 6 discusses our results and
concludes.

2. The empirical error and its minimization with DT

Our notations closely follow Mansour and McAllester [8]. We consider a domain X
of observations, and a function c from X to {0; 1}, where 0 and 1 are classes: generally,
0 is called the negative class, and 1 the positive class. We suppose that each observation
is given by the assignment of n Boolean description variables. We are given a set S
of pairs (x; c(x)), also called examples, in which x is referred to as an observation.
S is called a learning sample. Our objective is to 3nd some f :X → {0; 1} such that
its empirical error on S with respect to c, ”̂(f)= |{(x; c(x))∈ S : c(x) �=f(x)}|= |S|, is
minimal.
Let us 3rst suppose that f is an ordinary DT. A DT is a recursive, domain-

partitioning concept which can be seen as a tree with a root node, leaf nodes and
possibly internal nodes. Except for the leaves for which it is 0, the out-degree of
each node is exactly 2. Each internal node is labeled by a Boolean test h∈H , and
each outgoing arc is labeled by one of the two truth values. Observations to be
classi3ed traverse the tree from its root through its internal nodes, following a path
whose arcs correspond to the test they satisfy, until they reach a leaf whose label
∈ {0; 1} gives their predicted class. The most popular DT induction algorithms pick for
H the set of Boolean description variables. Thus, the arcs are labeled with their
projections [1,7,13]. These algorithms also share the property to be stagewise mod-
eling procedures, 3tting the tree to the data by the repetitive optimization of a so-
called index criterion I whose shape is common to all. Suppose we are given a DT
f which contains K internal nodes, thus, K + 1 leaves. We suppose that for each
applicable depth, the nodes of f are numbered in {0; 1; : : :} without ambiguity in such
a way that Si; j may de3ne the subset of S reaching the node numbered j at depth i.
In the sequel, we shall sometimes assimilate each node of f with the unique couple
(i; j) to which it corresponds. We adopt the convention S0;0 = S, and for each applica-
ble (i; j) and b∈ {0; 1}, Sbi; j = {(x; b)∈ Si; j}, p̂i; j = |Si; j|=|S|, and q̂i; j = |S1i; j|=|Si; j|. For
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each internal node (i; j) and b∈ {0; 1}, we let hi; j de3ne the Boolean test labeling the
node, and p̂bi; j = |{(x; c(x))∈ Si; j : hi; j(x)= b}|=|Si; j|. Fix a function I , continuous over
[0; 1], symmetric around 1

2 , concave, and such that I(
1
2 )= 1; I(0)= I(1)= 0. Such a

function is called permissible in Kearns and Mansour [7]. Index criterion I is chosen
as follows:

I (f) =
∑

(i;j) leaf in f
p̂i;jI(q̂i;j): (1)

Some possible choices for the index function I in Eq. (1) include

I(z) = 4z(1− z); (2)

I(z) = −z log z − (1− z) log(1− z); (3)

I(z) = 2
√
z(1− z); (4)

I(z) = 2 min{z; 1− z}: (5)

Eq. (2) is known as Gini index [1,7], Eq. (3) codes for the binary entropy [7,13]
and Eq. (5) relates to twice the local error. Eq. (4) is proportional to a geometrical
average; this criterion has recently received a growing attention with the introduction
of a new powerful methodology in learning=classi3cation known as boosting [4]. How-
ever, its use dates back to the 3fties, and Eq. (1) with I as in Eq. (4) is known as
Matsushita error on S (provided we replace the description of each example in S by
the Boolean tests of the path it follows in f) [9]. We denote as IG(f), IH (f), IM (f),
IE(f) as the four expressions of I (f) in Eqs. (1), using, respectively, Eqs. (2)–(5) for
I . Most importantly, since ”̂(f)6I (f)=2, it comes that any f with small index I (f)
is guaranteed to have small empirical error.
For any non-leaf DT f, pick some internal node (i; j) labeled with some Boolean

test h. Name f\h as the DT obtained by pruning the subtree rooted at h in f, thus
replacing internal node (i; j) by a leaf. De3ne

�h;i;j(I) = (I (f\h)− I (f))=I (f\h): (6)

This criterion is the cornerstone of the analysis of Kearns and Mansour [7]. It quanti3es
some sort of relative “potential decrease” between f\h and f. For any DT f, con-
sider a sequence of distinct internal nodes (i1; j1); (i2; j2); : : : ; (ik ; jk) with k6K (recall
that K is the number of internal nodes of f), such that f\(ik ; jk) is a leaf DT, and
∀16l ¡ l′6k, (il′ ; jl′) is an internal node in f\(il; jl). Informally, such a sequence
brings a way to prune f by removing successive internal nodes, and we refer to it
as a “valid sequence” of internal nodes. For any valid sequence, we have the key
equality

I (f) = I(q̂0;0)
k∏
l=1
(1− �h;il;jl): (7)

In this equation, the Boolean test h in �h; il; jl refers without ambiguity to the one la-
beling the internal node (il; jl). Since I(q̂0;0) is independent of the algorithm used to
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induce f, eIcient induction algorithms for DT should impact on the fast maximization
of the �’s over some valid sequence of internal nodes. This is precisely what the most
popular induction algorithms for DT do, with the same strategy: the top-down (greedy)
induction of a large tree following the same routine TD:
grow a DT f from a single-leaf DT (the root), repeatedly replacing leaves by
internal nodes (each with two new leaves).

Each leaf label is chosen as the majority class among the examples reaching the leaf.
The algorithms typically stop whenever some condition on the empirical error of f,
or on its size, is met. Afterwards, a second stage prunes the DT f with the objective
to statistically limit its generalization error [1,3], but this is out of the scope of this
paper. Suppose that the current f was built from the replacement of some leaf (i; j) in
f\h by an internal node labeled with some test h∈H . h is chosen in TD as follows.
De3ne the two new children leaves of (i; j) as (i+1; j0) (for those examples ∈ Si; j for
which h(x)= 0) and (i+1; j1) (for those examples ∈ Si; j for which h(x)= 1). We have

I (f\h)− I (f) = p̂i;j[I(q̂i;j)− p̂0i;jI(q̂i+1;j0 )− p̂1i;jI(q̂i+1;j1 )]: (8)

If we de3ne the local decrease of I as

�(Si;j ; h) = I(q̂i;j)− p̂0i;jI(q̂i+1;j0 )− p̂1i;jI(q̂i+1;j1 ) (9)

then the strategy to choose h in TD is [7]

h = arg max
h′

�(Si;j ; h′): (10)

Since f\h is 3xed, we see that arg maxh′ �(Si; j ; h′)= argmaxh′ I (f\h′)− I (f)= arg
maxh′(I (f\h′) − I (f))=I (f\h′)= argmaxh′ �h′ ; i; j(I), and TD is a stepwise
maximization of the �’s to minimize I in Eq. (7), whose valid sequence of internal
nodes is the list of internal nodes from the last one created to the 3rst one (replacing
the root leaf).
More generally, because index criteria are direct upperbounds for the error and due

to Eq. (7), the study of lowerbounds on �h; i; j(I) is of signi3cant importance; in the
sequel, we study the minimal guarantee on �h; i; j(I) that may bring some (possibly
randomized) algorithm A∈ A, where A is the set of all eIcient (polynomial-time)
induction algorithms for DT. To this extent, for any f induced by some A, we let
�∗
f(I)= mini; j �h; i; j(I) (A is absent from the notation but it should be clear from
context), and we let �∗

A(I) denote the minimal value of �
∗
f(I) for some f which is

output by A on some S, where S belongs to a particular family of samples which we
now de3ne.

3. Hard samples, simple trees

We create particular learning samples from “Set-Cover” instances [3]. The
“Set-Cover” instance contains a set E of elements, and a collection C = {C1; C2; : : : ; C|C|}
of subsets of E. The objective is to 3nd a cover of E, i.e. a subset of C whose
union of elements is E, with the least number of elements from C. It is well known
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that this problem is hard to solve or even approximate, as 3nding coverings whose
size is no more than the optimum times (1 − �) ln |E|, for any constant 0¡�¡1,
is intractable unless NP has slightly superpolynomial time algorithms, that is, unless
NP⊆DTIME[N log log N ] [3]. We build a learning sample S which contains |E| + 1
examples, with only one negative example
• there are n= |C| description variables, in one-to-one correspondence with the ele-
ments of C;

• the negative example, (x−; 0), contains only assignments to 0 of its n description
variables;

• the positive examples are in one-to-one correspondence with the elements of E. Pos-
itive example (x+j ; 1) has assignments to 1 of its description variables corresponding
to those elements of C containing the jth element of E. The assignments of all other
description variables are 0.

This reduction is well-known in learning theory [5,10]. The next Lemmata show two
properties on the proof of Feige [3], which relies on a reduction from instances of a
3SAT variant, 3SAT5 (each variable appears exactly in 3ve clauses).

Lemma 1. We can assume without loss of generality that ∀16i6|C|; |Ci|=
#(|E|=(k ′Q)), where k ′; Q are reduction-dependent parameters.

Proof. We follow the proof of Feige [3]. The proof proceeds by building R parti-
tion systems. Informally, each partition system is built on a separate set of m ele-
ments, onto which a collection of L distinct partitions is built at random: for each
of the m elements, we decide at random where to put this element into one of the
subset of each of the L partitions. Each partition contains k ′ subsets of the m ele-
ments. The whole number of elements is |E|=mR, and the 3nal, expected size of
some Ci is mR=(k ′Q) (each Ci is the reunion of R=Q di8erent subsets of di8erent
partition systems). Since it does not rely on similarities in the sizes of the elements
of C, the proof [3] can be modi3ed without signi3cant complexity penalty, to en-
force that the size of each Ci be not too far from its average. This ends the proof
of Lemma 1.

We denote c∗ as the minimum “Set Cover” solution.

Lemma 2 (Feige [3]). Whenever the 3SAT5 instance is satis�able, c∗= k ′Q and the
sets in the optimal solution de�ne a partition of E.

The family of samples S we build makes that only samples Si; j on the all-0 path
from the root of f may contain both positive examples and the negative example. All
the other subsets of S are pure in that they only contain positive examples, so they
do not participate to I (f) and do not change the concept with respect to S. We thus
simplify the notations of Section 2, and consider in f only those nodes from the all-0
path, with notations detailed in Fig. 1. We also suppose that the internal nodes of the
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Fig. 1. The nodes of f that interest us and the notations we adopt for the subsets of S throughout the DT.
Black (resp. empty) arrows corresponds to arcs labeled with the true (1) value for h (resp. false (0)).

all-0 path are not pure, since otherwise we could prune them and get the same concept
with respect to S. Remark also that there is no need to compute �h; i; j for j¿0, so
we simplify its notation with �h; i in Eq. (6); suppose we replace (K; 0) by an internal
node labeled with some hK+1 ∈H in formula f of Fig. 1. Then we have

�hK+1 ;K (I) = (I (f)− I (f ∪ hK+1))=I (f) (11)

= (p̂K;0�(SK;0; hK+1))=(p̂K;0I(q̂K;0)) (12)

= �(SK;0; hK+1)=I(q̂K;0): (13)

4. Main results

We now show a universal complexity-theoretic upperbound on �∗
: (:).

Theorem 3. Unless NP⊆DTIME[N log log N ], for any index function I, any A∈ A,
�∗
A(I)=O(1=c

∗).

Proof. Suppose that �∗
f(I)=*(1=c

∗) for some f output by A. For any internal node
(k; 0) of f, we denote f(k) as the DT obtained when pruning (k; 0) and making
it replaced by a leaf labeled by its majority class. We show that, up to a constant
factor, an optimal approximation of “Set Cover” is obtained. We have ∀06k6K − 1,
I (f(k + 1))= p̂k+1;0I(q̂k+1;0)= p̂k;0p̂

0
k;0I(q̂k+1;0)= p̂k;0(1 − �hk+1 ; k(I))I (f(k))6

(1 − �hk+1 ; k(I))I (f(k)). We get I (f(k))6(1 − �∗
f(I))

kI (f(0))6(1 − �∗
f(I))

k6
exp(−k�∗

f(I)). For any node for which |Sk+1;0|62 (exactly one positive and one neg-
ative example belong to Sk+1;0), we have I (f(k + 2))=0, since otherwise we would



378 R. Nock, F. Nielsen / Theoretical Computer Science 321 (2004) 371–382

have �∗
f(I)= 0 �=*(1=c∗). In that case, A shall have selected k hypotheses from H to

label those internal nodes, each of which corresponds to an element of C whose union
brings a cover of E. Furthermore, if p̂k+1;0¡2=(|E|+1) and I(q̂k+1;0)¡1=(|E|+1), then
”̂(f(k + 1))=0. We get therefore a cover of size k as soon as I (f(k))¡2=(|E|+1)2, a
suIcient condition for which is obtained when k =*((1=�∗

f(I)) ln |E|). �∗
f(I)=*(1=c

∗)
yields an approximation to “Set Cover” up to ratio O(ln |E|) which is, up to the constant
hidden in the “O” notation, optimal [3]. It is thus the best guarantee on �∗

f(I) for any
index function I and any A∈ A.

The following theorem shows that the worst-case bound of Theorem 3 is achieved
by algorithm TD∈ A with Matsushita error.

Theorem 4. �∗
TD(IM )=*(1=c

∗).

Proof. Consider f output by TD. Fix 06k6K − 1. We have ∀hk+1 ∈H

�M (Sk;0; hk+1) = IM (q̂k;0)− p̂0k;0IM (q̂k+1;0)− p̂1k;0IM (1)

=
2
√

|S1k;0|
|S1k;0|+ 1

− |S1k+1;0|+ 1
|S1k;0|+ 1

×
2
√

|S1k+1;0|
|S1k+1;0|+ 1

=
2

(√
|S1k;0| −

√
|S1k+1;0|

)
|S1k;0|+ 1

:

Therefore, �hk+1 ; k(IM )=�M (Sk;0; hk+1)=IM (q̂k;0)= 1 −
√

|S1k+1;0|=|S1k;0|. Now note that
TD picks hk+1 = argmaxh∈H �M (Sk;0; h), and thus guarantees

|S1k+1;0| 6 |S1k;0|(1− (1=c∗)); (14)

since otherwise there could not be a cover of size c∗ of E. We get �M (Sk;0; hk+1)=
IM (q̂k;0)¿1 − √

1− (1=c∗), and since
√
1− (1=c∗)61 − (1=(2c∗)), we 3nally obtain

�hk+1 ; k(IM )¿(1=(2c
∗)). Since inequality (14) holds regardless of the depth, we have

�∗
f(IM )¿(1=(2c

∗)) and thus �∗(IM )=*(1=c∗).

Now, we skip to entropy-index based induction algorithms ∈ A. We show that they
bring minimal guarantees over the maximization of Eq. (6) that do not match those for
Matsushita index. This is due to a concavity property of the index criterion, a crucial
property in the results of Kearns and Mansour [7]. We also show that algorithm TD
brings the minimal guarantee.

Theorem 5. �∗
TD(IH )=*(1=(c

∗log|E|)).
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Proof. Consider some f output by TD and any depth 06k6K − 1. Basic arithmetics
yield with g(x)= log(1 + x) + xlog(1 + (1=x)):

�hk+1 ;k(IH ) = 1− (1 + |S1k+1;0|)log(1 + |S1k+1;0|)− |S1k+1;0|log|S1k+1;0|
(1 + |S1k;0|)log(1 + |S1k;0|)− |S1k;0|log|S1k;0|

= 1− g(|S1k+1;0|)
g(|S1k;0|)

:

Since g is strictly increasing over R+;∗, concave (g′′(x)=− 1=(x(1+x))) and |S1k+1;0| ¡
|S1k;0|, we have

g(|S1k+1;0|)¡ (|S1k+1;0| − |S1k;0|)g′(|S1k;0|) + g(|S1k;0|): (15)

The proof is now the same as that of Theorem 4, i.e. we look at the reduction index led
by picking h∗

k+1 = argmaxh∈H �H (Sk;0; h) in TD. Using inequalities (14) and (15), we
easily get �hk+1 ; k(IH )¿(|S1k;0| − |S1k+1;0|)g′(|S1k;0|)=g(|S1k;0|)¿|S1k;0|g′(|S1k;0|)=(c∗g(|S1k;0|)),
and thus

�hk+1 ;k(IH )¿
1
c∗

[
1− log(1 + |S1k;0|)

g(|S1k;0|)

]
:

We have |S1k;0|¿1, since otherwise |S1k;0|=0, thus it would label a leaf, and S1k+1;0
would not exist. Since log(1+(1=x))¿1=x−(1=(2x2))(x¿0), we get g(x)¿log(1+x)+
1− (1=2x), and therefore −log(1 + x)=g(x)¿− 2x log(1 + x)=(2x log(1 + x) + 2x− 1).
Furthermore, (2x− 1)=(2x log(1 + x) + 2x− 1)¿1=(4 log(1 + x)) (x¿1). Putting these
altogether, we obtain

�hk+1 ;k(IH )¿
1

4c∗log(1 + |S1k;0|)
= *(1=(c∗log|E|)):

We get �∗
f(IH )=*(1=(c

∗log|E|)). This yields the statement of Theorem 5.

Theorem 6. For any index function I, any A∈ A, any f output by A, �∗
f(IH )=

O(1=(c∗ log|E|)).

Proof. Consider any formula f output by A. We use the notations of Theorem 5.
Because g is strictly increasing and concave, we have g(|S1k+1;0|)¿(|S1k+1;0| − |S1k;0|)
g′(|S1k+1;0|) + g(|S1k;0|). This leads to

�hk+1 ;k(IH )6 (|S1k;0| − |S1k+1;0|)
g′(|S1k+1;0|)
g(|S1k;0|)

:

We would like �hk+1 ; k(IH )=O(1=(c
∗log|E|)), and thus g(|S1k;0|)=(|S1k;0| − |S1k+1;0|

(g′(|S1k+1;0|)))=*(c∗log|E|) for some suitable k. Since g(|S1k;0|)¿log(1 + |S1k;0|)



380 R. Nock, F. Nielsen / Theoretical Computer Science 321 (2004) 371–382

and g′(|S1k+1;0|)61=|S1k+1;0|, a suIcient condition is to have

|S1k+1;0|log(1 + |S1k;0|) = *((|S1k;0| − |S1k+1;0|)c∗ log|E|): (16)

Consider the 3rst step of the algorithm A, when k =0, S10;0 =E, and 3x |S11;0|= |E|−,.
Eq. (16) is then

log(1 + |E|) = *
(

,c∗

|E| − ,
log|E|

)
: (17)

From Lemma 1, a suIcient condition for Eq. (17) to hold is c∗=O(k ′Q), which is
the case under Lemma 2. This ends the proof of Theorem 6.

Now, we analyze the case of Gini-based induction algorithms ∈ A. We show that
they bring minimal guarantees over the maximization of Eq. (6) that do not match
those for the Entropy index. Again, this appears to be due to the concavity of the
criterion, and we show that algorithm TD realizes the minimal guarantee.

Theorem 7. �∗
TD(IG)=*(1=(c

∗|E|)).

Proof. The strategy is the same as those of Theorems 4 and 5, so we only sketch the
principal steps. We have from Eqs. (2) and (9)

�hk+1 ;k(IG) = (|S1k;0| − |S1k+1;0|)=(|S1k;0|(1 + |S1k+1;0|)): (18)

Because of Eq. (14), we get �hk+1 ; k(IG)¿1=(c
∗(1+ |S1k+1;0|))=*(1=(|E|c∗)). This ends

the proof of Theorem 7.

Theorem 8. For any index function I, any A∈A, any f output by A, �∗
f(IG)=

O(1=(|E|c∗)).

Proof. The strategy follows that of Theorem 6. Fix k =0, and |S10;0| − |S11;0|= ,.
Eq. (18) becomes �h1 ;0(IG)6,=(|E|(|E|−,)). This function is an increasing function of
,. If we pick ,=O(|E|=(k ′Q)) (Lemma 1), then a suIcient condition for Theorem 8
to hold is to have 1=(|E|(kQ−1))=O(1=(|E|c∗)), thus c∗=O(k ′Q), which is the case
under Lemma 2. This ends the proof of Theorem 8.

We end this section with our last replacement of I by Eq. (5), which yields IE(f)=
2”̂(f). According to Kearns and Mansour [7], it is an “especially poor choice” for I .
In our setting, we show that it is in fact the poorest of all.

Theorem 9. For any A∈ A, any f output by A, and any internal node (k; 0) of f,
�hk+1 ; k(IE)= 0.

(The proof is straightforward and omitted here.)
With this last criterion, everything is like if any induction algorithm A∈ A were

making blind choices for the internal nodes’ labels. Notice that there is a connection
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with TD and ChvRatal’s greedy “Set-Cover” approximation algorithm, which manages
an optimal approximation of the problem (up to low order terms). The criterion it
minimizes to pick hk is not the overall error IE(f), but the local error, IE(q̂k;0). It
is interesting to notice that Matsushita error, which is a global criterion, leads to the
same kind of optimal approximation for “Set Cover”.

5. Extension of the results

There are two ways to extend the results of the preceding section. The 3rst one
concerns classes H bigger than the set of description variables and the second concerns
classes of domain partitioning concepts di8erent from DT. It is easy to see that one can
replace H by larger classes of size polynomial in the number of description variables,
such as conjunctions of description variables’ assignments of bounded constant size,
while keeping all results. The argument consists in mapping all formulas in H to a
set of new description variables from which we make exactly the same reduction as
above. We can also replace the class DT by many other classes, whose elements would
represent on our family of samples S the same concepts as the simple DTs of Section 3.
The 3rst example is a generalization of DT: branching programs (BPs); BPs are direct
acyclic graphs (DAGs) relaxing the constraint that internal nodes must have in-degree 1.
Other examples include monomials (conjunction of description variables’ assignments),
disjunctive normal form formulas (DNF, disjunction of monomials), decision lists (DL,
ordered sets of if–then rules) [11,14], multilinear polynomials [10], and symmetric
functions (SF, formulas invariant upon permutation of the input bits) [6,12]. All these
classes share the additional commonpoint to have TD-like induction algorithms.

6. Discussion and conclusion

The ranking of the four index criteria follows exactly that of Kearns and Mansour [7].
The best criterion is IM , which matches the complexity-theoretic bound, while the
worst is IE ; the other two, Gini and the entropy, are in between, with the entropy
being the best of the two. The fact that our conclusions drawn from complexity theory
follow those of Kearns and Mansour [7] drawn from information theory is one more
advocacy for the strength of boosting, and advocates for the importance of choosing I
as accurately as possible from a general theoretical standpoint. TD also appears to be
the best induction algorithm among all polynomial-time approaches in our framework
(either top down or not).
However, it is remarkable that TD would induce the same concept on every 3xed

“Set Cover” instance, whichever index criterion it uses (di8erent from IE), and for any
applicable class of concept representation, thus contrasting with [7,8]. This paradox is
only apparent and comes from the fact that any index criterion minimization approach
is worst-case based from a classi3cation standpoint (recall that the index upperbounds
the error, see Section 2). Thus, di8erent index choices (or formulas from di8erent
classes) may not always yield the gaps predicted by theory on the respective formulas
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induced. This last remark tends to show that the search for matching lowerbounds [7]
may be bound to failure if we want them to hold regardless of some properties on the
sample S.
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