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Abstract

We present several efficient dynamic data structures for point-enclosure queries, involving convex fat objects in
R? or R3. Our planar structures are actually fitted for a more general class of objégts)-covered objects —
which are not necessarily convex, see definition below. These structures are more efficient than alternative known
structures, because they exploit the fatness of the objects. We then apply these structures to obtain efficient solution
to two problems: (i) finding a perfect containment matching between a set of points and a set of convex fat objects,
and (i) finding a piercing set for a collection of convex fat objects, whose size is optimal up to some constant
factor.0 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

A convex objectc in R? is a-fat, for some parameter > 1, if the ratio between the radii of the balls
st ands~ is at mostx, wheres™ is the smallest ball containingands ™~ is a largest ball that is contained
in ¢. Often the input set in practical instances of geometric problems consists of fat objects. Fat objects
have several desirable properties, which were used by many authors to obtain more efficient solutions to
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Fig. 1. Two(8, §)-covered objects.

a variety of algorithmic problems, when the underlying objects are fat. See [4,6,12,17,18,21,23,25,26]
for a sample of these results.

In a recent paper [17], Katz has designed a data structure of nearly linear size for sets of convex
a-fat objects in the plane. By augmenting the data structure in various ways he obtains efficient and
simple solutions to several query-type problems, includingothiat enclosurgroblem, where we wish
to determine whether a query poipties in the union of the input set, and, if so, to report a witness object
containingg, or, alternatively, report alt objects containing. The cost of such a query is(@olylogn)

(or O(polylogn + k - polylogn)), as opposed to roughly (@) (or O(/n + k)), which is the cost of a
guery when the fatness assumption is dropped and only nearly linear storage is allowed [3,19,20].

In this paper we continue the work of [17]. We first extend the above definition of fatness (in the plane)
to non-convex objects. A triangld is a (8, §)-triangle of a planar object (0 < 8 <7/3,0<6 < 1),
if A Cc, each of the angles af is at least8, and the length of each of its edges is at Iaadiam(c).

An objectc in the plane i3, §)-coveredf for each pointp € ¢ there exists @8, §)-triangle A of ¢ that
containsp (see Fig. 1).

It is easy to see that for convex objects the two definitions are equivalent, in the sense ibatfat,
for some constant, then it is also(B, §)-covered, for appropriate constarmisand s, and vice versa.
However, for non-convex objects the definition of being fat is more general than the definition of being
(8, 8)-covered; the former definition does not capture the class of objects that we wish to consider as fat
here, while the latter definition does. It is easy to verify that the same remark holds with respect to the
alternative definition of being fat due to van der Stappen et al. [25], which is also more general than the
definition of being(B, §)-covered.

Let C be a set of objects that consists of either convexfat objects inR? (for some small constant
a > 1), or (B, 8)-covered objects iR? (for some not too small constangsand §). In the paper we
present dynamic data structures bthat enable us to answer a point-enclosure query efficiently, and
to insert or delete objects into/frod efficiently. The specific bounds depend on the dimension (2D
or 3D) and on the type of objects that are stored in the data structure (e.g., aeffiexyolygons
or polyhedra, or convex-fat general objects). In general, these bounds are significantly better than
the corresponding known bounds where fatness is not assumed. Consider, for example, the case whel
the objects are (not necessarily axis-parallel) cubeR3nThe standard storage/query tradeoff in this
case lets (the size of the data structure) vary in the ramg® n°, and the query cost, expressed as a
function of bothn ands, is close ton/s2. Since cubes are fat objects, we may use our data structure
in this case. The effect of using our structure is equivalent to a reduction by one in the dimension,
in the sense that the storage/query tradeoff that we obtain is roughly the same as for triangles in the
plane. That is;s varies in the range to n?, and the query cost is only abouf./s. Moreover, the
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structure can be maintained dynamically, when inserting or deleting objects, at a cost of abpet
update.

In addition, in the planar case, the static version of our data structure for planéy-covered
objects, improves upon the corresponding structure of [17] in two ways: it applies to a larger class of
objects, i.e., tqB, §)-covered objects rather than to conuexat objects, and its corresponding bounds
(preprocessing, storage and query) are better by a logarithmic factor.

In Section 3 we present two applications of our data structures as stated in the abstract. In both
applications it is crucial that the structures be dynamic.

In the first application, we are given a setopoints and a set of convexa-fat objects inR? or in R®
(or a set ofn (B, §)-covered objects ifiR?), and the goal is to compute a perfect matching between the
points and objects, so that each point is matched to an object that contains it. Variants of this problem
arise frequently in geometric pattern matching [7,13]. Under appropriate (but rather weak) assumptions
on the input objects, we obtain algorithms that solve the matching problem in time clos@t8°0
in R3, and close to @%?) in R?. Our algorithms are based on the recent efficient matching technique of
Efrat and Itai [13].

Our second application concerns piercing fat objects. A set of pBimtsR? is apiercing seffor a set
C of objects, if for each objeat € C there exists a point i that lies inc. Finding a minimal piercing
set is NP-complete fof > 2 [16], so it is natural to seek approximate solutions, in which the size of the
computed piercing set is not much larger than the optimal size. The problem of finding a minimal piercing
set is a special instance of the well-knoggt covemproblem, if we regard each cell in the arrangement
of C as the subset of objects @fcontaining it. Therefore we can apply the greedy algorithm for finding
a set cover [10] to obtain, in polynomial time, a piercing set whose size is larger than the optimal size
by a factor of(1 + logl), wherel < n is thedepthof the arrangement af (the maximum number of
objects containing a common point). Brénnimann and Goodrich [9] (see also Clarkson [11]) presented
a polynomial-time algorithm for computing a set cover in which the approximation factor depends both
on the optimal cover size and on the VC-dimension of the underlying set system. If the VC-dimension
is some constant, then their algorithm finds a cover of sigel@a). We present algorithms for sets of
convexa-fat objects inR? or in R (or sets of(8, §)-covered objects iiR?) that find a piercing set whose
size is larger than the optimal size by only a constant factor. The running time is cloge*d)dn R3
and close to linear ifR?.

A third application is described in [15]. L€l be a set oz convexa-fat objects in the plane. In the
bounded-length segment shooting problem, we wish to prepragessthat, for a given oriented query
segment’ = cTE, whose length is at most some constant times the smallest diameter of an olgject in
the first object ofC hit by 7 (if such an object exists) can be found efficiently. (This is an ohjefair
which there existg € ¥ such that; € ¢, and the relative interior afz does not meet any object 6f)

An efficient solution to this problem is presented in [17] for the special case wheoasists of either
(constant-complexity) polygons or disks. In [15] we present a solution for the general (fat) case. The data
structure we describe is based on the (static version of the) data structure for point enclosure (see remar
just after Theorem 2.4); its size is nearly lineanirand the query cost is polylogarithmic, as opposed to
roughly Q(4/n) in the non-fat setting (see [1]).
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2. Dynamic data structures for fat objects

In this section we present efficient dynamic data structures for point-enclosure queries involving a
collectionC of either convex fat objects iR3, or (not necessarily convexp, §)-covered objects ifR?.
Specifically, we want such a structure to support queries in which we are given agpantt wish to
determine whethey lies in the union of the objects @, and, if so, report an object containigg(or,
alternatively, report all objects containirgg. We also want to maintain this structure under insertions
and deletions of objects into/fro. We present several data structures for this problem, depending on
the dimension and on the type of objectgin

2.1. Fat polytopes in three dimensions

Let C be a set of: convex polytopes ifR3. We assume that each polytopecidat, for some fixed
constant parameter > 1, and has a constant number of facets. We further assume that each facet of each
polytope inC is triangulated.

We first use a straightforward extension to three dimensions of the planar data structure of Katz [17], to
obtain a 3-level tred’, so that given a query poigt we can return, in Qog®n) time, Q(log®n) disjoint
canonical subsets @f, each stored at some nodeDf so that any polytope af containingg belongs
to one of these subsets, and so that each canonical subset has a nonempty intersection. (The constant
proportionality in these bounds depends:onThe structurd” can be constructed in@log®n) time and
requires Qn log?n) storage. The idea behind the structure in [17], is to construct a (three-dimensional)
segment tree for the axis-parallel bounding boxes of the objeafs ahd to use the fact that only a
constant number of points are needed to stab all objects associated with each canonical subset of thi
tree. Our tree7 can be maintained dynamically, using standard binary decomposition techniques of
Bentley and Saxe [8]. If constructing a static version of the data structure take® tilethen inserting
an object takes time @7 (n)/n) logn). Since in our cas& (n) = O(n log®n), the cost of an insertion is
O(log*n). Deletion of an object is done as follows: we mark as being deleted from each pre-stored
subset containing in each of the three levels @f. When the actual number of objects in such a subset
becomes less than half its original cardinality, we reconstruct all the substructures associated with this
subset.

We augmentZ as follows. LetC* C C be a canonical subset, and |et be a (pre-computed) point
common to all its elements (the construction enables us to assume tthaes not lie on the boundary of
any of the elements al*). Let 0* be an axis-parallel unit cube centeredgvét We centrally project the
boundary of eacl € C* from p* onto d 0*, to obtain a collection of Q) polygons, each having @)
edges, o Q*. We process each facgtof Q* for efficient point enclosure queries (in the non-fat planar
setting). That is, we construct a data structure (see [3]) using sDorage, where varies between and
n?, so that for a given poinj € f, we can report the set of polygons grthat containg as the disjoint
union of Qn'*¢/./s) canonical subsets. The cost of a query &®©¢/./s), and the structure can be
maintained dynamically, when inserting or deleting polygons, at a costsof®¢) per update.

We next construct another layer of our data structure, as follows. For each canonfealfgeilygons
stored in one of the point-enclosure substructures, we replace each potygori® by the plane
containing the polytope facet that has been projected mntmd store the (boundary of the) intersection
of the halfspaces bounded by these planes and not contajriingor this we use the data structure
of Agarwal and Matousek [5, Theorem 2.8], which maintains dynamically the upper envelope of these
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planes (relative to the normal direction of the faggt This structure enables us to determine itoQn)

time whether a query point lies above all these planes. Alternatively, it enables us to repdoign ©k)

time thek planes of this structure lying above a query point. Moreover, a plane can be inserted or deleted
in time O(n®). The construction of the structure is doable in time®?), and this is also the storage
needed. This completes the description of our data structure.

Answering a querylLet ¢ be a query point. We wish to determine whether some polytogecointains

g and, if so, produce a witness polytope that contairfer, alternatively, report all such polytopes). We
start by querying the first layer of our structure, and obtain a collection(lafg®») canonical subsets,
each augmented as above. For each subisetith a common poinp*, we compute the intersectiap

of the ray emerging fronp* towardsg with the boundary of the cub@*, and query the corresponding
planar point-enclosure substructure with The answer to this query consists ofd/./s) disjoint
canonical subsets of projected polytope facets, where all members of such a subsetotaiiinally
guery each of the corresponding third-layer upper-envelope substructureg. itk easy to verify that

g lies below the upper envelope of at least one such substructure if and anles in the union of
the polytopes of*. If this is the case, we can either report all polytopes containingy reporting all
the planes that lie abowg in each of the corresponding substructures, or stop after reporting just one
such plane. The overall cost of a query is thus easily seen ta¥ Q. /s), or O(n'*¢/ /s + k) in the
reporting version, wherk is the output size.

Updating the structure.Each of the three layers of our structure is dynamic, and the updating of the
whole structure is easy to do layer-by-layer. We omit the straightforward details. The overall cost of an
update operation is @/n'~¢). Thus we obtain the following theorem.

Theorem 2.1. LetC be a set of: convexa-fat polytopes irR3, each with a constant number of facets.
For any parameten < s < n?, we can preprocess in time O(s1*#), into a data structure of siz€(s),
such that finding a polytope @f containing a query point or reporting alt such polytopes can be
done in timeO(n*¢/,/s) or O(n'*¢//s + k), respectively. Moreover, we can insert or delete an objects
into/fromC in time O(s /n*~?).

2.2. Balls in three dimensions

The solution in this case is an immediate consequence of standard techniques, but we include its
description here for the sake of completeness. (See Theorem 2.5 for a summary of the results.)

Let By, ..., B, be then given balls. For each, let p; = (a;, b;, ¢;) denote the center a®; and letr;
denote its radius. A query poigt= (x, y, z) is insideB; if and only if

(x—a)?+ @ —b)?+(z—c)?<r?
or

(x, y,z,x% + y2+zz) -(=2a;, =2b;, —2¢;,1) < riz - a,'z — biz - Ciz-
Hence, if we transform the query poiptto the point7 = (x, v, z, x> + y? + z%) in R4, theng lies in the
union ofC if and only if g lies below the upper envelope of the hyperplafesy = «;, fori =1, ...,n,

where& = (—2a;, —2b;, —2¢;,1) anda; = r? — a?> — b? — c?. The data structure of Agarwal and
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Matousek [5] cited above allows us to answer such queries in timé'€y/s), using a data structure
that requires @) storage and G1*#) preprocessing time, whesean vary between andn?. Moreover,
we can insert or delete a hyperplane (i.e., a baRihin time O(s/n'~%).

2.3. General fat objects in three dimensions

Next consider the case whefeis a collection of general convex-fat objects inR3. We assume
here that each object i@ hasconstant description complexjtin the usual sense that its boundary is
a semialgebraic set defined in terms of a constant number of polynomial equalities and inequalities of
constant maximum degree.

In this case we use the first layer of the data structure described in Section 2.1 which also applies for
this kind of objects. For each canonical &t with a common poinp*, we represent the boundary of
eache € C* as a function = f.(6, ¢) in spherical coordinates abopt. With an appropriate standard re-
parameterization (which we will not detail here), the graphs of these functions are algebraic of constant
description complexity, in the above sense. We need to maintain the upper enkéloptaese functions.
Indeed, a query poinj lies in the union oC* if and only if r, < E*(6,, ¢,), Where(r,, 6,, ¢,) are the
spherical coordinates gf aboutp*.

The maintenance of this envelope can be accomplished using the ‘shallow-levels’ data structure of
Agarwal et al. [2]. This structure has siz&@*)>**) and can be constructed in timg@*)%¢), where
n* = |C*|. Using this structure, we can determine whetheg E*(6,, ¢,) in O(logn*) = O(logn) time,
or report allk objects ofC* that contairy in time O(logn + k). An insertion or deletion of an object takes
O((n*)***) time. It follows that the overall size of the full data structure is al§p%), that a query can
be performed in time Qog*n) (or O(log*n + k)), and that an update takes#3') time. These bounds
are summarized in Theorem 2.2.

Theorem 2.2. LetC be a set ofi convexx-fat objects inR3, each with constant description complexity.
We can preprocess in time O(n?+¢), into a data structure of siz®(n>**), such that finding an object of
C containing a query point or reporting all such objects can be done in ti®¢log’ ) or O(log*n + k),
respectively. Moreover, we can insert or delete an object into/ffom time O(n'*¢). The constant of
proportionality depends on and on the algebraic complexity of each object.

2.4. Generak B, §)-covered objects in the plane

In this subsection we consider the case wiikiea set of: general 8, §)-covered objects in the plane.
Recall that a planar objectis (8, §)-covered if for each poinp € ¢, there exists &g, §)-triangle ofc
that containg. That is, there exists a trianght C ¢, such that each of the anglesfis at leasts, each
of the edges ofA is at least - diam(c), andp € A. As before, we also assume that each object ivas
constant description complexity.

Recall that if all objects i€ are convex, then the two-dimensional data structure of [17], mentioned
above, can be used for the static version of the point enclosure problem. (Since in this case, all objects
in C are a-fat for an appropriate constant) Using this data structure, one can find an objeetC
containing a query point, or determine that no such object exists(log:) time. Below we describe
a dynamic data structure whose static version has two advantages over the data structure in [17]. It is
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Fig. 2. The proof of Lemma 2.3.

suitable for a more general class of objects, namgys)-covered objects, and the cost of a query is
only O(log?n).

Let o be a vertical infinite strip of unit width. Let € C be an object whose-projection contains the
x-projection ofo, and its diameter is large enough, so that ghys)-triangle ofc contains a horizontal
segment of unit length. Ldf, be a partition oty into pairwise openly-disjoint square cells of unit edge
length, lety be a cell ofl,, and letc, =cNy.

Let,, denote the horizontal ling = yo. We say that a cell is abnormal(with respect ta), if there
existsyo such that,, intersectsc,, and the two endpoints of one (or more) of the connected portions
(intervals) ofc, N1y, lie strictly in the interior ofy. All cells which are not abnormal arermal

Lemma 2.3. At mostO(1) cells of I, are abnormal with respect to.

Proof. Sincec has constant description complexity, the boundary iotersects the boundary efat a
setX of O(1) points. We charge each abnormal gelto a point of X’ that lies either iny or in one of
the 2, neighboring cells of, s, in each direction, where is an appropriate constant. Thus each point
of X' is charged at mosts2 + 1 times.

Let y € I, be an abnormal cell, and letc /,, be an interval ofc, N /,,, for somel,;, such that
both its endpointg andg lie in the interior ofy. Let A be a(B, §)-triangle ofc that containsp; see
Fig. 2. LetA(yo) be the intersection ofA with the linel,,. We investigate the functiom(y)|, the length
of A(y) = AnNl,. Clearly,|A(y)| is not maximal atyg, since|A(yo)| < 1. However, we can choose a
constants,, such that either iry, or within thes, upwards/downwards neighboring cellsof | A(y)|
becomes greater than 1. Thug; must intersect the boundary ef either iny, or in one of thes,
neighboring cells of, and we charge to such an intersection point.C

We next describe the data structure. Zetbe a segment tree constructed on the projections on the
x-axis of the objects of . Each nodey of 7 corresponds to a vertical infinite slah, and to a subset
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C, C C of objects. We divide each slah, into a constant number of narrower non-overlappstgps,
oy, - - -, Oy, Of @qual width, such that anyg, §)-triangle of an object € C, can contain a horizontal line
segment whose length is equal to the width of a strip. (This is possible sincécglisngreater than the
width of o, and sinces is a not too small constant.) By abusing notation, we replace eachmnede
by a set of nodes;, ..., v, such thaty; corresponds to the strip, andC, =C, (fori =1,...,1).
Combining Lemma 2.3 with the properties of segment trees, one can easily show that

> > number of cells in, for which c is abnormak= O(n logn).
veT ceCy

Let v be a vertex of7, and lety be a cell ofl,, that is abnormal for at least one of the object€jn
PutC! = {c|c €C,, y is abnormal with respect te}. We can find a set of point®, of constant size,
such that ifA is any (B, §)-triangle of an object € CY that intersectg/, then at least one of the points
in P, lies in A. The existence of, follows from the fact thatA is fat and its area is a constant factor
times the area of (and A Ny # ). Therefore, each point € ¢, can be connected to a poifitc P,
by a segment that is fully contained in (Simply, connectp to a point¢ € P, that lies in one of the
(8, 8)-triangles ofc containingp.) We say thap is visiblefrom &, and the union of all points af which
are visible from¢ is called thevisible region of in ¢, and denoted;. We thus compute for each object
c € C} and for each poing € P, the regionc;. PutCe = {c¢ | c € C)},for & € P,.

Clearly, the boundary of: can be expressed as a functiﬁrg(@), 0<6 <2r; fo,(0) is the distance
from £ to the point on the boundary of where the ray of orientatiof emanating fron€ crosses the
boundary ofc;. Consider the upper envelope of the set of functigas= {f..(0) |c € C}}, for& € P,.
Analogously to Section 2.3, a query poiptwhose polar coordinates with respecté&are (9, p), is
contained in some visible regieg if and only if the value attained by the upper envelope-pht6 is at
leastp. The complexity of the upper envelope Bf is O(A,, (|CY 1)), wheres; is an appropriate constant,
andAa, (n) is the maximum length ofz, s) Davenport—Schinzel sequences [24].

We constructtlffy)’s, which is the shallow-level data structure of Agarwal et al. [2] to maintain the

functions of 7;. Let ¥ be the list of roots of the structurasf’?’y)’s, & € P,. We construct a balanced
search tredflfh over the cells i}, that are abnormal for at least one of the objects,inand attach to
each such cel its corresponding lis#?). We associate " with the nodev.

For eache € C, denote

¢ =(n crv)\ U{y € I,, | y is abnormal for} .

We next construct a data structure for the regiofis, ¢ € C,. Note thatc™ (and its boundary) may
intersect any number of cells @t,,. For eachc™ we define two (not necessarily disjoint) regions?
and ¢, that are contained in®™ and whose union is™ (see Fig. 3).c"” is the region ofc™ in
which ¢ is a (partially defined) functiog’(y) defined on the left boundary ef,, andc"" is the
region of ¢ in which ¢™ is a (partially defined) functiorz”’(y) defined on the right boundary of
o,. PUtC™ = (¢ | ¢ € C,} andC") = (™) | ¢ € C,}. Let G (respectivelyG"’) denote the right
(respectively left) envelope of the functiogd (y) (respectivelyg”(y)), ¢ € C,. Clearly, a query point
g = (x, y) which is contained in a cejl € I, is also contained in some object C, for which the cell
y is normal if and only if it is to the left o§", or to the right ofg".

We maintain these envelopes again using the shallow level data structure cited above, denoted in this
context=Z ) and 2", respectively. These structures are associated with themnode
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Answering a queryGiven a query point;, we first queryZ to find the Qlogn) slabso, containingg.
For each such slab, we first need to check wheghies in ¢™, for somec € C,. This can be done in
O(logn) time, using the structure8! and &7

Next we search iw V) (usingq’s y-coordinate) for the cely containingg and its appropriate list of
structuresplffy). We perform a query in each of the (constant number of) corresponding struv}tﬁifgs
in order to determine whether one of the objectsC, for which y is abnormal containg. As easily
seen, the overall required time ig16g% n).

Updating the structure.Each of the ingredients of our structure is dynamic, and the updating of the
whole structure is easy to do layer-by-layer. We omit the straightforward details. The overall cost of an
update operation is @¢). We have thus shown the following theorem.

Theorem 2.4. LetC be a set ofi (B, §)-covered objects in the plane, of constant description complexity,
for fixed positive parameterg, 5. We can preproces§ into a data structure of siz®(n'*®), using
O(n**%) preprocessing time, such that one can determine in @eg?n) whether a query poing is
contained in some object 6f or report all objects ol containingg in time O(log? n + k), wherek is

the size of the output. Moreover, we can insert or delete an objects intaffiartime O(n¢).

Remark. Note that if we are only interested in a static version, we use a standard sorted array
for the vertices of the upper envelope of the functichis and for the envelope§” and G. As

easily checked (see [17]), performing a query is still doable in timi®dn), the preprocessing

time is CXASl(n)Iogzn), and the storage needed iSAQ(n)logn). For the reporting version, the
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preprocessing time is @, (n) log®n), the storage required is(@,, (n) log®n), and the cost of a query is
O(log?n + klog?n). In both modes (decision and reporting), if the objects are polygons,ither in

the bounds above is replaced byAll these bounds are better by a logarithmic factor in comparison to
the corresponding bounds in [17].

2.5. (B, 8)-covered polygons

We can do somewhat better if the objectsCirare (8, §)-covered polygons iiR?, each with Q1)
edges. In this case, we use the data structure of the previous section, applying an idea from Section 2.1
Observe that the visible regionrs that are computed are star-shaped polygons (with ‘cegjerFor
each canonical s&l;, we map each edge of each of the polygong:irio an angular interval abogt,
and store these intervals in a segment tree. Each nadiéhe tree is associated with some subSgtof
polygon edges. We replace each such edge by the line containing it, and maintain the intersection of the
halfplanes bounded by these lines and not contaigingsing the dynamic data structure of Overmars
and van Leeuwen [22]. Hence, for a query paintve compute,, the orientation of; abouté, compute
the (logn) canonical subsets in the segment tree, each of whose ranges céptam®(logn) time,
and determine for each of them whethelies in the corresponding intersection of halfplanes. The cost
of querying a single canonical sét is thus Qlog?n) (or O(log?n + k) in the reporting mode).

We handle the set8”” (alternatively,C"") in a similar way. We project each edge of the polygonal
regions inC"" on the left boundary of,, and store these projections in a segment tree and proceed as
above. The cost of querying the canonical&&? (alternatively,C") is thus Qlog?n) (or O(log?n + k)
in the reporting mode).

Since we repeat this @gn) times, the total cost of a query is(Iog®n) (or O(log®n + k) in the
reporting mode). Insertion or deletion of a polygon can be done in tilegty), using the binary
decomposition technique of Bentley and Saxe [8] mentioned above. If only deletions are required, then a
deletion can be done in time(@g®n). We thus obtain Theorem 2.5.

Theorem 2.5. LetC be a collection of: (8, §)-covered polygons iiR?, each withO(1) edges. We can
preproces€’ in timeO(n log®n) into a data structure of siz&(n log®n), such that finding a polygon 6f
containing a query point or reporting all such objects can be done in tirfdglog® n) or O(log®n + k),
respectively. Moreover, we can insert or delete a polygon into/ttdmtime O(log®* n).

Table 1
Obijects: General Polytopes Balls General Polygons
objects objects
Dimension 3D 3D 3D 2D 2D
Preprocessing @?2*e) O(s1te) O(s1te) Onlte) O(nlog®n)
Storage n2te) O(s) O(s) O(nlte) O(nlog®n)
Query Qlog*n)  Om//s)  O@m*¢/\/s)  O(log?n) O(log®n)

Update Qnlte) O(s/n1~%) O(s/n1%) On®) O(log*n)
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The results obtained in this section are summarized in Table 1. The paramepeesents any fixed
integer between andn?.

3. Applications of the data structures
3.1. Matching points and fat objects

Let C be a set of: convexa-fat objects inR? or R3, or a set ofn (B, §)-covered objects ifR?, and
let P be a set ofz points. We want to solve theontainment matching problenwhich is to determine
whether there exists a perfect matching in the bipartite graph whose edges are of tlig foynmvhere
p € P,ceCandp e c. Thatis, we want to match each point Bfto a distinct object that contains it.

Questions of this kind arise frequently in geometpiattern matchingwhere we seek a bijection
between two sets of points of equal size, s&y {a1,...,a,} and B = {by, ..., b,}, and the distance
between any pair of matched points has to be at most some paramétehis case the objects of
arer-neighborhoods of the points (typically, balls of radius- centered at the points). See [13] for a
general discussion of this problem, as well as for the relevant literature.

This problem is also similar to the problem investigated by Arkin et al. [7], where a set of points and
a set of pairwise-disjoint objects are given, and we seek a transformation that places each point into one
of the objects. This problem, however, is different from our problem, in which the objects do not have to
be disjoint, and no transformation of the points is allowed.

We can solve the matching problem by applying the bottleneck matching algorithm of Efrat and
Itai [13]. This algorithm maintains a dynamic data structure that stores a subset of the objécts of
and supports queries where we specify a pginand wish to find an object in the current subset
that containsp, and then delete that object from the structure. The algorithm perforn¥3 such
operations, and its running time is dominated by the cost of these operations.

We use the appropriate data structure from among those developed in the preceding section, dependin
on the type of objects id. In the three-dimensional cases, we set the storage parasrteteen®3, so
that both queries and updates take:&°+¢) time each. We thus obtain the following theorem.

Theorem 3.1. LetC be a set of: convexa-fat objects inR? (for 4 = 2, 3) or a set ofn (B, §)-covered
objects inR?, each of a constant description complexity, andAebe a set of: points inR¢. Then we

can either find a one-to-one matching betwdeandC, such that each poing € P is contained in the
object ofC matched top, or determine that no such matching exists. The running time of the algorithm
is O(n'Y/6+¢) for polytopes inR® and for balls inR3. The running time is close ©(n*?+*) for general
objects andD(1n%/?polylogn) for polygons inR?.

3.2. Piercing fat objects

Let C be a set of convexa-fat objects inR? or R3, or a set ofz (8, §)-covered objects iR?. In this
subsection we present algorithms for computing a piercing sef.f&ecall that a set of point® is a
piercing seffor C, if for each object e C there exists a point if? that lies inc. The algorithms produce
piercing sets whose size is optimal up to a constant factor.

The high-level description of the algorithm is simple: For each ohkject, let Q. denote the smallest
axis-parallel cube enclosing. We sort the objects of in increasing order of the size af.. The
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Table 2
Obijects: Polytopes Balls General Polygons
Dimension 3D 3D 2D 2D

Running time Qn?/3+e) O(n?/3+¢) O(nlte) O(nlog*n)

algorithm works in stages, where thh stage starts with the subsg&tof C consisting of those objects
that have not yet been pierced (initialy = C). Let ¢; be the smallest object (in the above order¥in
LetbQ,, be the cubg),, scaled by some fixed factér> 1 about its center (we can choose, ehgs 2).
The fatness/covering property of the objectadind the fact that; is the smallest object i@f; imply
that for any object e C; that intersects;, the measure of N bQ,, is at least some fixed fraction of
the measure 0bQ,,. Hence, we can place a constant number of points ins@g (this number only
depends omx andd), so that any € C; that intersects; will contain one of these points. We add these
points to the output piercing set, and delete frénall the objects that are pierced by any of them. The
subset; .1 of the remaining objects is then passed to the next stage. The algorithm terminates when this
set becomes empty.

The termination of the algorithm, and the fact that its output is a piercing set are both obvious.
Moreover, the objects,, ¢y, . .. are pairwise disjoint, so if the algorithm terminates aftestages, then
the size of the optimal piercing set is at legstwhereas the size of the output ig 0, so the output
size is indeed optimal up to a constant factor. To implement the algorithm, we use the appropriate data
structure developed in the preceding section, to obtain the following result.

Theorem 3.2. Let C be a set of: convexa-fat objects inR?, for some fixed constant > 1 and for
d = 2,3, or a set ofn (B, §)-covered objects ifR?, where each object i€ has constant description
complexity. Then we can compute a piercing setCfof sizeO( ), with the constant of proportionality
depending o andd, wherej is the size of a minimal-cardinality piercing set for The running time
of the algorithm depends ah and on the type of objects {h see Table 2.
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