
Computational Geometry 15 (2000) 215–227

Dynamic data structures for fat objects
and their applications✩

Alon Efrata, Matthew J. Katzb,∗,1, Frank Nielsenc, Micha Sharira,d,2
a School of Mathematical Sciences, Tel Aviv University, Tel-Aviv 69978, Israel

b Department of Mathematics & Computer Science, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
c SONY Computer Science Laboratories Inc., Tokyo, Japan

d Courant Institute of Mathematical Sciences, New York University, New York, USA

Communicated by M. Overmars; received 2 November 1998; received in revised form 5 October 1999; accepted 1 December
1999

Abstract

We present several efficient dynamic data structures for point-enclosure queries, involving convex fat objects in
R2 or R3. Our planar structures are actually fitted for a more general class of objects –(β, δ)-covered objects –
which are not necessarily convex, see definition below. These structures are more efficient than alternative known
structures, because they exploit the fatness of the objects. We then apply these structures to obtain efficient solutions
to two problems: (i) finding a perfect containment matching between a set of points and a set of convex fat objects,
and (ii) finding a piercing set for a collection of convex fat objects, whose size is optimal up to some constant
factor. 2000 Elsevier Science B.V. All rights reserved.

Keywords:Fat objects; Dynamic data structure; Point enclosure; Containment matching; Piercing set

1. Introduction

A convex objectc in Rd is α-fat, for some parameterα > 1, if the ratio between the radii of the balls
s+ ands− is at mostα, wheres+ is the smallest ball containingc ands− is a largest ball that is contained
in c. Often the input set in practical instances of geometric problems consists of fat objects. Fat objects
have several desirable properties, which were used by many authors to obtain more efficient solutions to

✩ A preliminary version of this paper appeared as [14].∗Corresponding author.
E-mail addresses:matya@cs.bgu.ac.il (M.J. Katz), alone@math.tau.ac.il (A. Efrat), nielsen@csl.sony.co.jp (F. Nielsen),

sharir@math.tau.ac.il (M. Sharir).
1 Supported by the Israel Science Foundation founded by the Israel Academy of Sciences and Humanities.
2 Supported by NSF Grant CCR-97-32101, by a grant from the U.S.–Israeli Binational Science Foundation, by the ESPRIT

IV LTR project No. 21957 (CGAL), and by the Hermann Minkowski–MINERVA Center for Geometry at Tel Aviv University.

0925-7721/00/$ – see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S0925-7721(99)00059-0

216 A. Efrat et al. / Computational Geometry 15 (2000) 215–227

Fig. 1. Two(β, δ)-covered objects.

a variety of algorithmic problems, when the underlying objects are fat. See [4,6,12,17,18,21,23,25,26]
for a sample of these results.

In a recent paper [17], Katz has designed a data structure of nearly linear size for sets of convex
α-fat objects in the plane. By augmenting the data structure in various ways he obtains efficient and
simple solutions to several query-type problems, including thepoint enclosureproblem, where we wish
to determine whether a query pointq lies in the union of the input set, and, if so, to report a witness object
containingq, or, alternatively, report allk objects containingq. The cost of such a query is O(polylogn)
(or O(polylogn+ k · polylogn)), as opposed to roughly O(

√
n) (or O(

√
n+ k)), which is the cost of a

query when the fatness assumption is dropped and only nearly linear storage is allowed [3,19,20].
In this paper we continue the work of [17]. We first extend the above definition of fatness (in the plane)

to non-convex objects. A triangle∆ is a (β, δ)-triangle of a planar objectc (0< β 6 π/3, 0< δ < 1),
if ∆⊆ c, each of the angles of∆ is at leastβ, and the length of each of its edges is at leastδ · diam(c).
An objectc in the plane is(β, δ)-coveredif for each pointp ∈ c there exists a(β, δ)-triangle∆ of c that
containsp (see Fig. 1).

It is easy to see that for convex objects the two definitions are equivalent, in the sense that ifc is α-fat,
for some constantα, then it is also(β, δ)-covered, for appropriate constantsβ and δ, and vice versa.
However, for non-convex objects the definition of being fat is more general than the definition of being
(β, δ)-covered; the former definition does not capture the class of objects that we wish to consider as fat
here, while the latter definition does. It is easy to verify that the same remark holds with respect to the
alternative definition of being fat due to van der Stappen et al. [25], which is also more general than the
definition of being(β, δ)-covered.

Let C be a set ofn objects that consists of either convexα-fat objects inR3 (for some small constant
α > 1), or (β, δ)-covered objects inR2 (for some not too small constantsβ and δ). In the paper we
present dynamic data structures forC that enable us to answer a point-enclosure query efficiently, and
to insert or delete objects into/fromC efficiently. The specific bounds depend on the dimension (2D
or 3D) and on the type of objects that are stored in the data structure (e.g., convexα-fat polygons
or polyhedra, or convexα-fat general objects). In general, these bounds are significantly better than
the corresponding known bounds where fatness is not assumed. Consider, for example, the case where
the objects are (not necessarily axis-parallel) cubes inR3. The standard storage/query tradeoff in this
case letss (the size of the data structure) vary in the rangen to n3, and the query cost, expressed as a
function of bothn ands, is close ton/s1/3. Since cubes are fat objects, we may use our data structure
in this case. The effect of using our structure is equivalent to a reduction by one in the dimension,
in the sense that the storage/query tradeoff that we obtain is roughly the same as for triangles in the
plane. That is,s varies in the rangen to n2, and the query cost is only aboutn/

√
s. Moreover, the

A. Efrat et al. / Computational Geometry 15 (2000) 215–227 217

structure can be maintained dynamically, when inserting or deleting objects, at a cost of abouts/n per
update.

In addition, in the planar case, the static version of our data structure for planar(β, δ)-covered
objects, improves upon the corresponding structure of [17] in two ways: it applies to a larger class of
objects, i.e., to(β, δ)-covered objects rather than to convexα-fat objects, and its corresponding bounds
(preprocessing, storage and query) are better by a logarithmic factor.

In Section 3 we present two applications of our data structures as stated in the abstract. In both
applications it is crucial that the structures be dynamic.

In the first application, we are given a set ofn points and a set ofn convexα-fat objects inR2 or inR3

(or a set ofn (β, δ)-covered objects inR2), and the goal is to compute a perfect matching between the
points and objects, so that each point is matched to an object that contains it. Variants of this problem
arise frequently in geometric pattern matching [7,13]. Under appropriate (but rather weak) assumptions
on the input objects, we obtain algorithms that solve the matching problem in time close to O(n11/6)

in R3, and close to O(n3/2) in R2. Our algorithms are based on the recent efficient matching technique of
Efrat and Itai [13].

Our second application concerns piercing fat objects. A set of pointsP in Rd is apiercing setfor a set
C of objects, if for each objectc ∈ C there exists a point inP that lies inc. Finding a minimal piercing
set is NP-complete ford > 2 [16], so it is natural to seek approximate solutions, in which the size of the
computed piercing set is not much larger than the optimal size. The problem of finding a minimal piercing
set is a special instance of the well-knownset coverproblem, if we regard each cell in the arrangement
of C as the subset of objects ofC containing it. Therefore we can apply the greedy algorithm for finding
a set cover [10] to obtain, in polynomial time, a piercing set whose size is larger than the optimal size
by a factor of(1+ logl), wherel 6 n is thedepthof the arrangement ofC (the maximum number of
objects containing a common point). Brönnimann and Goodrich [9] (see also Clarkson [11]) presented
a polynomial-time algorithm for computing a set cover in which the approximation factor depends both
on the optimal cover sizea and on the VC-dimension of the underlying set system. If the VC-dimension
is some constant, then their algorithm finds a cover of size O(a loga). We present algorithms for sets of
convexα-fat objects inR2 or inR3 (or sets of(β, δ)-covered objects inR2) that find a piercing set whose
size is larger than the optimal size by only a constant factor. The running time is close to O(n4/3) in R3

and close to linear inR2.
A third application is described in [15]. LetC be a set ofn convexα-fat objects in the plane. In the

bounded-length segment shooting problem, we wish to preprocessC, so that, for a given oriented query
segmentEr = −→ab, whose length is at most some constant times the smallest diameter of an object inC,
the first object ofC hit by Er (if such an object exists) can be found efficiently. (This is an objectc for
which there existsz ∈ Er such thatz ∈ c, and the relative interior ofaz does not meet any object ofC.)
An efficient solution to this problem is presented in [17] for the special case whereC consists of either
(constant-complexity) polygons or disks. In [15] we present a solution for the general (fat) case. The data
structure we describe is based on the (static version of the) data structure for point enclosure (see remark
just after Theorem 2.4); its size is nearly linear inn, and the query cost is polylogarithmic, as opposed to
roughly O(

√
n) in the non-fat setting (see [1]).

218 A. Efrat et al. / Computational Geometry 15 (2000) 215–227

2. Dynamic data structures for fat objects

In this section we present efficient dynamic data structures for point-enclosure queries involving a
collectionC of either convex fat objects inR3, or (not necessarily convex)(β, δ)-covered objects inR2.
Specifically, we want such a structure to support queries in which we are given a pointq and wish to
determine whetherq lies in the union of the objects ofC, and, if so, report an object containingq (or,
alternatively, report all objects containingq). We also want to maintain this structure under insertions
and deletions of objects into/fromC. We present several data structures for this problem, depending on
the dimension and on the type of objects inC.

2.1. Fat polytopes in three dimensions

Let C be a set ofn convex polytopes inR3. We assume that each polytope isα-fat, for some fixed
constant parameterα > 1, and has a constant number of facets. We further assume that each facet of each
polytope inC is triangulated.

We first use a straightforward extension to three dimensions of the planar data structure of Katz [17], to
obtain a 3-level treeT , so that given a query pointq, we can return, in O(log3n) time, O(log3n) disjoint
canonical subsets ofC, each stored at some node ofT , so that any polytope ofC containingq belongs
to one of these subsets, and so that each canonical subset has a nonempty intersection. (The constant of
proportionality in these bounds depends onα.) The structureT can be constructed in O(n log3n) time and
requires O(n log2n) storage. The idea behind the structure in [17], is to construct a (three-dimensional)
segment tree for the axis-parallel bounding boxes of the objects ofC, and to use the fact that only a
constant number of points are needed to stab all objects associated with each canonical subset of this
tree. Our treeT can be maintained dynamically, using standard binary decomposition techniques of
Bentley and Saxe [8]. If constructing a static version of the data structure takes timeT (n), then inserting
an object takes time O((T (n)/n) logn). Since in our caseT (n)=O(n log3n), the cost of an insertion is
O(log4n). Deletion of an objectc is done as follows: we markc as being deleted from each pre-stored
subset containingc in each of the three levels ofT . When the actual number of objects in such a subset
becomes less than half its original cardinality, we reconstruct all the substructures associated with this
subset.

We augmentT as follows. LetC∗ ⊆ C be a canonical subset, and letp∗ be a (pre-computed) point
common to all its elements (the construction enables us to assume thatp∗ does not lie on the boundary of
any of the elements ofC∗). LetQ∗ be an axis-parallel unit cube centered atp∗. We centrally project the
boundary of eachc ∈ C∗ from p∗ onto ∂Q∗, to obtain a collection of O(n) polygons, each having O(1)
edges, on∂Q∗. We process each facetf of Q∗ for efficient point enclosure queries (in the non-fat planar
setting). That is, we construct a data structure (see [3]) using O(s) storage, wheres varies betweenn and
n2, so that for a given pointq ∈ f , we can report the set of polygons onf that containq as the disjoint
union of O(n1+ε/

√
s) canonical subsets. The cost of a query is O(n1+ε/

√
s), and the structure can be

maintained dynamically, when inserting or deleting polygons, at a cost of O(s/n1−ε) per update.
We next construct another layer of our data structure, as follows. For each canonical setP of polygons

stored in one of the point-enclosure substructures, we replace each polygonπ in P by the plane
containing the polytope facet that has been projected ontoπ , and store the (boundary of the) intersection
of the halfspaces bounded by these planes and not containingp∗. For this we use the data structure
of Agarwal and Matoušek [5, Theorem 2.8], which maintains dynamically the upper envelope of these

A. Efrat et al. / Computational Geometry 15 (2000) 215–227 219

planes (relative to the normal direction of the facetf). This structure enables us to determine in O(logn)
time whether a query point lies above all these planes. Alternatively, it enables us to report in O(logn+k)
time thek planes of this structure lying above a query point. Moreover, a plane can be inserted or deleted
in time O(nε). The construction of the structure is doable in time O(n1+ε), and this is also the storage
needed. This completes the description of our data structure.

Answering a query.Let q be a query point. We wish to determine whether some polytope ofC contains
q and, if so, produce a witness polytope that containsq (or, alternatively, report all such polytopes). We
start by querying the first layer of our structure, and obtain a collection of O(log3n) canonical subsets,
each augmented as above. For each subsetC∗, with a common pointp∗, we compute the intersectionq ′
of the ray emerging fromp∗ towardsq with the boundary of the cubeQ∗, and query the corresponding
planar point-enclosure substructure withq ′. The answer to this query consists of O(n1+ε/

√
s) disjoint

canonical subsets of projected polytope facets, where all members of such a subset containq ′. We finally
query each of the corresponding third-layer upper-envelope substructures withq. It is easy to verify that
q lies below the upper envelope of at least one such substructure if and only ifq lies in the union of
the polytopes ofC∗. If this is the case, we can either report all polytopes containingq, by reporting all
the planes that lie aboveq in each of the corresponding substructures, or stop after reporting just one
such plane. The overall cost of a query is thus easily seen to be O(n1+ε/

√
s), or O(n1+ε/

√
s + k) in the

reporting version, wherek is the output size.

Updating the structure.Each of the three layers of our structure is dynamic, and the updating of the
whole structure is easy to do layer-by-layer. We omit the straightforward details. The overall cost of an
update operation is O(s/n1−ε). Thus we obtain the following theorem.

Theorem 2.1. Let C be a set ofn convexα-fat polytopes inR3, each with a constant number of facets.
For any parametern6 s 6 n2, we can preprocessC in timeO(s1+ε), into a data structure of sizeO(s),
such that finding a polytope ofC containing a query point or reporting allk such polytopes can be
done in timeO(n1+ε/

√
s) or O(n1+ε/

√
s + k), respectively. Moreover, we can insert or delete an objects

into/fromC in timeO(s/n1−ε).

2.2. Balls in three dimensions

The solution in this case is an immediate consequence of standard techniques, but we include its
description here for the sake of completeness. (See Theorem 2.5 for a summary of the results.)

Let B1, . . . ,Bn be then given balls. For eachi, let pi = (ai, bi, ci) denote the center ofBi and letri
denote its radius. A query pointq = (x, y, z) is insideBi if and only if

(x − ai)2+ (y − bi)2+ (z− ci)26 r2
i

or (
x, y, z, x2+ y2+ z2) · (−2ai, −2bi, −2ci,1)6 r2

i − a2
i − b2

i − c2
i .

Hence, if we transform the query pointq to the pointq̄ = (x, y, z, x2+ y2+ z2) in R4, thenq lies in the
union ofC if and only if q̄ lies below the upper envelope of the hyperplanesξ i · x = αi , for i = 1, . . . , n,
where ξi = (−2ai, −2bi, −2ci,1) and αi = r2

i − a2
i − b2

i − c2
i . The data structure of Agarwal and

220 A. Efrat et al. / Computational Geometry 15 (2000) 215–227

Matoušek [5] cited above allows us to answer such queries in time O(n1+ε/
√
s), using a data structure

that requires O(s) storage and O(s1+ε) preprocessing time, wheres can vary betweenn andn2. Moreover,
we can insert or delete a hyperplane (i.e., a ball inR3) in time O(s/n1−ε).

2.3. General fat objects in three dimensions

Next consider the case whereC is a collection of general convexα-fat objects inR3. We assume
here that each object inC hasconstant description complexity, in the usual sense that its boundary is
a semialgebraic set defined in terms of a constant number of polynomial equalities and inequalities of
constant maximum degree.

In this case we use the first layer of the data structure described in Section 2.1 which also applies for
this kind of objects. For each canonical setC∗, with a common pointp∗, we represent the boundary of
eachc ∈ C∗ as a functionr = fc(θ,φ) in spherical coordinates aboutp∗. With an appropriate standard re-
parameterization (which we will not detail here), the graphs of these functions are algebraic of constant
description complexity, in the above sense. We need to maintain the upper envelopeE∗ of these functions.
Indeed, a query pointq lies in the union ofC∗ if and only if rq 6 E∗(θq, φq), where(rq, θq, φq) are the
spherical coordinates ofq aboutp∗.

The maintenance of this envelope can be accomplished using the ‘shallow-levels’ data structure of
Agarwal et al. [2]. This structure has size O((n∗)2+ε) and can be constructed in time O((n∗)2+ε), where
n∗ = |C∗|. Using this structure, we can determine whetherrq 6E∗(θq, φq) in O(logn∗)=O(logn) time,
or report allk objects ofC∗ that containq in time O(logn+k). An insertion or deletion of an object takes
O((n∗)1+ε) time. It follows that the overall size of the full data structure is also O(n2+ε), that a query can
be performed in time O(log4n) (or O(log4n+ k)), and that an update takes O(n1+ε) time. These bounds
are summarized in Theorem 2.2.

Theorem 2.2. LetC be a set ofn convexα-fat objects inR3, each with constant description complexity.
We can preprocessC in timeO(n2+ε), into a data structure of sizeO(n2+ε), such that finding an object of
C containing a query point or reporting allk such objects can be done in timeO(log4n) or O(log4n+k),
respectively. Moreover, we can insert or delete an object into/fromC in time O(n1+ε). The constant of
proportionality depends onε and on the algebraic complexity of each object.

2.4. General(β, δ)-covered objects in the plane

In this subsection we consider the case whereC is a set ofn general(β, δ)-covered objects in the plane.
Recall that a planar objectc is (β, δ)-covered if for each pointp ∈ c, there exists a(β, δ)-triangle ofc
that containsp. That is, there exists a triangle∆⊆ c, such that each of the angles of∆ is at leastβ, each
of the edges of∆ is at leastδ · diam(c), andp ∈∆. As before, we also assume that each object inC has
constant description complexity.

Recall that if all objects inC are convex, then the two-dimensional data structure of [17], mentioned
above, can be used for the static version of the point enclosure problem. (Since in this case, all objects
in C areα-fat for an appropriate constantα.) Using this data structure, one can find an objectc ∈ C
containing a query point, or determine that no such object exists, in O(log3n) time. Below we describe
a dynamic data structure whose static version has two advantages over the data structure in [17]. It is

A. Efrat et al. / Computational Geometry 15 (2000) 215–227 221

Fig. 2. The proof of Lemma 2.3.

suitable for a more general class of objects, namely,(β, δ)-covered objects, and the cost of a query is
only O(log2n).

Let σ be a vertical infinite strip of unit width. Letc ∈ C be an object whosex-projection contains the
x-projection ofσ , and its diameter is large enough, so that any(β, δ)-triangle ofc contains a horizontal
segment of unit length. LetΓσ be a partition ofσ into pairwise openly-disjoint square cells of unit edge
length, letγ be a cell ofΓσ , and letcγ = c ∩ γ .

Let ly0 denote the horizontal liney = y0. We say that a cellγ is abnormal(with respect toc), if there
existsy0 such thatly0 intersectscγ , and the two endpoints of one (or more) of the connected portions
(intervals) ofcγ ∩ ly0 lie strictly in the interior ofγ . All cells which are not abnormal arenormal.

Lemma 2.3. At mostO(1) cells ofΓσ are abnormal with respect toc.

Proof. Sincec has constant description complexity, the boundary ofc intersects the boundary ofσ at a
setX of O(1) points. We charge each abnormal cellγ to a point ofX that lies either inγ or in one of
the 2s2 neighboring cells ofγ , s2 in each direction, wheres2 is an appropriate constant. Thus each point
of X is charged at most 2s2+ 1 times.

Let γ ∈ Γσ be an abnormal cell, and letz ⊆ ly0 be an interval ofcγ ∩ ly0, for somely0, such that
both its endpointsp andq lie in the interior ofγ . Let ∆ be a(β, δ)-triangle ofc that containsp; see
Fig. 2. Let∆(y0) be the intersection of∆ with the linely0. We investigate the function|∆(y)|, the length
of ∆(y) = ∆ ∩ ly . Clearly, |∆(y)| is not maximal aty0, since|∆(y0)| < 1. However, we can choose a
constants2, such that either inγ , or within thes2 upwards/downwards neighboring cells ofγ , |∆(y)|
becomes greater than 1. Thus,∂c must intersect the boundary ofσ either in γ , or in one of thes2
neighboring cells ofγ , and we chargeγ to such an intersection point.2

We next describe the data structure. LetT be a segment tree constructed on the projections on the
x-axis of the objects ofC. Each nodev of T corresponds to a vertical infinite slabσv, and to a subset

222 A. Efrat et al. / Computational Geometry 15 (2000) 215–227

Cv ⊆ C of objects. We divide each slabσv into a constant number of narrower non-overlappingstrips,
σv1, . . . , σvl , of equal width, such that any(β, δ)-triangle of an objectc ∈Cv can contain a horizontal line
segment whose length is equal to the width of a strip. (This is possible since diam(c) is greater than the
width of σ , and sinceβ is a not too small constant.) By abusing notation, we replace each nodev ∈ T
by a set of nodesv1, . . . , v`, such thatvi corresponds to the stripσvi andCvi = Cv (for i = 1, . . . , l).
Combining Lemma 2.3 with the properties of segment trees, one can easily show that∑

v∈T

∑
c∈Cv

number of cells inΓσv for which c is abnormal=O(n logn).

Let v be a vertex ofT , and letγ be a cell ofΓσv that is abnormal for at least one of the objects inCv.
PutCγv ≡ {c | c ∈ Cv, γ is abnormal with respect toc}. We can find a set of pointsPγ of constant size,
such that if∆ is any(β, δ)-triangle of an objectc ∈ Cγv that intersectsγ , then at least one of the points
in Pγ lies in∆. The existence ofPγ follows from the fact that∆ is fat and its area is a constant factor
times the area ofγ (and∆ ∩ γ 6= ∅). Therefore, each pointp ∈ cγ can be connected to a pointξ ∈ Pγ
by a segment that is fully contained inc. (Simply, connectp to a pointξ ∈ Pγ that lies in one of the
(β, δ)-triangles ofc containingp.) We say thatp is visible from ξ , and the union of all points ofc which
are visible fromξ is called thevisible region ofξ in c, and denotedcξ . We thus compute for each object
c ∈ Cγv and for each pointξ ∈ Pγ the regioncξ . PutCξ = {cξ | c ∈ Cγv }, for ξ ∈ Pγ .

Clearly, the boundary ofcξ can be expressed as a functionfcξ (θ), 06 θ < 2π ; fcξ (θ) is the distance
from ξ to the point on the boundary ofcξ where the ray of orientationθ emanating fromξ crosses the
boundary ofcξ . Consider the upper envelope of the set of functionsFξ = {fcξ (θ) | c ∈ Cγv }, for ξ ∈ Pγ .
Analogously to Section 2.3, a query pointq whose polar coordinates with respect toξ are (θ, ρ), is
contained in some visible regioncξ if and only if the value attained by the upper envelope ofFξ atθ is at
leastρ. The complexity of the upper envelope ofFξ is O(λs1(|Cγv |)), wheres1 is an appropriate constant,
andλs(n) is the maximum length of(n, s) Davenport–Schinzel sequences [24].

We constructΨ (3)
v,γ ,ξ , which is the shallow-level data structure of Agarwal et al. [2] to maintain the

functions ofFξ . Let Ψ (2)
v,γ be the list of roots of the structuresΨ (3)

v,γ ,ξ , ξ ∈ Pγ . We construct a balanced
search treeΨ (1)

v over the cells inΓσv that are abnormal for at least one of the objects inCv, and attach to
each such cellγ its corresponding listΨ (2)

v,γ . We associateΨ (1)
v with the nodev.

For eachc ∈ Cv denote

c(n) = (c ∩ σv)
∖⋃{γ ∈ Γσv | γ is abnormal forc} .

We next construct a data structure for the regionsc(n), c ∈ Cv . Note thatc(n) (and its boundary) may
intersect any number of cells ofΓσv . For eachc(n) we define two (not necessarily disjoint) regions,c(nl)

and c(nr), that are contained inc(n) and whose union isc(n) (see Fig. 3).c(nl) is the region ofc(n) in
which c(n) is a (partially defined) functiong(l)c (y) defined on the left boundary ofσv, andc(nr) is the
region of c(n) in which c(n) is a (partially defined) functiong(r)c (y) defined on the right boundary of
σv. Put C(nl) = {c(nl) | c ∈ Cv} andC(nr) = {c(nr) | c ∈ Cv}. Let G(l)v (respectivelyG(r)v) denote the right
(respectively left) envelope of the functionsg(l)c (y) (respectivelyg(r)c (y)), c ∈ Cv. Clearly, a query point
q = (x, y) which is contained in a cellγ ∈ Γσv is also contained in some objectc ∈ Cv for which the cell
γ is normal if and only if it is to the left ofG(l)v , or to the right ofG(r)v .

We maintain these envelopes again using the shallow level data structure cited above, denoted in this
contextΞ(l)

v andΞ(r)
v , respectively. These structures are associated with the nodev.

A. Efrat et al. / Computational Geometry 15 (2000) 215–227 223

Fig. 3. The regionsc(n), c(nl) andc(nr) (in grey).

Answering a query.Given a query pointq, we first queryT to find the O(logn) slabsσv containingq.
For each such slab, we first need to check whetherq lies in c(n), for somec ∈ Cv. This can be done in
O(logn) time, using the structuresΞl

v andΞr
v .

Next we search inΨ (1)
v (usingq ’s y-coordinate) for the cellγ containingq and its appropriate list of

structuresΨ (2)
v,γ . We perform a query in each of the (constant number of) corresponding structuresΨ

(3)
v,γ ,ξ

in order to determine whether one of the objectsc ∈ Cv for which γ is abnormal containsq. As easily
seen, the overall required time is O(log2n).

Updating the structure.Each of the ingredients of our structure is dynamic, and the updating of the
whole structure is easy to do layer-by-layer. We omit the straightforward details. The overall cost of an
update operation is O(nε). We have thus shown the following theorem.

Theorem 2.4. LetC be a set ofn (β, δ)-covered objects in the plane, of constant description complexity,
for fixed positive parametersβ, δ. We can preprocessC into a data structure of sizeO(n1+ε), using
O(n1+ε) preprocessing time, such that one can determine in timeO(log2n) whether a query pointq is
contained in some object ofC, or report all objects ofC containingq in timeO(log2n+ k), wherek is
the size of the output. Moreover, we can insert or delete an objects into/fromC in timeO(nε).

Remark. Note that if we are only interested in a static version, we use a standard sorted array
for the vertices of the upper envelope of the functionsFξ and for the envelopesG(l)v and G(r)v . As
easily checked (see [17]), performing a query is still doable in time O(log2n), the preprocessing
time is O(λs1(n) log2n), and the storage needed is O(λs1(n) logn). For the reporting version, the

224 A. Efrat et al. / Computational Geometry 15 (2000) 215–227

preprocessing time is O(λs1(n) log3n), the storage required is O(λs1(n) log2n), and the cost of a query is
O(log2n+ k log2n). In both modes (decision and reporting), if the objects are polygons, thenλs1(n) in
the bounds above is replaced byn. All these bounds are better by a logarithmic factor in comparison to
the corresponding bounds in [17].

2.5. (β, δ)-covered polygons

We can do somewhat better if the objects inC are (β, δ)-covered polygons inR2, each with O(1)
edges. In this case, we use the data structure of the previous section, applying an idea from Section 2.1.
Observe that the visible regionscξ that are computed are star-shaped polygons (with ‘center’ξ). For
each canonical setCξ , we map each edge of each of the polygons inCξ to an angular interval aboutξ ,
and store these intervals in a segment tree. Each nodev of the tree is associated with some subsetΣv of
polygon edges. We replace each such edge by the line containing it, and maintain the intersection of the
halfplanes bounded by these lines and not containingξ , using the dynamic data structure of Overmars
and van Leeuwen [22]. Hence, for a query pointq, we computeθq , the orientation ofq aboutξ , compute
the O(logn) canonical subsets in the segment tree, each of whose ranges containsθq , in O(logn) time,
and determine for each of them whetherq lies in the corresponding intersection of halfplanes. The cost
of querying a single canonical setCξ is thus O(log2n) (or O(log2n+ k) in the reporting mode).

We handle the setsC(nl) (alternatively,C(nr)) in a similar way. We project each edge of the polygonal
regions inC(nl) on the left boundary ofσv, and store these projections in a segment tree and proceed as
above. The cost of querying the canonical setC(nl) (alternatively,C(nr)) is thus O(log2n) (or O(log2n+k)
in the reporting mode).

Since we repeat this O(logn) times, the total cost of a query is O(log3n) (or O(log3n + k) in the
reporting mode). Insertion or deletion of a polygon can be done in time O(log4n), using the binary
decomposition technique of Bentley and Saxe [8] mentioned above. If only deletions are required, then a
deletion can be done in time O(log3n). We thus obtain Theorem 2.5.

Theorem 2.5. Let C be a collection ofn (β, δ)-covered polygons inR2, each withO(1) edges. We can
preprocessC in timeO(n log3n) into a data structure of sizeO(n log3n), such that finding a polygon ofC
containing a query point or reporting allk such objects can be done in timeO(log3n) or O(log3n+ k),
respectively. Moreover, we can insert or delete a polygon into/fromC in timeO(log4n).

Table 1

Objects: General Polytopes Balls General Polygons
objects objects

Dimension 3D 3D 3D 2D 2D

Preprocessing O(n2+ε) O(s1+ε) O(s1+ε) O(n1+ε) O(n log3n)

Storage O(n2+ε) O(s) O(s) O(n1+ε) O(n log3n)

Query O(log4n) O(n1+ε/
√
s) O(n1+ε/

√
s) O(log2n) O(log3n)

Update O(n1+ε) O(s/n1−ε) O(s/n1−ε) O(nε) O(log4n)

A. Efrat et al. / Computational Geometry 15 (2000) 215–227 225

The results obtained in this section are summarized in Table 1. The parameters represents any fixed
integer betweenn andn2.

3. Applications of the data structures

3.1. Matching points and fat objects

Let C be a set ofn convexα-fat objects inR2 or R3, or a set ofn (β, δ)-covered objects inR2, and
let P be a set ofn points. We want to solve thecontainment matching problem, which is to determine
whether there exists a perfect matching in the bipartite graph whose edges are of the form(p, c), where
p ∈ P , c ∈ C andp ∈ c. That is, we want to match each point ofP to a distinct object that contains it.

Questions of this kind arise frequently in geometricpattern matching, where we seek a bijection
between two sets of points of equal size, say,A = {a1, . . . , an} andB = {b1, . . . , bn}, and the distance
between any pair of matched points has to be at most some parameterr . In this case the objects ofC
arer-neighborhoods of the pointsbi (typically, balls of radiusr centered at the pointsbi). See [13] for a
general discussion of this problem, as well as for the relevant literature.

This problem is also similar to the problem investigated by Arkin et al. [7], where a set of points and
a set of pairwise-disjoint objects are given, and we seek a transformation that places each point into one
of the objects. This problem, however, is different from our problem, in which the objects do not have to
be disjoint, and no transformation of the points is allowed.

We can solve the matching problem by applying the bottleneck matching algorithm of Efrat and
Itai [13]. This algorithm maintains a dynamic data structure that stores a subset of the objects ofC,
and supports queries where we specify a pointp and wish to find an object in the current subset
that containsp, and then delete that object from the structure. The algorithm performs O(n3/2) such
operations, and its running time is dominated by the cost of these operations.

We use the appropriate data structure from among those developed in the preceding section, depending
on the type of objects inC. In the three-dimensional cases, we set the storage parameters to ben4/3, so
that both queries and updates take O(n1/3+ε) time each. We thus obtain the following theorem.

Theorem 3.1. Let C be a set ofn convexα-fat objects inRd (for d = 2,3) or a set ofn (β, δ)-covered
objects inR2, each of a constant description complexity, and letP be a set ofn points inRd . Then we
can either find a one-to-one matching betweenP andC, such that each pointp ∈ P is contained in the
object ofC matched top, or determine that no such matching exists. The running time of the algorithm
is O(n11/6+ε) for polytopes inR3 and for balls inR3. The running time is close toO(n3/2+ε) for general
objects andO(n3/2polylogn) for polygons inR2.

3.2. Piercing fat objects

Let C be a set ofn convexα-fat objects inR2 orR3, or a set ofn (β, δ)-covered objects inR2. In this
subsection we present algorithms for computing a piercing set forC. Recall that a set of pointsP is a
piercing setfor C, if for each objectc ∈ C there exists a point inP that lies inc. The algorithms produce
piercing sets whose size is optimal up to a constant factor.

The high-level description of the algorithm is simple: For each objectc ∈ C, letQc denote the smallest
axis-parallel cube enclosingc. We sort the objects ofC in increasing order of the size ofQc. The

226 A. Efrat et al. / Computational Geometry 15 (2000) 215–227

Table 2

Objects: Polytopes Balls General Polygons

Dimension 3D 3D 2D 2D

Running time O(n4/3+ε) O(n4/3+ε) O(n1+ε) O(n log4n)

algorithm works in stages, where theith stage starts with the subsetCi of C consisting of those objects
that have not yet been pierced (initially,C1= C). Let ci be the smallest object (in the above order) inCi .
Let bQci be the cubeQci scaled by some fixed factorb > 1 about its center (we can choose, e.g.,b = 2).
The fatness/covering property of the objects ofC and the fact thatci is the smallest object inCi imply
that for any objectc ∈ Ci that intersectsci , the measure ofc ∩ bQci is at least some fixed fraction of
the measure ofbQci . Hence, we can place a constant number of points insidebQci (this number only
depends onα andd), so that anyc ∈ Ci that intersectsci will contain one of these points. We add these
points to the output piercing set, and delete fromCi all the objects that are pierced by any of them. The
subsetCi+1 of the remaining objects is then passed to the next stage. The algorithm terminates when this
set becomes empty.

The termination of the algorithm, and the fact that its output is a piercing set are both obvious.
Moreover, the objectsc1, c2, . . . are pairwise disjoint, so if the algorithm terminates afterj stages, then
the size of the optimal piercing set is at leastj , whereas the size of the output is O(j), so the output
size is indeed optimal up to a constant factor. To implement the algorithm, we use the appropriate data
structure developed in the preceding section, to obtain the following result.

Theorem 3.2. Let C be a set ofn convexα-fat objects inRd , for some fixed constantα > 1 and for
d = 2,3, or a set ofn (β, δ)-covered objects inR2, where each object inC has constant description
complexity. Then we can compute a piercing set forC of sizeO(j), with the constant of proportionality
depending onα andd, wherej is the size of a minimal-cardinality piercing set forC. The running time
of the algorithm depends ond, and on the type of objects inC, see Table 2.

References

[1] P.K. Agarwal, Ray shooting and other applications of spanning trees with low stabbing number, SIAM J.
Comput. 21 (1992) 540–570.

[2] P.K. Agarwal, A. Efrat, M. Sharir, Vertical decomposition of shallow levels in 3-dimensional arrangements
and its applications, in: Proc. 11th ACM Symp. Comput. Geom., 1995, pp. 39–50.

[3] P.K. Agarwal, J. Erickson, Geometric range searching and its relatives, in: B. Chazelle, E. Goodman,
R. Pollack (Eds.), Advances in Discrete and Comput. Geom., Amer. Math. Soc., Providence, RI, 1998.

[4] P.K. Agarwal, M.J. Katz, M. Sharir, Computing depth orders and related problems, Computational Geometry
5 (1995) 187–206.

[5] P.K. Agarwal, J. Matoušek, Dynamic half-space range reporting and its applications, Algorithmica 14 (1995)
325–345.

[6] H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Näher, S. Schirra, C. Uhrig, Approximate motion planning
and the complexity of the boundary of the union of simple geometric figures, Algorithmica 8 (1992) 391–406.

[7] E.M. Arkin, K. Kedem, J.S.B. Mitchell, J. Sprinzak, M. Werman, Matching points into pairwise-disjoint noise
regions: combinatorial bounds and algorithms, ORSA J. Comput. 4 (1992) 375–386.

A. Efrat et al. / Computational Geometry 15 (2000) 215–227 227

[8] J. Bentley, J. Saxe, Decomposable searching problems I: Static-to-dynamic transformation, J. Algorithms
1 (1980) 301–358.

[9] H. Brönnimann, M.T. Goodrich, Almost optimal set covers in finite VC-Dimension, Discrete Comput. Geom.
14 (1995) 263–279.

[10] V. Chvatal, A greedy heuristic for the set-covering problem, Math. Oper. Res. 4 (1979) 233–235.
[11] K.L. Clarkson, Algorithms for polytope covering and approximation, in: Proc. 3rd Workshop on Algorithms

and Data Structures, Lecture Notes in Computer Science, Vol. 709, 1993, pp. 246–252.
[12] M. de Berg, Linear size binary space partitions for fat objects, in: Proc. 3rd European Symp. Algorithms,

Lecture Notes in Computer Science, Vol. 979, 1995, pp. 252–263; also: Technical Report UU-CS-1998-12,
Department of Computer Science, Utrecht University, 1998.

[13] A. Efrat, A. Itai, Improvements on bottleneck matching and related problems using geometry, in: Proc. 12th
ACM Symp. Comput. Geom., 1996, pp. 301–310; see also: A. Efrat, A. Itai, M.J. Katz, Geometry helps in
bottleneck matching and related problems, Algorithmica, to appear.

[14] A. Efrat, M.J. Katz, F. Nielsen, M. Sharir, Dynamic data structures for fat objects and their applications, in:
Proc. 5th Workshop on Algorithms and Data Structures, Lecture Notes in Computer Science, Vol. 1272, 1997,
pp. 297–306.

[15] A. Efrat, M.J. Katz, F. Nielsen, M. Sharir, Dynamic data structures for fat objects and their applications,
Technical Report 99-06, Department of Mathematics and Computer Science, Ben-Gurion University, 1999.

[16] R.J. Fowler, M.S. Paterson, S.L. Tanimoto, Optimal packing and covering in the plane are NP-complete,
Inform. Process. Lett. 12 (3) (1981) 133–137.

[17] M.J. Katz, 3-D vertical ray shooting and 2-D point enclosure, range searching, and arc shooting, amidst convex
fat objects, Computational Geometry 8 (1997) 299–316.

[18] M.J. Katz, M.H. Overmars, M. Sharir, Efficient hidden surface removal for objects with small union size,
Computational Geometry 2 (1992) 223–234.

[19] J. Matoušek, Efficient partition trees, Discrete Comput. Geom. 8 (1992) 315–334.
[20] J. Matoušek, Range searching with efficient hierarchical cuttings, Discrete Comput. Geom. 10 (1993) 157–

182.
[21] M.H. Overmars, Point location in fat subdivisions, Inform. Process. Lett. 44 (1992) 261–265.
[22] M.H. Overmars, J. van Leeuwen, Maintenance of configurations in the plane, J. Comput. Syst. Sci. 23 (1981)

166–204.
[23] M.H. Overmars, A.F. van der Stappen, Range searching and point location among fat objects, J. Algorithms

21 (1996) 629–656.
[24] M. Sharir, P.K. Agarwal, Davenport Schinzel Sequences and Their Geometric Applications, Cambridge

University Press, New York, 1995.
[25] A.F. van der Stappen, D. Halperin, M.H. Overmars, The complexity of the free space for a robot moving

amidst fat obstacles, Computational Geometry 3 (1993) 353–373.
[26] A.F. van der Stappen, M.H. Overmars, Motion planning amidst fat obstacles, in: Proc. 10th ACM Symp.

Comput. Geom., 1994, pp. 31–40.

