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Let X be a one-dimensional space totally ordered with respect to <, and X =
{x1, ..., xn} ⊂ X a set of n distinct (weighted) elements. Let us sort X in O(n log n)
time, so that we assume x1 < ... < xn. An interval clustering of X into k ∈ N clus-
ters partitions X into pairwise disjoint subsets C1 ⊂ X , ..., Ck ⊂ X so that X =

⊎k
i=1 Ci:

[xl1=1...xr1=l2−1]︸ ︷︷ ︸
C1

[xl2 ...xr2=l3−1]︸ ︷︷ ︸
C2

... [xlk ...xrk=n]︸ ︷︷ ︸
Ck

. The output is a collection of k inter-

vals Ii = [xli , xri ] that can be encoded using k − 1 delimiters li (i ∈ {2, ..., k}). To
define an optimal clustering among the

(
n−1
k−1
)

different contiguous partitions, we ask to

minimize a clustering objective function minl1=1<l2<...<lk ek(X ) =
⊕k

i=1 e1(Ci), where⊕
is a commutative and associative operator. We present a O(n3k)-time generic dy-

namic programming method to compute the optimal 1D interval clustering that includes
1D Euclidean k-means, Bregman k-means, k-medoids, k-medians, k-centers, etc. The
dynamic programming requires O(nk) memory to backtrack the optimal solution. For
Bregman k-means, we reduce the complexity to O(n2k) time by preprocessing cumula-
tive sums of the elements of X , and show how to include cluster size constraints. As
an application, we report a learning algorithm for singly-parametric statistical mixtures
maximizing the complete likelihood (k-MLE) that also performs model selection. We
present experimental results on isotropic Gaussian mixtures and give necessary condi-
tions on the family of parametric distributions that yields interval clustering: Namely,
we require the connected property of the further maximum likelihood Voronöı diagrams
(satisfied by singly-parametric exponential family mixtures).
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