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Introduction

What is a clustering program?

Definition

Clustering is the task of grouping a set of objects in such a way
that objects in the same group (cluster) are more similar to each
other than those in different groups.

Example of a clustering program

We aim at finding k groups by positioning k group centers
{c1,...,ck} such that data points {xi,...,x,} minimize

ming,,.. ., 27:1 mi”f:l d(xi, Cj)2

But, what is the distance d between two random walk time series?
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Introduction

What are clusters of Random Walk Time Series?
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What are clusters of Random Walk Time Series?
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Geometry of Random Walk Time Series

Geometry of RW TS = Geometry of Random Variables

i.i.d. observations:

Xi:o XEoOX2 X[
Xp:  XE X2, .., XT

Which distances d(Xj, X;) between dependent random variables?
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Geometry of Random Walk Time Series

Pitfalls of a basic distance

Let (X, Y) be a bivariate Gaussian vector, with X ~ N (ux,0%),
Y ~ N(uy,0%) and whose correlation is p(X, Y) € [-1,1].

E[(X — Y)?] = (ux — uy)? + (ox — oy)? + 20xay(1 — p(X, Y))

Now, consider the following values for correlation:

o p(X,Y)=0,s0 E[(X - Y)?] = (ux — py)* + ox + 0%.
Assume pux = py and ox = oy. Forox = oy > 1, we
obtain E[(X — Y)?] > 1 instead of the distance 0, expected
from comparing two equal Gaussians.

o p(X,Y)=1,50E[(X — Y)?| = (ux — py)* + (ox —ov)*.
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Geometry of Random Walk Time Series

Pitfalls of a basic distance

Let (X, Y) be a bivariate Gaussian vector, with X ~ A (ux, af(), Y ~ N(py, a%/) and whose correlation is
(X, Y) € [-1,1].

E[(X — ¥)’] = (ux — py)* + (ox — oy) +20x0y (1 — p(X, Y))

Now, consider the following values for correlation:

@ p(X,Y)=0,50E[(X — Y)?] = (ux — py)> + cri + G‘%/. Assume pux = py and ox = oy. For
ox = oy > 1, we obtain E[(X — Y)?] >> 1 instead of the distance 0, expected from comparing two
equal Gaussians.

Q@ (X, Y)=150E[(X = ¥)?] = (ux — uy)* + (ox — oy)*.

Probability density functions of Gaus-
sians NV(—5,1) and N(5,1), Gaus-
sians N(—5,3) and N(5,3), and
Gaussians N(—5,10) and A/(5,10).
Green, red and blue Gaussians are
equidistant using Ly geometry on the
parameter space (i, o). Hellebore %
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Geometry of Random Walk Time Series

Sklar's Theorem

Theorem (Sklar’'s Theorem (1959))

For any random vector X = (X1, ..., Xn) having continuous
marginal cdfs P;, 1 < i < N, its joint cumulative distribution P is
uniquely expressed as

P(X1,...,Xn) = C(Pi(X1), ..., Pn(Xn)),

where C, the multivariate distribution of uniform marginals, is
known as the copula of X.
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Sklar's Theorem

Theorem (Sklar's Theorem (1959))
For any random vector X = (X1,

distribution P is uniquely expressed as P(X1,

., Xn) having continuous marginal cdfs P;, 1 < i < N, its joint cumulative
distribution of uniform marginals, is known as the copula of X.

L, Xn) = C(P1(X1), - .., Pn(XN)), where C, the multivariate

Hellebore X

Capital Management
Gautier Marti, Frank Nielsen

Clustering Random Walk Time Series



Geometry of Random Walk Time Series

The Copula Transform

Definition (The Copula Transform)

Let X = (X1,...,Xn) be a random vector with continuous
marginal cumulative distribution functions (cdfs) P;, 1 < i < N.
The random vector

U= (Ul, ey UN) = P(X) = (Pl(Xl), ceey PN(XN))

is known as the copula transform.

Ui, 1 <i < N, are uniformly distributed on [0, 1] (the probability
integral transform): for P; the cdf of X;, we have

X = P,-(P,-fl(x)) = Pr(X; < P;71(x)) = Pr(P;(X;) < x), thus
P,-(X,-) ~ U[O, 1]- Hellebore X
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Geometry of Random Walk Time Series

The Copula Transform

Definition (The Copula Transform)

Let X = (X1, ..., Xy) be a random vector with continuous marginal cumulative distribution functions (cdfs) P;,
1 < i < N. The random vector U = (Uy, ..., Uy) := P(X) = (P1(X1), - . ., Pn(Xn)) is known as the copula
transform.

p=0.84 ) p=1

0.4 4
o A
0.2 4
.
-8 . 00 |
.
-1 L L L L " " ~0.
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 “02 00 0.2 0.4 0.6 0.8 1.0 1.2

X ~U[0,1] Py (X)

The Copula Transform invariance to strictly increasing transformation
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Geometry of Random Walk Time Series

Deheuvels' Empirical Copula Transform

Let (X{‘L7 - ,X,(,), 1 <t < T, be T observations from a random vector (X1, . .., Xpy) with continuous margins.
Since one cannot directly obtain the corresponding copula observations (Uf7 ey U,tv) = (Pl(Xlt)7 ey PN(X,@)),
where t =1, ..., T, without knowing a priori (Py, ..., Py), one can instead

Definition (The Empirical Copula Transform)

@ estimate the N empirical margins P (x) = £ S=7_ 1(X} < x),
1 < i< N, to obtain the T empirical observations

(U, Uf) = (PL(XD), -, PR(XR))-

@ Equivalently, since ljf = R!/T, R! being the rank of observation
X!, the empirical copula transform can be considered as the
normalized rank transform.

In practice
Hellebore
x_transform = rankdata(x)/len(x) Capital Management X
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Geometry of Random Walk Time Series

Generic Non-Parametric Distance

Rank Correlation pg =0.56

f%
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93EUP( i) — Pi(X)P?]
/dP [dP,;
+ (1-0)3 dx  V dx

(i)0<dy <1, (ii) 0 < <1, dy metric,
(iii) dp is invariant under diffeomorphism C'jfaflﬁn?g?nfi X

Gautier Marti, Frank Nielsen Clustering Random Walk Time Series



Geometry of Random Walk Time Series

Generic Non-Parametric Distance

2

B 1 1
d :3E[1PX) = POOP] =~ =26 | [ C(uvdud

Remark:
If f(x,0) =co(u1,...,un; L) H,’V:l fi(xi; v;) then

N
2 g2 § : 2
ds® = dsGaussCopuIa + dsmargins
i=1
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The Hierarchical Block Model

e The Hierarchical Block Model
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The Hierarchical Block Model

The Hierarchical Block Model

A model of nested partitions

The nested partitions defined by the In practice, one observe and work
model can be seen on the distance with the above distance matrix
matrix for a proper distance and the which is identitical to the left one

right permutation of the data points up to a permutation of the data
Hellebore X
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The Hierarchical Block Model

Results: Data from Hierarchical Block Model

Adjusted Rand Index

[ Algo. [ Distance | Distrib | Correl [ Correl+Distrib |
T—p)/2 0.00 £0.01 | 0.09 £0.01 056 £0.01
E[(X Y)?] | 000000 | 000 +0.12 [ 055 +0.05
HCAL GPR =0 0.34 +£0.01 | 0.01 +0.01 0.06 +0.02
GPR =1 0.00 +£0.01 | 0.99 40.01 0.56 40.01
GPR 7 = 5 0.34 £0.01 | 0.59 +0.12 0.57 4+0.01
GNPR 0 = 1 0.00 £0.00 | 0.17 £0.00
GNPR 0 = 0.00 +0.00 1 0.57 £0.00
GNPR 0 = 0.99 £0.01 | 0.25+0.20 | 0.95 £0.08
T—0)/2 0.00 £0.00 | 0.09 £0.07 | 0.48 £0.02
E[(X = Y)?] | 014 +0.03 | 0.04 +0.02 | 0.59 +0.00
AP GPR =0 0.25 £0.08 | 0.01 £0.01 0.05 +0.02
GPR =1 0.00 +£0.01 | 0.99 40.01 0.48 +0.02
GPR =5 0.06 £0.00 | 0.80 +0.10 0.52 £0.02
GNPR O =0 1 0.00 £0.00 | 0.18 £0.01
GNPR 8 =1 | o0.00+0.01 1 0.59 £0.00
GNPR 0 = .5 | 039 +0.02 | 039 +0.11 1
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The Hierarchical Block Model

Results: Application to Credit Default Swap Time Series

O aeme

e

e T
RN D MImEC N

Distance matrices L [ e
computed on CDS 'é% H;U
time series exhibit a T
hierarchical block R
structure ——

13 . =1

(un)Stability of Stability of clusters

Marti, Very, Donnat,  clysters with L, with the proposed
Nielsen iEee icmLA 2015 distance distance Hellebore ¢
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The Hierarchical Block Model

Consistency

Definition (Consistency of a clustering algorithm)

A clustering algorithm A is consistent with respect to the Hierarchical
Block Model defining a set of nested partitions P if the probability that
the algorithm A recovers all the partitions in P converges to 1 when

T — 0.

Definition (Space-conserving algorithm)
A space-conserving algorithm does not distort the space, i.e. the distance
Dj; between two clusters C; and C; is such that

Dj € xeg,[\/nECj d(x,y), Xeg}g/)écj d(x,y)|
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The Hierarchical Block Model

Consistency

Theorem (Consistency of space-conserving algorithms (Andler,
Marti, Nielsen, Donnat, 2015))

Space-conserving algorithms (e.g., Single, Average, Complete
Linkage) are consistent with respect to the Hierarchical Block
Model.

T =100 T = 10000
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e Conclusion
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Conclusion

Discussion and questions?

Avenue for research:
e distances on (copula,margins)
@ clustering using multivariate dependence information
@ clustering using multi-wise dependence information

Data Copula

/ EMD(C4,C2) / EMD(C1,C) < EMD(C1,Cs)
al ‘;..;E -

" @
G
EMD(C1,C3)

Optimal Copula Transport for Clustering Multivariate Time Series,
Marti, Nielsen, Donnat, 2015 Hellebore X
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