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Clustering histograms

» Information Retrieval systems (IRs) based on bag-of-words
paradigm (bag-of-textons, bag-of-features, bag-of-X)
> The rdle of distances:
» Initially, create a dictionary of “words” by quantizing using
k-means clustering (depends on the underlying distance)
» At query time, find “closest” (histogram) document by
querying with the histogram query
» Notation: Positive arrays h (counting histogram) versus
frequency histograms h (normalized counting) d bins

For IRs, prefer symmetric distances (not necessarily metrics) like
the Jeffreys divergence or the Jensen-Shannon divergence (unified
by a one parameterized family of divergences in [11])
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Ali-Silvey-Csiszar f-divergences

An important class of divergences: f-divergences [10, 1, 7] defined
for a convex generator f (with f(1) = /(1) =0 and f”(1) = 1):

o= Se)

Those divergences preserve information monotonicity [3] under
any arbitrary transition probability (Markov morphisms).
f-divergences can be extended to positive arrays [3].
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Mixed divergences

Defined on three parameters:

(My(p:q:r)=AD(p:q)+(1-\)D(q: r)]

for A € [0,1].
Mixed divergences include:
» the sided divergences for A € {0,1},

> the symmetrized (arithmetic mean) divergence for A = 3.
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Mixed divergence-based k-means clustering
k distinct seeds from the dataset with /; = r;.

Input: Weighted histogram set H, divergence D(-,-), integer
k >0, real X € [0,1];

Initialize left-sided /right-sided seeds C = {(/;, r;)}*_;;
repeat
//Assignment
fori=1,2,....k do
L Ci—{heH:i=argminiMy(l;: h:r)};
// Dual-sided centroid relocation
for i=1,2,...k do

ri <= argmin, D(Ci : x) = > . wiD(h @ x);
L li <= argminy, D(x : Cj) = > e, wiD(x 1 h);

until convergence;
Output: Partition of H into k clusters following C;
— different from the k-means clustering with respect to the

symmetrized divergences
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a-divergences

For a € R # £1, define a-divergences [6] on positive arrays [18] :

d

. 4 ]._OZ 1+OZ o l-a L 14a

Da(p:q) =) 1_a2< P+ — q’—(p’)2(q’)2>
i=1

with Do (p : g) = D_o(q : p) and in the limit cases
D_1(p:q)=KL(p:q) and Di(p: q) = KL(q : p), where KL is
the extended Kullback—Leibler divergence:

d i
. P N,
KL(p: q) = p’log?Jrq’—p’-
i=1
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a-divergences belong to f-divergences

The a-divergences belong to the class of Csiszar f-divergences
with the following generator:

T (1= t+a)/2) 1 if o £ £1,
f(t)=14¢ tint, if =1,
—Int, if a=-1
The Pearson and Neyman x? distances are obtained for o = —3
and a = 3:
sy - Ly (@ =P
Di(p:q) = 5 — i
P02
I 1~ (5" - 5)
D_3(p:§) = 5 Z i
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Squared Hellinger symmetric distance is a a« = 0-divergence

Divergence Dy is the squared Hellinger symmetric distance (scaled

by 4) extended to positive arrays:

Do(p:q)=2/(\/— \/—X) dx = 4H%(p, q),

with the Hellinger distance:
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Mixed a-divergences

» Mixed a-divergence between a histogram x to two histograms
p and g:

Myo(p:x:q) = ADuo(p:x)+(1—X)Dal(x: q),
AD_o(x: p)+ (1 = AN)D_n(q : x),
= My a(gix:p),

> a-Jeffreys symmetrized divergence is obtained for A = %:

Sa(p,q) =M (q:p:a) =My (p:q:p)

» skew symmetrized a-divergence is defined by:

Sxalp:q)=ADa(p:q)+ (1 —A)Da(q : p)
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Coupled k-Means++ «a-Seeding

Algorithm 1: Mixed a-seeding; MAS(H, k, A, «)

Input: Weighted histogram set #, integer k > 1, real A € [0, 1],
real o € R;

Let C < h; with uniform probability ;

for i=23,....k do

Pick at random histogram h € H with probability:

. WhM)\a(Ch ch: Ch)
my(h) = : , 1
wlh) Zye?—t wyMxa(ey iy i cy) (1)

//where (cp, cp) = argmin(; ycc Mao(z - h: 2);
| C<CU{(hh)};

Output: Set of initial cluster centers C;
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A guaranteed probabilistic initialization

Let C, , denote for short the cost function related to the clustering
type chosen (left-, right-, skew Jeffreys or mixed) in MASand COPt
denote the optimal related clustering in k clusters, for A € [0, 1]
and « € (—1,1). Then, on average, with respect to distribution
(1), the initial clustering of MAS satisfies:

f(N)g(k)h?(@)Coif X e (0,1)
Ex[Cra] < 4{ g(k)z(a)h“(a)Cffjf otherwise

Here, f(\) = max {%, %} ,&(k) =2(2+log k), z(ov) =

2

1-[q]

8la]
<1+—|a‘) a=1eD®  p(a) = max; pll-a‘/ min,-p,‘-al; the min is defined on
strictly positive coordinates, and 7 denotes the picking distribution.
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Mixed a-hard clustering: MAhC(H, k, A, a)

Input: Weighted histogram set H, integer k > 0, real A € [0,1],
real o € R;
Let C = {(/,', I’,') fle — MAS(H, k, A, a);
repeat
//Assignment
for i=1,2,....k do
L Ai«—{heH :i=argminj M, (i : h:r)};
// Centroid relocation
for i=1,2,...k do
l1-a

2

1—a\ia

ri 4 (ZheA,- wih™z ) ?
2

Ita \ T+a

until convergence;
Output: Partition of H in k clusters following C;
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Sided Positive a-Centroids [14]

The left-sided /,, and right-sided r, positive weighted a-centroid
coordinates of a set of n positive histograms hy, ..., h, are weighted
a-means:

I’é = fa_l Z W_IfOé(h_;) 7/121 = ria
j=1

-«
. +1
i) = {1 a7
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Sided Frequency a-Centroids [2]

Theorem (Amari, 2007)

The coordinates of the sided frequency a-centroids of a set of n
weighted frequency histograms are the normalised weighted
Q-means.
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Positive and Frequency a-centroids

Summary:
lza, 2
O - (_Zle wi(hi) 2 )e a#1
A =TI a=1
lra, 2
o= CLw ) e
L= Hj:l(hj) ! a=-—1
> = )
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Mixed a-Centroids

Two centroids minimizer of:
Z wiMy (1 2 hj 2 r)
J

Generalizing mixed Bregman divergences [16]:

Theorem
The two mixed a-centroids are the left-sided and right-sided
a-centroids.
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Symmetrized Jeffreys-Type a-Centroids

(Da(p: q) + Dalq : p)) = S—al(p, q),
1(p:q:p)

Sa(p,q) =

Il
§MIH

For o = £1, we get half of Jeffreys divergence:

d i

1 i i P
Sea(p.q) =5 (P — ) log 7
i=1
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Jeffreys a-divergence and Heinz means

When p and g are frequency histograms, we have for o« # +1:

8 J .y
JoB: 8) = T (1 +ZH12a(ﬁ',a')>

i=1

where Hi—a (a, b) a symmetric Heinz mean [8, 5]:
2

aPp=P + al=FpP
2

H/g(a, b) =

Heinz means interpolate the arithmetic and geometric means and
satisfies the inequality:
a+b

Vab = Hi(a,b) < Ha(a, b) < Ho(a, b) = =
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Jeffreys divergence in the limit case

For « = +1, S,(p, q) tends to the Jeffreys divergence:

d

J(p,q) = KL(p,q) + KL(q,p) = > _(p' — q')(log p' —log ')
i=1

The Jeffreys divergence writes mathematically the same for
frequency histograms:

d

J(B, §) = KL(B, §) + KL(§,5) = Y (p'— §)(log ' — log §)
i=1
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Analytic formula for the positive Jeffreys centroid [12]

Theorem (Jeffreys positive centroid [12])

The Jeffreys positive centroid ¢ = (c,...,c9) of a set {hy, ..., hn}
of n weighted positive histograms with d bins can be calculated
component-wise exactly using the Lambert W analytic function:

where a' = Z}’Zl mjh; denotes the coordinate-wise arithmetic

weighted means and g’ = H}’Zl(hj’f)”f the coordinate-wise

geometric weighted means.

The Lambert analytic function W [4] (positive branch) is defined
by W(x)e"®) = x for x > 0.
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Jeffreys frequency centroid [12]

Theorem (Jeffreys frequency centroid [12])

Let & denote the Jeffreys frequency centroid and & = Wic the

normalised Jeffreys positive centroid. Then, the approximation
Si(&H) - 1 .
factor oy = % is such that 1 < ag < - (with we < 1).

better upper bounds in [12].

© 2014 Frank Nielsen 21/29



Reducing a n-size problem to a 2-size problem

Generalize [17] (symmetrized Kullback-Leibler divergence) and [15]
(symmetrized Bregman divergence)

Lemma (Reduction property)

The symmetrized J,-centroid of a set of n weighted histograms
amount to computing the symmetrized a-centroid for the weighted
a-mean and —a-mean:

min Jo(x, H) = min (Da(x : ra) + Da(lo = x)) -
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Frequency symmetrized a-centroid

Minimizer of mingea, Zj w; Sa (X, /Nw,)

Instead of seeking for X in the probability simplex, we can optimize
on the unconstrained domain R4~ by using the natural parameter
reparameterization [13] of multinomials.

Lemma

The a-divergence for distributions belonging to the same
exponential families amounts to computing a divergence on the
corresponding natural parameters:

4 )
Aalp:q) = 77— (l—e Ir (9P-9q)>,

where JZ(0 : 02) = BF(61) + (1 — B)F(82) — F(B61+ (1 — B)b2)
is a skewed Jensen divergence defined for the log-normaliser F of
the family.
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Implementation (in processing.org)

Snapshot of the a-clustering software. Here, n = 800 frequency
histograms of three bins with k =8, and a = 0.7 and A = %
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processing.org

Soft Mixed a-Clustering
Learn both o and A (a-EM [9])

Input: Histogram set H with \H\ = m, integer k > 0, real
A Ainit € [0,1], real o« € R;

Let C = {(li,r;)}_; < MAS(H, k, )\, );

repeat

//Expectation

fori=1,2,....mdo

forj=1,2,...k do

dy o mexp(=Mya(fihin))
| pUlh) = st el s
//Maximization
for j=1,2,... k do
7 4 2 pUl )

2
1ta | l+a
he (m S pllhih ) :

2
1-a) l-a
e (m S, oGl ) :
//Alpha - Lambda

o= m Yy Y Pl geMaall i y):
if Ainit # 0,1 then

A= A= (S S pUIh)Da () )=
a0 pUIA) Dalhi 1))

| //for some small 7, 75; ensure that \ € [0,1].

until convergence;
Output: Soft clustering of H according to k densities p(jl.)
following C;
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Summary

1. Mixed divergences,mixed divergence k-means++ seeding,
coupled k-means seeding

2. Sided left or right a-centroid k-means

3. Coupled k-means with respect to mixed a-divergences relying
on dual a-centroids

4. Symmetrized Jeffreys-type a-centroid (variational) k-means,

All technical proofs and details in:
Entropy 16(6): 3273-3301 (2014)
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