On Clustering Histograms with k-Means by Using Mixed α -Divergences

Entropy 16(6): 3273-3301 (2014)

Frank Nielsen^{1,2} Richard Nock³ Shun-ichi Amari⁴

¹ Sony Computer Science Laboratories, Japan E-Mail: Frank.Nielsen@acm.org ² École Polytechnique, France ³ NICTA/ANU, Australia ⁴ RIKEN Brain Science Institute, Japan

2014

© 2014 Frank Nielsen 1/29

Clustering histograms

- ► Information Retrieval systems (IRs) based on **bag-of-words** paradigm (bag-of-textons, bag-of-features, bag-of-X)
- The rôle of distances:
 - ▶ Initially, create a dictionary of "words" by quantizing using k-means clustering (depends on the underlying distance)
 - ► At query time, find "closest" (histogram) document by querying with the histogram query
- Notation: Positive arrays h (counting histogram) versus frequency histograms \tilde{h} (normalized counting) d bins

For IRs, prefer **symmetric distances** (not necessarily metrics) like the Jeffreys divergence or the Jensen-Shannon divergence (unified by a one parameterized family of divergences in [11])

© 2014 Frank Nielsen 2/2

Ali-Silvey-Csiszár f-divergences

An important class of divergences: f-divergences [10, 1, 7] defined for a convex generator f (with f(1) = f'(1) = 0 and f''(1) = 1):

$$I_f(p:q) \doteq \sum_{i=1}^d q^i f\left(\frac{p^i}{q^i}\right)$$

Those divergences preserve **information monotonicity** [3] under any arbitrary transition probability (Markov morphisms). f-divergences can be extended to positive arrays [3].

© 2014 Frank Nielsen 3/2

Mixed divergences

Defined on three parameters:

$$M_{\lambda}(p:q:r) \doteq \lambda D(p:q) + (1-\lambda)D(q:r)$$

for $\lambda \in [0,1]$.

Mixed divergences include:

- ▶ the **sided divergences** for $\lambda \in \{0,1\}$,
- the **symmetrized** (arithmetic mean) divergence for $\lambda = \frac{1}{2}$.

Mixed divergence-based k-means clustering

k distinct seeds from the dataset with $l_i = r_i$.

```
Input: Weighted histogram set \mathcal{H}, divergence D(\cdot, \cdot), integer k > 0, real \lambda \in [0, 1]; Initialize left-sided/right-sided seeds \mathcal{C} = \{(I_i, r_i)\}_{i=1}^k;
```

repeat

```
//Assignment 

for i=1,2,...,k do 

C_i \leftarrow \{h \in \mathcal{H} : i = \arg\min_j M_{\lambda}(l_j : h : r_j)\}; 

// Dual-sided centroid relocation 

for i=1,2,...,k do 

r_i \leftarrow \arg\min_x D(C_i : x) = \sum_{h \in C_i} w_j D(h : x); 

l_i \leftarrow \arg\min_x D(x : C_i) = \sum_{h \in C_i} w_j D(x : h);
```

until convergence;

Output: Partition of \mathcal{H} into k clusters following \mathcal{C} ;

ightarrow different from the k-means clustering with respect to the symmetrized divergences

α -divergences

For $\alpha \in \mathbb{R} \neq \pm 1$, define α -divergences [6] on positive arrays [18] :

$$oxed{D_lpha(
ho:q) \doteq \sum_{i=1}^d rac{4}{1-lpha^2} \left(rac{1-lpha}{2}
ho^i + rac{1+lpha}{2} q^i - (
ho^i)^{rac{1-lpha}{2}} (q^i)^{rac{1+lpha}{2}}
ight)}$$

with $D_{\alpha}(p:q)=D_{-\alpha}(q:p)$ and in the limit cases $D_{-1}(p:q)=\mathrm{KL}(p:q)$ and $D_{1}(p:q)=\mathrm{KL}(q:p)$, where KL is the extended Kullback–Leibler divergence:

$$\mathrm{KL}(p:q) \doteq \sum_{i=1}^d p^i \log \frac{p^i}{q^i} + q^i - p^i.$$

© 2014 Frank Nielsen 6/2

α -divergences belong to f-divergences

The α -divergences belong to the class of Csiszár f-divergences with the following generator:

$$f(t) = \begin{cases} \frac{4}{1-\alpha^2} (1 - t^{(1+\alpha)/2}), & \text{if } \alpha \neq \pm 1, \\ t \ln t, & \text{if } \alpha = 1, \\ -\ln t, & \text{if } \alpha = -1 \end{cases}$$

The Pearson and Neyman χ^2 distances are obtained for $\alpha=-3$ and $\alpha=3$:

$$D_{3}(\tilde{p}:\tilde{q}) = \frac{1}{2} \sum_{i} \frac{(\tilde{q}^{i} - \tilde{p}^{i})^{2}}{\tilde{p}^{i}},$$

$$D_{-3}(\tilde{p}:\tilde{q}) = \frac{1}{2} \sum_{i} \frac{(\tilde{q}^{i} - \tilde{p}^{i})^{2}}{\tilde{q}^{i}}.$$

© 2014 Frank Nielsen 7/29

Squared Hellinger symmetric distance is a $\alpha = 0$ -divergence

Divergence D_0 is the squared Hellinger symmetric distance (scaled by 4) extended to positive arrays:

$$D_0(p:q) = 2 \int \left(\sqrt{p(x)} - \sqrt{q(x)} \right)^2 dx = 4H^2(p,q),$$

with the Hellinger distance:

$$H(p,q) = \sqrt{\frac{1}{2} \int \left(\sqrt{p(x)} - \sqrt{q(x)}\right)^2 dx}$$

© 2014 Frank Nielsen

Mixed α -divergences

Mixed α-divergence between a histogram x to two histograms p and q:

$$M_{\lambda,\alpha}(p:x:q) = \lambda D_{\alpha}(p:x) + (1-\lambda)D_{\alpha}(x:q),$$

$$= \lambda D_{-\alpha}(x:p) + (1-\lambda)D_{-\alpha}(q:x),$$

$$= M_{1-\lambda,-\alpha}(q:x:p),$$

• α -Jeffreys symmetrized divergence is obtained for $\lambda = \frac{1}{2}$:

$$S_{lpha}(p,q)=M_{rac{1}{2},lpha}(q:p:q)=M_{rac{1}{2},lpha}(p:q:p)$$

ightharpoonup skew symmetrized lpha-divergence is defined by:

$$S_{\lambda,lpha}(p:q) = \lambda D_lpha(p:q) + (1-\lambda)D_lpha(q:p)$$

© 2014 Frank Nielsen 9/29

Coupled k-Means++ α -Seeding

Algorithm 1: Mixed α -seeding; MAS(\mathcal{H} , k, λ , α)

Input: Weighted histogram set \mathcal{H} , integer $k \geq 1$, real $\lambda \in [0,1]$, real $\alpha \in \mathbb{R}$;

Let $C \leftarrow h_j$ with uniform probability;

for i = 2, 3, ..., k do

Pick at random histogram $h \in \mathcal{H}$ with probability:

$$\pi_{\mathcal{H}}(h) \stackrel{:}{=} \frac{w_h M_{\lambda,\alpha}(c_h : h : c_h)}{\sum_{y \in \mathcal{H}} w_y M_{\lambda,\alpha}(c_y : y : c_y)} , \qquad (1)$$

//where
$$(c_h, c_h) \doteq \arg\min_{(z,z) \in \mathcal{C}} M_{\lambda,\alpha}(z : h : z);$$

 $\mathcal{C} \leftarrow \mathcal{C} \cup \{(h,h)\};$

Output: Set of initial cluster centers C;

© 2014 Frank Nielsen 10/29

A guaranteed probabilistic initialization

Let $C_{\lambda,\alpha}$ denote for short the cost function related to the clustering type chosen (left-, right-, skew Jeffreys or mixed) in MASand $C_{\lambda,\alpha}^{opt}$ denote the optimal related clustering in k clusters, for $\lambda \in [0,1]$ and $\alpha \in (-1,1)$. Then, on average, with respect to distribution (1), the initial clustering of MAS satisfies:

$$E_{\pi}[C_{\lambda,\alpha}] \ \leq \ 4 \left\{ \begin{array}{ll} f(\lambda)g(k)h^2(\alpha)C_{\lambda,\alpha}^{opt} & \text{if} \quad \lambda \in (0,1) \\ g(k)z(\alpha)h^4(\alpha)C_{\lambda,\alpha}^{opt} & \text{otherwise} \end{array} \right..$$

Here,
$$f(\lambda) = \max\left\{\frac{1-\lambda}{\lambda}, \frac{\lambda}{1-\lambda}\right\}, g(k) = 2(2+\log k), z(\alpha) = \left(\frac{1+|\alpha|}{1-|\alpha|}\right)^{\frac{8|\alpha|^2}{(1-|\alpha|)^2}}, h(\alpha) = \max_i p_i^{|\alpha|}/\min_i p_i^{|\alpha|}$$
; the min is defined on strictly positive coordinates, and π denotes the picking distribution.

© 2014 Frank Nielsen 11/29

Mixed α -hard clustering: MAhC(\mathcal{H} , k, λ , α)

```
Input: Weighted histogram set \mathcal{H}, integer k > 0, real \lambda \in [0, 1],
          real \alpha \in \mathbb{R}:
Let C = \{(l_i, r_i)\}_{i=1}^k \leftarrow \text{MAS}(\mathcal{H}, k, \lambda, \alpha);
repeat
     //Assignment
    for i = 1, 2, ..., k do
A_i \leftarrow \{h \in \mathcal{H} : i = \arg\min_j M_{\lambda,\alpha}(I_j : h : r_j)\};
    // Centroid relocation
```

until convergence;

Output: Partition of \mathcal{H} in k clusters following \mathcal{C} ;

© 2014 Frank Nielsen 12/2

Sided Positive α -Centroids [14]

The left-sided I_{α} and right-sided r_{α} positive weighted α -centroid coordinates of a set of n positive histograms $h_1, ..., h_n$ are weighted α -means:

$$r_{\alpha}^{i} = f_{\alpha}^{-1} \left(\sum_{j=1}^{n} w_{j} f_{\alpha}(h_{j}^{i}) \right), l_{\alpha}^{i} = r_{-\alpha}^{i}$$

with
$$f_{\alpha}(x) = \begin{cases} x^{\frac{1-\alpha}{2}} & \alpha \neq \pm 1, \\ \log x & \alpha = 1. \end{cases}$$

© 2014 Frank Nielsen 13/2

Sided Frequency α -Centroids [2]

Theorem (Amari, 2007)

The coordinates of the sided frequency α -centroids of a set of n weighted frequency histograms are the normalised weighted α -means.

© 2014 Frank Nielsen 14/29

Positive and Frequency α -centroids

Summary:

$$r_{\alpha}^{i} = \begin{cases} \left(\sum_{j=1}^{n} w_{j}(h_{j}^{i})^{\frac{1-\alpha}{2}}\right)^{\frac{2}{1-\alpha}} & \alpha \neq 1 \\ r_{1}^{i} = \prod_{j=1}^{n} (h_{j}^{i})^{w_{j}} & \alpha = 1 \end{cases}$$

$$I_{\alpha}^{i} = r_{-\alpha}^{i} = \begin{cases} \left(\sum_{j=1}^{n} w_{j}(h_{j}^{i})^{\frac{1+\alpha}{2}}\right)^{\frac{2}{1+\alpha}} & \alpha \neq -1 \\ I_{-1}^{i} = \prod_{j=1}^{n} (h_{j}^{i})^{w_{j}} & \alpha = -1 \end{cases}$$

$$\tilde{r}_{\alpha}^{i} = \frac{r_{\alpha}^{i}}{w(\tilde{r}_{\alpha})}$$

$$\tilde{l}_{\alpha}^{i} = \tilde{r}_{-\alpha}^{i} = \frac{r_{-\alpha}^{i}}{w(\tilde{r}_{-\alpha})}$$

© 2014 Frank Nielsen 15/2

Mixed α -Centroids

Two centroids minimizer of:

$$\sum_{j} w_{j} M_{\lambda,\alpha}(I:h_{j}:r)$$

Generalizing mixed Bregman divergences [16]:

Theorem

The two mixed α -centroids are the left-sided and right-sided α -centroids.

© 2014 Frank Nielsen 16/29

Symmetrized Jeffreys-Type α -Centroids

$$S_{\alpha}(p,q) = \frac{1}{2}(D_{\alpha}(p:q) + D_{\alpha}(q:p)) = S_{-\alpha}(p,q),$$

= $M_{\frac{1}{2}}(p:q:p),$

For $\alpha = \pm 1$, we get half of Jeffreys divergence:

$$S_{\pm 1}(p,q) = rac{1}{2} \sum_{i=1}^d (p^i - q^i) \log rac{p^i}{q^i}$$

© 2014 Frank Nielsen

Jeffreys α -divergence and Heinz means

When p and q are frequency histograms, we have for $\alpha \neq \pm 1$:

$$J_{lpha}(ilde{
ho}: ilde{q})=rac{8}{1-lpha^2}\left(1+\sum_{i=1}^d H_{rac{1-lpha}{2}}(ilde{
ho}^i, ilde{q}^i)
ight)$$

where $H_{\frac{1-\alpha}{2}}(a,b)$ a symmetric Heinz mean [8, 5]:

$$H_{eta}(a,b)=rac{a^{eta}b^{1-eta}+a^{1-eta}b^{eta}}{2}$$

Heinz means interpolate the arithmetic and geometric means and satisfies the inequality:

$$\sqrt{ab}=H_{\frac{1}{2}}(a,b)\leq H_{\alpha}(a,b)\leq H_{0}(a,b)=\frac{a+b}{2}.$$

© 2014 Frank Nielsen 18/2

Jeffreys divergence in the limit case

For $\alpha = \pm 1$, $S_{\alpha}(p, q)$ tends to the Jeffreys divergence:

$$J(p,q) = \mathrm{KL}(p,q) + \mathrm{KL}(q,p) = \sum_{i=1}^d (p^i - q^i)(\log p^i - \log q^i)$$

The Jeffreys divergence writes mathematically the same for frequency histograms:

$$J(\tilde{p},\tilde{q}) = \mathrm{KL}(\tilde{p},\tilde{q}) + \mathrm{KL}(\tilde{q},\tilde{p}) = \sum_{i=1}^d (\tilde{p}^i - \tilde{q}^i) (\log \tilde{p}^i - \log \tilde{q}^i)$$

© 2014 Frank Nielsen 19/2

Analytic formula for the positive Jeffreys centroid [12]

Theorem (Jeffreys positive centroid [12])

The Jeffreys positive centroid $c = (c^1, ..., c^d)$ of a set $\{h_1, ..., h_n\}$ of n weighted positive histograms with d bins can be calculated component-wise exactly using the Lambert W analytic function:

$$c^{i} = \frac{a^{i}}{W(\frac{a^{i}}{g^{i}}e)}$$

where $a^i = \sum_{j=1}^n \pi_j h^i_j$ denotes the coordinate-wise arithmetic weighted means and $g^i = \prod_{j=1}^n (h^i_j)^{\pi_j}$ the coordinate-wise geometric weighted means.

The Lambert analytic function W [4] (positive branch) is defined by $W(x)e^{W(x)} = x$ for x > 0.

© 2014 Frank Nielsen 20/29

Jeffreys frequency centroid [12]

Theorem (Jeffreys frequency centroid [12])

Let \tilde{c} denote the Jeffreys frequency centroid and $\tilde{c}' = \frac{c}{w_c}$ the normalised Jeffreys positive centroid. Then, the approximation factor $\alpha_{\tilde{c}'} = \frac{S_1(\tilde{c}',\tilde{\mathcal{H}})}{S_1(\tilde{c},\tilde{\mathcal{H}})}$ is such that $1 \leq \alpha_{\tilde{c}'} \leq \frac{1}{w_c}$ (with $w_c \leq 1$). better upper bounds in [12].

© 2014 Frank Nielsen 21/2

Reducing a *n*-size problem to a 2-size problem

Generalize [17] (symmetrized Kullback–Leibler divergence) and [15] (symmetrized Bregman divergence)

Lemma (Reduction property)

The symmetrized J_{α} -centroid of a set of n weighted histograms amount to computing the symmetrized α -centroid for the weighted α -mean and $-\alpha$ -mean:

$$\min J_{\alpha}(x,\mathcal{H}) = \min_{x} \left(D_{\alpha}(x:r_{\alpha}) + D_{\alpha}(I_{\alpha}:x) \right).$$

© 2014 Frank Nielsen 22/29

Frequency symmetrized α -centroid

Minimizer of $\min_{\tilde{x}\in\Delta_d}\sum_j w_j S_{\alpha}(\tilde{x},\tilde{h}_i)$ Instead of seeking for \tilde{x} in the probability simplex, we can optimize on the unconstrained domain \mathbb{R}^{d-1} by using the natural parameter reparameterization [13] of multinomials.

Lemma

The α -divergence for distributions belonging to the same exponential families amounts to computing a divergence on the corresponding natural parameters:

$$A_{\alpha}(p:q) = \frac{4}{1-\alpha^2} \left(1 - e^{-\int_F^{\left(\frac{1-\alpha}{2}\right)} (\theta_p:\theta_q)}\right),\,$$

where $J_F^{\beta}(\theta_1:\theta_2) = \beta F(\theta_1) + (1-\beta)F(\theta_2) - F(\beta\theta_1 + (1-\beta)\theta_2)$ is a skewed Jensen divergence defined for the log-normaliser F of the family.

© 2014 Frank Nielsen 23/

Implementation (in processing.org)

Snapshot of the α -clustering software. Here, n=800 frequency histograms of three bins with k=8, and $\alpha=0.7$ and $\lambda=\frac{1}{2}$.

Soft Mixed α -Clustering

Learn both α and λ (α -EM [9])

```
Input: Histogram set \mathcal{H} with |\mathcal{H}| = m, integer k > 0, real
                \lambda \leftarrow \lambda_{\text{init}} \in [0, 1], \text{ real } \alpha \in \mathbb{R};
Let C = \{(I_i, r_i)\}_{i=1}^k \leftarrow MAS(\mathcal{H}, k, \lambda, \alpha);
repeat
        //Expectation
       for i = 1, 2, ..., m do
               for j = 1, 2, ..., k do
p(j|h_i) = \frac{\pi_j \exp(-M_{\lambda,\alpha}(l_j:h_i:r_j))}{\sum_{i,j} \pi_{i,j} \exp(-M_{\lambda,\alpha}(l_j:h_j:r_{i,j}))};
        //Maximization
       for i = 1, 2, ..., k do
               \pi_j \leftarrow \frac{1}{m} \sum_i p(j|h_i);
            l_{i} \leftarrow \left(\frac{1}{\sum_{j} p(j|h_{i})} \sum_{i} p(j|h_{i}) h_{i}^{\frac{1+\alpha}{2}}\right)^{\frac{2}{1+\alpha}};
r_{i} \leftarrow \left(\frac{1}{\sum_{j} p(j|h_{i})} \sum_{i} p(j|h_{i}) h_{i}^{\frac{1-\alpha}{2}}\right)^{\frac{2}{1-\alpha}};
       //Alpha - Lambda
       \alpha \leftarrow \alpha - \eta_1 \sum_{i=1}^k \sum_{i=1}^m p(j|h_i) \frac{\partial}{\partial \alpha} M_{\lambda,\alpha}(I_j:h_i:r_j);
       if \lambda_{\rm init} \neq 0, 1 then
       \lambda \leftarrow \lambda - \eta_2 \left( \sum_{j=1}^k \sum_{i=1}^m \rho(j|h_i) D_\alpha(l_j:h_i) - \sum_{j=1}^k \sum_{i=1}^m \rho(j|h_i) D_\alpha(h_i:r_j) \right);
                //for some small \eta_1, \eta_2; ensure that \lambda \in [0, 1].
until convergence;
Output: Soft clustering of \mathcal{H} according to k densities p(j|.)
                     following C;
```

© 2014 Frank Nielsen

Summary

- 1. Mixed divergences,mixed divergence *k*-means++ seeding, coupled *k*-means seeding
- 2. Sided left or right α -centroid k-means
- 3. Coupled k-means with respect to mixed α -divergences relying on dual α -centroids
- 4. Symmetrized Jeffreys-type α -centroid (variational) k-means,

All technical proofs and details in:

Entropy 16(6): 3273-3301 (2014)

© 2014 Frank Nielsen 26/29

Bibliographic references I

Syed Mumtaz Ali and Samuel David Silvey.

A general class of coefficients of divergence of one distribution from another. Journal of the Royal Statistical Society, Series B, 28:131–142, 1966.

Shun-ichi Amari.

Integration of stochastic models by minimizing α -divergence. Neural Computation, 19(10):2780–2796, 2007.

Shun-ichi Amari.

alpha-divergence is unique, belonging to both *f*-divergence and Bregman divergence classes. *IEEE Transactions on Information Theory*, 55(11):4925–4931, 2009.

D. A. Barry, P. J. Culligan-Hensley, and S. J. Barry.

Real values of the W-function.

ACM Trans. Math. Softw., 21(2):161-171, June 1995.

Ádám Besenyei.

On the invariance equation for Heinz means.

Mathematical Inequalities & Applications, 15(4):973-979, 2012.

Andrzej Cichocki, Sergio Cruces, and Shun-ichi Amari.

Generalized alpha-beta divergences and their application to robust nonnegative matrix factorization. Entropy. 13(1):134–170, 2011.

Imre Csiszár

Information-type measures of difference of probability distributions and indirect observation. Studia Scientiarum Mathematicarum Hungarica, 2:229–318, 1967.

© 2014 Frank Nielsen 27/29

Bibliographic references II

Erhard Heinz.

Beiträge zur störungstheorie der spektralzerlegung. Mathematische Annalen, 123:415–438, 1951.

Yasuo Matsuyama.

The alpha-EM algorithm: surrogate likelihood maximization using alpha-logarithmic information measures. *IEEE Transactions on Information Theory*, 49(3):692–706, 2003.

Tetsuzo Morimoto.

Markov processes and the h-theorem.

Journal of the Physical Society of Japan, 18(3), March 1963.

Frank Nielsen.

A family of statistical symmetric divergences based on Jensen's inequality. *CoRR*, abs/1009,4004, 2010.

Frank Nielsen.

Jeffreys centroids: A closed-form expression for positive histograms and a guaranteed tight approximation for frequency histograms.

IEEE Signal Processing Letters (SPL), 20(7), July 2013.

Frank Nielsen and Vincent Garcia.

Statistical exponential families: A digest with flash cards, 2009.

arXiv.org:0911.4863.

Frank Nielsen and Richard Nock.

The dual Voronoi diagrams with respect to representational Bregman divergences.

In International Symposium on Voronoi Diagrams (ISVD), pages 71–78, DTU Lyngby, Denmark, June 2009. IEEE.

© 2014 Frank Nielsen 28/29

Bibliographic references III

Frank Nielsen and Richard Nock.

Sided and symmetrized Bregman centroids.

IEEE Transactions on Information Theory, 55(6):2882-2904, 2009.

Richard Nock, Panu Luosto, and Jyrki Kivinen.

Mixed Bregman clustering with approximation guarantees.

In Proceedings of the European conference on Machine Learning and Knowledge Discovery in Databases, pages 154–169, Berlin, Heidelberg, 2008. Springer-Verlag.

Raymond N. J. Veldhuis.

The centroid of the symmetrical Kullback-Leibler distance.

IEEE signal processing letters, 9(3):96-99, March 2002.

Huaiyu Zhu and Richard Rohwer.

Measurements of generalisation based on information geometry.

In StephenW. Ellacott, JohnC. Mason, and IainJ. Anderson, editors, Mathematics of Neural Networks, volume 8 of Operations Research/Computer Science Interfaces Series, pages 394–398. Springer US, 1997.

© 2014 Frank Nielsen 29/29