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Exponential families

Definition

p(x ;λ) = pF (x ; θ) = exp (〈t(x)|θ〉 − F (θ) + k(x))

I λ source parameter
I t(x) sufficient statistic
I θ natural parameter
I F (θ) log-normalizer
I k(x) carrier measure

F is a stricly convex and differentiable function
〈·|·〉 is a scalar product
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Multiple parameterizations: dual parameter spaces

Legendre Transform
(F,Θ) ↔ (F ?, H)

θ ∈ Θ
Natural Parameters

η ∈ H
Expectation Parameters

θ = ∇F ?(η) η = ∇F (θ)

Source Parameters (not unique)
λ1 ∈ Λ1, λ2 ∈ Λ2, . . . , λn ∈ Λn

Multiple source parameterizations

Two canonical parameterizations
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Bregman divergences

Definition and properties

BF (x‖y) = F (x)− F (y)− 〈x − y ,∇F (y)〉

I F is a stricly convex and differentiable function
I No symmetry!

Contains a lot of common divergences
I Squared Euclidean, Mahalanobis, Kullback-Leibler,

Itakura-Saito. . .

4 / 20



Information Geometry for mixtures
Co-Mixture Models
Bag of components

Exponential families
Bregman divergences
Mixture models

Bregman centroids

Left-sided centroid

min
c

∑
i
ωiBF (c‖xi)

Right-sided centroid

min
c

∑
i
ωiBF (xi‖c)

Closed-form

cL =∇F ∗
(∑

i
ωi∇F (xi)

)
cR =

∑
i
ωixi
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Link with exponential families
[Banerjee 2005]

Bijection with exponential families

log pF (x |θ) = −BF ∗ (t(x)‖η) + F ∗(t(x)) + k(x)

Kullback-Leibler between exponential families
I between members of the same exponential family

KL(pF (x , θ1), pF (x , θ2)) = BF (θ2‖θ1) = BF ? (η1‖η2)

Kullback-Leibler centroids
I In closed-form through the Bregman divergence
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Maximum likelihood estimator

A Bregman centroid

η̂ = argmax
η

∑
i
log pF (xi , η)

= argmin
η

∑
i

BF ∗ (t(xi)‖η)−F ∗(t(xi))− k(xi)︸ ︷︷ ︸
does not depend on η

= argmin
η

∑
i

BF ∗ (t(xi)‖η)

=
∑

i
t(xi)

And θ̂ = ∇F ?(η̂)
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Mixtures of exponential families

m(x ;ω, θ) =
∑

1≤i≤k
ωipF (x ; θi)

Fixed
I Family of the components PF
I Number of components k

(model selection techniques
to choose)

Parameters
I Weights

∑
i ωi = 1

I Component parameters θi

Learning a mixture
I Input: observations x1, . . . , xN
I Output: ωi and θi
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Bregman Soft Clustering: EM for exponential families
[Banerjee 2005]

E-step

p(i , j) = ωjpF (xi , θj)
m(xi)

M-step

ηj = argmax
η

∑
i

p(i , j) log pF (xi , θj)

= argmin
η

∑
i

p(i , j)

BF ∗ (t(xi)‖η)−F ∗(t(xi))− k(xi)︸ ︷︷ ︸
does not depend on η


=
∑

i

p(i , j)∑
u p(u, j) t(xu)
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Joint estimation of mixture models

Exploit shared information between multiple pointsets
I to improve quality
I to improve speed

Inspiration
I Dictionary methods
I Transfer learning

Efficient algorithms
I Building
I Comparing
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Co-Mixtures

Sharing components of all the mixtures

m1(x |ω(1), η) =
k∑

i=1
ω

(1)
i pF (x | ηj)

. . .

mS(x |ω(S), η) =
k∑

i=1
ω

(S)
i pF (x | ηj)

I Same η1 . . . ηk everywhere
I Different weights ω(l)
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co-Expectation-Maximization
Maximize the mean of the likelihoods on each mixtures
E-step

I A posterior matrix for each dataset

p(l)(i , j) =
ω

(l)
j pF (xi , θj)

m(x (l)
i |ω(l), η)

M-step
I Maximization on each dataset

η
(l)
j =

∑
i

p(i , j)∑
u p(l)(u, j)

t(x (l)
u )

I Aggregation

ηj = 1
S

S∑
l=1

η
(l)
j
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Variational approximation of Kullback-Leibler
[Hershey Olsen 2007]

K̃LVariationnal(m1,m2) =
K∑

i=1
ω

(1)
i log

∑
j ω

(1)
j e−KL(pF (·; θi )‖pF (·; θj ))∑

j ω
(2)
j e−KL(pF (·; θi )‖pF (·; θj ))

With shared parameters
I Precompute Dij = e−KL(pF (·| ηi ),pF (·| ηj ))

Fast version

KLvar(m1‖m2) =
∑

i
ω

(1)
i log

∑
j ω

(1)
j e−Dij∑

j ω
(2)
j e−Dij
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co-Segmentation
Segmentation from 5D RGBxy mixtures

Original

EM

Co-EM
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Transfer learning
Increase the quality of one particular mixture of interest

I First image: only 1% of the points
I Two other images: full set of points

I Not enough points for EM
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Bag of Components

Training step
I Comix on some training set
I Keep the parameters
I Costly but offline

D = {θ1, . . . , θK}

Online learning of mixtures
I For a new pointset
I For each observation arriving:

argmax
θ∈D

pF (xj , θ) or argmin
θ∈D

BF (t(xj), θ)
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Nearest neighbor search

Naive version
I Linear search
I O(number of samples× number of components)
I Same order of magnitude as one step of EM

Improvement
I Computational Bregman Geometry to speed-up the search
I Bregman Ball Trees
I Hierarchical clustering
I Approximate nearest neighbor
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Image segmentation

Segmentation on a random subset of the pixels

100% 10% 1%

EM

BoC
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Computation times

Training 100% 10% 1%
0

20
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80

100
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Training
EM
BoC
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Summary

Comix
I Mixtures with shared components
I Compact description of a lot of mixtures
I Fast KL approximations
I Dictionary-like methods

Bag of Components
I Online method
I Predictable time (no iteration)
I Works with only a few points
I Fast
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