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Information Geometry for mixtures Exponential families
Bregman divergences

Mixture models

Exponential families

Definition

p(x; A) = pr(x; 0) = exp ((t(x)[0) — F(0) + k(x))

)\ source parameter

v

v

t(x) sufficient statistic

v

f natural parameter

v

F(0) log-normalizer

v

k(x) carrier measure

F is a stricly convex and differentiable function
(-]-) is a scalar product
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Multiple parameterizations: dual parameter spaces

Multiple source parameterizations

Source Parameters (not unique)
AL €A A €Ny, N EN,

Legendre Transform
(F,0) < (F*, H)
0=VF* () «— 3 \n=VF(0)
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Bregman divergences

Definition and properties

Br (xlly) = F(x) = F(y) — (x =y, VF(y))

» F is a stricly convex and differentiable function

» No symmetry!

Contains a lot of common divergences

» Squared Euclidean, Mahalanobis, Kullback-Leibler,
Itakura-Saito. . .
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Bregman centroids

Left-sided centroid Right-sided centroid
mcinZwiBF (cllxi) mCinZw,-B;: (xill€)

Closed-form

ct =vF <Z w,-VF(x,-)) =3 wixi
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Link with exponential families
[Banerjee 2005]

Bijection with exponential families

log pr(x|0) = —Br-~ (t(x)lIn) + F*(t(x)) + k(x)

Kullback-Leibler between exponential families

> between members of the same exponential family

KL(pr(x,01), pr(x,02)) = Bf (02|01) = Be« (m1m2)

Kullback-Leibler centroids
> In closed-form through the Bregman divergence
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Maximum likelihood estimator

A Bregman centroid

i) = argmax » _ log pr(xi, 1)
i

= argmin Y _ Br- (t()||n) —F" (t(x)) — k(x))

does not depend on 7

= arg mnin Z Br= (t(xi)||n)

=) t(x)

i

And § = VF*()
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Mixtures of exponential families

m(x;w,0) = Y wipr(x; 0;)

1<i<k

Fixed

» Family of the components Pg

» Number of components k > Weights > w; =1
(model selection techniques » Component parameters 6;
to choose)

Parameters

Learning a mixture

> Input: observations xi,...,xy

» Qutput: w; and 6;
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Bregman Soft Clustering: EM for exponential families
[Banerjee 2005]

E-step
M-step
n; = argmax ) _ p(i, ) log pr (%, 6)

= arg min ZP(”»J’) Be (t(xi)l[n) —F*(t(x:)) — k(xi)

does not depend on 7

_ZZ PUJ) )



Motivation
Co-Mixture Models Algorithms

Applications

Joint estimation of mixture models

Exploit shared information between multiple pointsets

> to improve quality

> to improve speed

Inspiration Efficient algorithms
» Dictionary methods » Building
» Transfer learning » Comparing
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Co-Mixtures

Sharing components of all the mixtures

mi(xlw®,7) = 3" wMpe(x| 7))

ms(x|w),n) Zw pr(x| ;)

> Same 71 ...n everywhere
» Different weights w(/)
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co-Expectation-Maximization
Maximize the mean of the likelihoods on each mixtures

E-step
» A posterior matrix for each dataset
/
5y 1 Pr66)
p 7./ - (/) /
m(x; "’ Jw(), 1)
M-step

» Maximization on each dataset

" _ p(i,J) (1)
S ) )

> Aggregation
Ly~ ()
= >
I=1
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Motivation

Co-Mixture Models Algorithms

Applications

Variational approximation of Kullback-Leibler
[Hershey Olsen 2007]

(1) e~ KL(pr(+

0:)llpr(+; 6)))

Z 1) i
KLVarlatlonnal my, my) w( log
’ 5 wPeKLlor(:

With shared parameters

» Precompute Dj; = e—KL(pr(-Imi),pr(-Im;))

Fast version

KLyar(my]|mp) = Zw,(l) log

= J -
2 "
i > WJ( Je=Di

0:)llpF (- 6)))
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Co-Mixture Models

Applications

co-Segmentation
Segmentation from 5D RGBxy mixtures

Original

EM
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Co-Mixture Models
Applications

Transfer learning
Increase the quality of one particular mixture of interest

» First image: only 1% of the points
» Two other images: full set of points

S LY

> Not enough points for EM
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Algorithm
Experiments

Bag of components

Bag of Components

Training step

» Comix on some training set
> Keep the parameters

» Costly but offline
D={0,...,0k}

Online learning of mixtures

» For a new pointset

» For each observation arriving:

argmax p(x;,6) or  argmin Br(t(x;), )

16
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Algorithm
Experiments

Bag of components

Nearest neighbor search

Naive version

» Linear search
» O(number of samples x number of components)

» Same order of magnitude as one step of EM

Improvement

v

Computational Bregman Geometry to speed-up the search

v

Bregman Ball Trees

v

Hierarchical clustering

v

Approximate nearest neighbor
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Experi t:
Bag of components xperiments

Image segmentation

Segmentation on a random subset of the pixels

100% 10% 1%
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Algorithm

Experiments

Bag of components

Computation times

120 T T T

100

80

60

40

20

Training 100% 10%

I Training
B EM
N BoC

1%
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Algorithm
Experiments

Bag of components

Summary

Comix

» Mixtures with shared components

v

Compact description of a lot of mixtures

v

Fast KL approximations

v

Dictionary-like methods

Bag of Components

» Online method
» Predictable time (no iteration)
» Works with only a few points

» Fast
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