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Abstract. Given a query patch image, patch matching consists in find-
ing similar patches in a target image. In pattern recognition, patch
matching is a fundamental task that is time consuming, specially when
zoom factors and symmetries are handled. The matching results heavily
depend on the underlying notion of distances, or similarities, between
patches. We present a method that consists in modeling patches by flex-
ible statistical parametric distributions called polynomial exponential
families (PEFs). PEFs model universally arbitrary smooth distributions,
and yield a compact patch representation of complexity independent of
the patch sizes. Since PEFs have computationally intractable normal-
ization terms, we estimate PEFs with score matching, and consider a
projective distance: the symmetrized γ-divergence. We demonstrate ex-
perimentally the performance of our patch matching system.

1 Introduction and prior work

Given a query patch image Is of dimension (ws, hs), patch matching asks to find
“similar” patches in a target image It of dimension (wt, ht). Patch matching
find countless applications [1–3] in image processing. A basic dissimilarity mea-
sure of patches Is and sub-image patch It(x0) of dimension (ws, hs) anchored
at location x0 is the Sum of Square Differences (SSDs) of the pixel intensities:
D(Is, It(x0)) =

∑
x∈[1,ws]×[1,hs](Is(x)− It(x+ x0))2, that can be interpreted as

the squared Euclidean distance on the vectorized patch intensities. Thus find-
ing similar patches amount to find close(st) neighbors in Rws×hs . This basic
SSD distance may be further extended to color or multi-channel images (like
hyperspectral images) either by taking the average or the maximum of the SSDs
for all channels. A näıve brute-force baseline patch matching algorithm com-
putes a matching score for each potential pixel position x0 ∈ [1, wt] × [1, ht]
at the target image in time O(wthtwshs). This is prohibitively too expensive
in practice. When dealing with pure translations, the Fourier phase correlation
method [4, 5] can be used to speed up the alignment of images within subpixel
precision in O(wh log(wh)) time using the Fast Fourier Transform (FFT) with
w = max(ws, wt) and h = max(hs, ht). To factorize and speed up the distance
calculation between the source patch and the target patch when scanning the
target image, a general Patch Matching (PM) method [1, 2] has been designed



that computes a Nearest Neighbor Field (NNF). However, those methods are too
time consuming when dealing with large patches, and are not robust to smooth
patch deformations, symmetry detections (like reflections [6, 7]) of patches, and
zooming factors (requiring guessing and rescaling the source patch accordingly).

We propose a fast statistical framework to match patches: Our algorithm
models (potentially large) patches by statistical parametric distributions esti-
mated from patch pixels, and define the distance between patches by a corre-
sponding statistical distance between those compact patch representations. In
order to handle a flexible faithful modeling of any arbitrary smooth probability
density, we consider Polynomial Exponential Families [8, 9] (PEFs) that have
intractable normalizing constants. Since we cannot computationally normalize
those PEF distributions, we bypass this problem by considering statistical pro-
jective distances [10] that ensures that D(λq, λ′q′) = D(q, q′) for any λ, λ′ > 0,
where q and q′ are the unnormalized distributions of patches.

The paper is organized as follows: Section 2 presents our patch statistical
representation, the chosen distance function, and the fast batched patch pa-
rameter estimation procedure using integral images. Section 3 reports on our
experiments. Section 4 concludes this work by hinting at further perspectives.

2 Patch matching with polynomial exponential families

2.1 Polynomial Exponential Families: Definition and estimation

We consider the univariate parametric probability distributions with the follow-
ing probability density:

p(x; θ) = exp(〈θ, t(x)〉 − F (θ)),

where t(x) = (x1, . . . , xD) denotes the sufficient statistics [11, 10], and θ the
natural parameters. 〈x, y〉 = x>y ∈ R denotes the Euclidean inner product. Let
Θ ⊆ RD be the natural parameter space so that

∫
exp(〈θ, t(x)〉dx <∞.

The function F (θ) = log
∫

exp(〈θ, t(x)〉)dx is called the log-normalizer or
partition function in statistical physics [11, 10]. The order of this exponential
family is the dimension of the natural parameter space, D. Since ti(x) = xi is
the monomial of degree i for i ∈ [D] = {1, . . . , D}, this family of distribution
is called a polynomial exponential family (PEF). PEFs are universal density
estimators that allow one to model arbitrarily finely any smooth multimodal
density [8]. This can be easily seen by considering the log-density that is a
polynomial function, and polynomial functions are well-known to model any
smooth function.

For an exponential family, the maximum likelihood estimator θ̂ from a set
of independently and identically distributed (iid) scalar observations x1, . . . , xn
(the patch pixel intensities with n = wshs) satisfies the following identity equa-

tion: ∇F (θ̂) = 1
n

∑n
i=1 t(xi).

Since F (θ) is not known in closed form for PEFs, one cannot compute its

gradient ∇F (θ), and we need a different method to estimate θ̂. Let q(x; θ) =



exp(〈θ, t(x)〉) be the unnormalized model, a positive probability measure (and

p(x; θ) = q(x;θ)
eF (θ) ∝ q(x; θ)). We use the Score Matching Estimator [12, 13] (SME3):

θ̂ = −

(
n∑
i=1

D(xi)
>D(xi)

)−1( n∑
i=1

∆t(xi)

)
, (1)

where D(x) = ∇t(x) = (t′1(x), . . . , t′D(x)) is the vector of derivatives of t(x)
(term by term), and ∆t(x) is the Laplacian operator, (computed from the second
derivatives, term by term). We have t′i(x) = ixi−1 when i ≥ 1 (and 0 otherwise)
and t′′i (x) = i(i− 1)xi−2 when i ≥ 2 (and 0 otherwise). Notice that SME is not
efficient when p(x; θ) is not Gaussian [10] (but MLE is efficient). See also [8]
for alternative estimation recursion moment method of PEFs. Here, we consider
X = R+ the support of all PEFs (although intensity values are clamped to 255
for fully saturated pixels).

Thus a patch of size (ws, hs) is represented compactly by a natural parameter
of a PEF of order D � ws × hs, and is independent of the patch resolutions.

2.2 Statistical projective divergences

In order to measure the (dis)similarity btween two patches described by their
natural parameters θs and θt, we need a proper statistical distance [14–16]
like the relative entropy also called the Kullback-Leibler (KL) divergence:

KL(p(x; θs), p(x; θt)) =
∫
x∈R+ p(x; θs) log p(x;θs)

p(x;θt)
dx. It is well-known that the

KL divergence amounts to a Bregman divergence on swapped natural parame-
ters when the distributions come from the same exponential family [17]. How-
ever, we point out that we do not have the log-normalizer F (θ) in closed
form for PEFs. Hence, we consider a projective divergence that ensures that
D(λq, λ′q′) = D(q, q′) for any λ, λ′ > 0. For PEFs, we need to consider a sta-
tistical projective distance, and we choose the γ-divergence [18–20] (for γ > 0)
between two distributions p and q:

Dγ(p, q) =
1

γ(1 + γ)
log Iγ(p, p)− 1

γ
log Iγ(p, q) +

1

1 + γ
log Iγ(q, q), (2)

where

Iγ(p, q) =

∫
x∈X

p(x)q(x)γdx. (3)

When γ → 0, Dγ(p, q) → KL(p, q). For our patch matching application,
we consider the symmetrized γ-divergence: Sγ(p, q) = 1

2 (Dγ(p, q) + Dγ(q, p)).
Although Dγ(p, q) can be applied to unnormalized densities, its value depend on
the log-normalizer F . Indeed, the term Iγ(p : q) admits a closed-form solution
provided that γθp + θq ∈ Θ:

Iγ(θp, θq) = exp (F (θp + γθq)− F (θp)− γF (θq)) . (4)
3 http://user2015.math.aau.dk/presentations/invited_steffen_lauritzen.pdf



Proof. We have Iγ(θp, θq) =
∫

exp(〈t(x), θp + γθq〉 − F (θp) − γF (θq))dx.
Expanding the right-hand side, we get exp(F (θp + γθq) − F (θp) −
γF (θq))

∫
exp(〈t(x), θp + γθq〉−F (θp+γθq))dx. By definition, when γθp+θq ∈ Θ,

we have
∫

exp(〈t(x), θp + γθq〉−F (θp +γθq))dx = 1, and the result follows. The
γθp+ θq ∈ Θ condition is always satisfied when the natural parameter space [15,
16, 14] is a cone (since γ > 0), like the multivariate Gaussians distributions, the
multinomial distributions, and the Wishart distributions, just to name a few.

One can check that by taking a Taylor expansion on the γ-divergence ex-
pressed using the closed-form expression of Eq. 4 for exponential families with
conic natural space, we obtain the Bregman divergence [17] when γ → 0.

To fix ideas, we shall consider γ = 0.1 in the remainder. Since the support is
univariate, we may approximate the γ-divergence by discretizing the integral of
Eq. 3 with a Riemann sum (discretization). Another method that works also for
arbitrary multivariate distributions, is to use stochastic integration by sampling
x1, . . . , xm following distribution p (importance sampling). Then we have:

Iγ(p, q) =

∫
x∈X

p(x)q(x)γdx ' 1

m

m∑
i=1

q(xi)
γ .

In practice, we set m = 100000 for importance sampling.
Notice that some statistical divergences are only one-sided projective diver-

gence. For example, Hyvärinen divergence [21]:
DH(p, q) = 1

2

∫
p(x)‖∇x log p(x)−∇x log q(x)‖2dx.

2.3 Fast PEF estimations using Summed Area Tables

Recall that to compute the score matching estimator of Eq. 1 we need to com-
pute both sums for all wt × ht locii of the patches. In order to estimate the
PEF parameters in constant time (for a prescribed order D) instead of time
proportional to the source patch size, we use Summed Area Tables [22] (SATs
also called integral images, interestingly also used to detect mirror symmetry of
patches in [6]). For every pixel of position (x, y), the value of the summed area
table F (x, y) is

∑
x′≤x,y′≤y f(x′, y′), where f is the function that we want to sum

up. In our setting, we need two SATs (cumulative sum arrays) per channel for
D>D and ∆t evaluated for the intensity (or red, green, blue values when con-
sidering color images). The value of the table at position (x, y) can be computed
using previously computed values when filling the SAT,

F (x, y) = f(x, y) + F (x− 1, y) + F (x, y − 1)− F (x− 1, y − 1)

(when x−1 or y−1 is zero, the value is just zero). Once the table is constructed,
for the score matching method, when we want to compute the sums in the
equation for a patch (a rectangle with bottom-left corner of position(x0, y0) and
top-right corner of position(x1, y1)), and we compute it in O(1) as:∑
x0≤x≤x1,y0≤y≤y1 f(x, y) = F (x1, y1) + F (x0, y0)− F (x0, y1)− F (x1, y0).



3 Experiments

aligned pixel-based (SSD) PEF (D = 4) with Sγ

Fig. 1. Comparison of PEFPM with the baseline SSD patch matching (patch size 150×
150 and image size 960×640): Observe that due to its flexibility the statistical modeling
got more face hits (4 faces) than the pixel-aligned SSD method (one face). The upper
row is on pixel intensities, the middle row on sum of RGB channel dissimilarities, and
the last row on the maximum of RGB channel dissimilarity.

All our experiments were performed in JavaTM on a HP Elitebook 840 G1
(i7-4600U CPU 2.1 GHz with 8 GB RAM). First, let us compare our PEFPM
method (with γ = 0.1) with the baseline SSD method: Figure 1 displays the
results obtained when considering intensity values, sum of distances (sum of
SSDs or sum of Sγ divergences), or max of distances for the dissimilarity between
patches. Observe that our statistical method successfully detected 4 visually
similar patches (human faces) while the aligned pixel-based distance detected
only one face.

Next, we study the impact of the PEF order D on the visual patch search in
Figure 2. We notice that results depend on the chosen order, and that the most
visually similar patches are found for D = 4 and D = 5. This raises the problem
of model selection for future research.

Table 1 reports the computational times breaked down into (i) the SAT
construction stage, (ii) the PEF estimations, and (iii) the Sγ approximation
according to the order of the PEF. Clearly, the higher the order the more costly.
The PEF estimation stage scales linearly with the order with slope 1, while the
SAT construction and Sγ search have slopes < 1.



order D = 3 order D = 4

order D = 5 order D = 6

Fig. 2. Impact of the polynomial degree of PEFs, the order D of the exponential family
(image size 1280 × 853, patch size 100 × 100). Here, order D = 4 and D = 5 find the
most visually similar patches.

degree of PEF
2 3 4 5 6

SAT construction 5.99 6.37 8.04 9.56 11.86

PEF estimation 5.24 7.44 8.96 12.84 14.82

Sγ search 7.02 8.86 9.70 10.30 10.52
Table 1. Computational time in seconds for PEFs.

We then tested the stability of our statistical PEFPM method by adding
some gaussian noise (Figure 3). Corrupting the pixel channels with a Gaussian
noise change the estimated distributions, but the distance evaluations with the
gamma divergence provably attenuate the distortions [18], and we can check that
we obtained the same matching patches.

no noise noise variance 10

Fig. 3. Effect of Gaussian noise on PEFs patch matching (patch size 300 × 250).

Finally, one big advantage of our statistical modeling other pixel-based patch
distance is to allow to consider different zoom values and symmetries. Indeed,
geometric symmetries do not change (much) the estimated distribution in a
patch. For example, see Figure 4 that illustrates this property: PEFPM nicely
detected the two butterflies even if one looks like the reflected copy of the other.



Here, the patch sizes are large (about 1/3 of the image dimension) and SSD-
based method will be very costly and inefficient.

Fig. 4. Patch matching with symmetry (reflection) detected by PEFPM of order 6
(patch siwe 250 × 250, image dimension (960, 640)).

4 Concluding remarks

We proposed a novel statistical flexible modeling of image patches for fast pattern
recognition. Our approach is particularly well-suited for handling large patches
and accounting for patch symmetries [7] or other deformations in target im-
ages. This work offers many avenues for future research: (i) model selection
of the polynomial exponential family according to the query patch, (2) fore-
ground/background detection in patches (say, using Grabcut [23]) and matching
only the foreground statistical distributions to improve the accuracy of patch
matching, (3) multivariate PEFs to bypass sum/max of univariate PEF dis-
tances, etc.
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