ALGORITHMS ON CONTINUED AND MULTICONTINUED FRACTIONS

Franck Nielsen! under the direction of
E.N.S. Lyon Peter Kornerup?
France University of Odense
fnielsen@ens.ens-lyon.fr Denmark

August 12, 1993

!Visiting student from the E.N.S. Lyon.
ZProfessor of Computer Science, Odense University, Odense.



Acknowledgments:

I would like to thank Sgren Peter Johansen and Peter Kornerup who have helped me during
this work and have improved considerably the quality of this rapport.
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And men recall that face,

Move gently if move you must

In this lonely place.

She thinks, part woman, three parts a child,
That nobody looks her feet

Practice a tinker shuffle

Picked up on street.

Like a long-legged fly upon the stream

Her mind moves upon silence.

W.B. Yeats, ”Longed-legged Fly”
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Abstract

We introduce a continued fraction binary representation of the rationals, and several associated algorithms
for computing certain functions on rationals exactly. This work follows the path taken by the previous
works done in that area and extends the notion of continued fraction to multicontinued fraction. For
that purpose, we introduce the notion of generalized matrix. This work is composed of six parts. We

begin by a survey on the different kinds of representation of numbers. We then describe and algorithm

azr+b
cx+d

this algorithm to compute complex functions f(z1,...,2n) = %(% where Pi(-) and P(-) are

polynomial functions of n variables. In the remaining, we show how it is possible to mix various formats

for any # when both inputs and outputs are provided piecewise. We generalize

which compute

of numbers (both for the input and output of numbers). Approximation of a real to a rational vector is
investigated (Szekeres’ algorithm)). A matrix representation of multicontinued fractions is introduced

and we develop an algorithm based on that representation to compute quotient of polynomial functions.
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1 Several Codings of Numbers and their Matrix Representations:

In this section, we present several ways of coding numbers. Some of them are redundant codings (i.e.
a number can be coded in several admissible codes). Redundancy is sometimes used to bound time-
computation when arithmetic operations are performed on these numbers. We can distinguish two kinds
of reals: the rationals which can be coded by a finite coding and the irrationals that must be processed
as symbolic information. The purpose of this article is to describe how an effective cell unit based on
continued fraction format can be built to compute complex functions. So that, if an operand is irrational,
it must be first approximated to a rational'. As computer hardwares deal with finite length string coding,
both rational and irrational approximation are in reality done. For each code, we first give its definition,
followed by some of its main properties we use.

1.1 Continued Fraction CF:

Continued
Fraction

Let [ao/ ... /an] be a coding of f]—' > 0. Then we have:

B:ao-l- 1
g ai + 1

with the imposed conditions on the partial quotients a;:

0,020
ai>1Vi>1

For instance, if we want to represent 3, then its continued fractions are [2/2] and [2/1/1]. Each rational is
represented exactly without approximation . This is the main advantage of continued fraction compared
with radix representation of numbers. Indeed, % is simply coded by [0/3] but in the radix representation,
we can only have an approximation of % The conditions on the partial quotient a; eliminate some
redundancy. Each rational f]—' has only two possible codings:[ao/ ... /an] and [ao/ . .., an —1/1] (for further
references, see [4][6][7][8][9][10][11][12]). Note that the partial quotient are obtained when performing
Euclid’s algorithm. The complexity of this algorithm has been studied in The Art Of Computing
Knuth, Vol. 2.

Given a continued fraction, we can compute its rational representation by using the following property:

Property 1 Let a = [ao/.../an] be a continued fraction. We term tail of a (T(a)), the continued
fraction [a1,...,a,]. Then we have:

1

1
(@~ * " far/ - Jan)

Only ag may be equal to 0 since [ao/.../ai/0/ait2/.../an] = [ao/.../ai + ait2/.../an].
The complexity of computing fl—' is proportional to the length of its coding (forward recursion).

Let us run the algorithm on 22 = [1/1/11]:

a=ao+

E pu—
1| a4 z
12
0|1 o
171 11—1
2|11 | STOP

1'We describe in the part dealing with the Szekeres’ algorithm how this approximation can be computed.
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ALGORITHM -I — CONTINUED FRACTION REPRESENTATION

INPUT:

z = fl—’ (it is not required that ged(p,q) = 1)

OUTPUT:

[@o, - . .,an] such that £ = [ao,..

ALGORITHM:

1= 0;
repeat

= |z;

if (z # a;) then z :=

t:=14+1;
until (z = a;_1);

.

T—a;?

Given a continued fraction coding [ao/ . .

./an], we want to compute its rational value fl—' , ged(p,g) = 1.

For that purpose, we use the property 1. This algorithm uses three registers but can only compute the

4
q

a; + W, if the rational denoted by [aiy1/...

"

! ) !
[ai/ ... Jan] = Eastd — 27,

P (using property 5, we can compute all the convergents with four registers). Since [a;/.../an] =

/a'n] =

!
Z—, has been computed, we can compute

The steps generated by the algorithm when computing the value of [1/1/11] are:

t|a; | p| g
2|11 (11| 1
111 (12|11
00 (23|12

If [ao/.../an] is a continued fraction representing
— Dbi

continued fraction [ag/ ... /a;] =

Property 2 The sequence (EZ

q:°

P )i of even convergents is increasing and sa,tzsﬁes
;

Zi, we term % — th convergent (0 < ¢ < n) the

<I_‘
— q

Property 3 The sequence (Zﬁ'—i), of odd convergents is decreasing and satifies TZEL > g.

Property 4 If [ao/ .../an] is a continued fraction representing fl—'
continved fraction denoted %. It follows, that if ag = 0 then ;’—) =

g2i41 —

with ag # 0 then [0/ag/.../a,] is a
[0,1/...

/a'n]-

n-th convergent | Continued Fraction Expansion | Rational | Decimal Rep.
0 [1] % 1
1 [1/2] 3 1.5
2 [1/2/3] % 1.428571429...
3 [1/2/3/4] 3 1.433333333...
4 [1/2/3/4/5] % 1.433121019...

Convergents of

225

157 —

[1/2/3/4/5).

We define the relational symbol € on the rational as follows: 2& T

if p<randr<s.

The convergents are often used when analysing the performance of an algorithm on continued fractions.
We cite below the main properties:
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ALGORITHM -II — RaTioNAL NUMBER REPRESENTATION

INPUT:
[ao/ .../as] a coding of a rational number.

OUTPUT:

f]—' = [ao, ..., an] with ged(p,q) =1

ALGORITHM:

P = Qn;

g:=1

1:=n—1;

while(z > 0) do
begin
tmp = q + a; * p;
q:=p
p = tmp;
ti=1—1;
end

pi

qi

[ao/ -

Property 5 The convergents
following properties:

i = 0;q;—1+ Ggi—2-

e Irreductibility: ged(pi,qi) = 1.

o Adjacency: gipi—1 — pigi-1 = (—1)*.
implicity: Pi€ Pl fon s < p

e Simplicity: qié o fori<n-—1.

../a;] of any continued fraction p

4

= [ao/ ... /an] satisfy the

Recursive ancestry: With p_p = 0,p_1 = 1,9_2 = 1,q_1 = 0, we have p; = a;p;—1 + pi—2 and

e Alternating convergence:
Po P2 o PE_ P Pl P
q0 q2 q2i q q2i-1 a1
e Best rational approximation:
T ; T ;
_g&:>|__2| &_E|
s 4 S q; q
e Quadratic Convergence:
1 )
7<|&—B|§ fori<n-—1
qi(gi+1+¢) @ ¢ T Q%+t
e Real approximation: |z — §| < # for irreductible f]—' = f]—' 18 a convergent of a continued fraction

erpansion of .

If [ag/ . .. /an] is the coding of |§|, then if f]—' < 0, its continued fraction is denoted by —[ao/ . ../an]

[—ao/ .../ — an)-

E.N.S. Lyon & Odense Universitet



1.2 Redundant Continued Fraction:

Redundant
Continued
Fraction

Redundancy is often used in arithmetic algorithms([10][16]) where it allows to produce result more quickly
(when the result is coded by a continued fraction, redundancy allows to deliver a partial quotient earlier).
1
P_ ao + 1
g a1 + 1
az +

with the following conditions

ap Z 0
la;| =1,1 <i<n-—1implies that a; and a;y; have the same sign
|an| > 2 whenever k > 2

The set of all redundant continued fraction expansions of 14—1 is then

(2/1/3]
11 ) [2/2/1/2]
2 Y [2/2/2/2]
[3/4]

The algorithm to determine all the redundant continued fraction representation of f]—' is more complex
since it uses a recursive process which must take care of the initial 2 steps (ap and a1). Let us consider

the rational Zi. If we choose the partial quotient a, then the remaining rational is p_qaq. Using the fact

that |p_qaq| >1lor |’%| < 1, it follows:
a<BXe 24
= q q
a must satisfy the range constraint a> ’% = fl—' -1 (1)
a €N

Then, we iterate the process until the current partial quotient equals g (in that case £ € N).

To have all the codes possible given a rational, the conditions on redundancy must be taken into
account. If 1 or —1 is chosen, the next partial quotient must have the same sign. If n > 2, we must
ensure that the last partial quotient a,, satisfies a,, > 2.

In order to simplify the algorithm, we use a queue @ in which a value can be added (appended) in its
queue by the operator o.

In the algorithm, we use a boolean function to assert that the partial quotient is in the proper range:
for example if COND is the boolean function, COND = COND(.) = COND(a) = (|a| > 2) specifies
that the partial quotient must have its absolute value greater or equal than 2.

Running the algorithm on the rational %, we obtain the following step:

ao[2; 3] Z—: Recursive step
a1[1; 2] Z—,’: Recursive step
1 2 —a; =3 STOP
2 : az[—2; —1] q# Recursive step
2 -3 -1 —2 | —a3=-2—STOP
-2 2 | —a3=2—STOP
3 -2l >ay=-4— STOP
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ALGORITHM -III — REDUNDANT CONTINUED FRACTION

INPUT:

A rational Zi, ged(p, g) = 1.

Initial Call: GiveRedundantCode(p,q,TRUE,Q « null).
OUTPUT:

All the possible redundant codings of Zi.
ALGORITHM:

Procedure GiveRedundantCode(p,q,COND,n,Q);

p,g,n: integer;

COND: Boolean Function on the next partial quotient a that must be computed ;
Q: represents the Queue where the partial quotients are stocked;

begin
min 1= f"%i'q;
maz 1= L%J;
for 7 := man to max do
begin
if (COND(i)) then do
begin
if (n > 1) then NEWCOND:=(a > 2) else
NEWCOND:=a # 0;
if (|i| = 1) then NEWCOND:=NEWCONDA(2l = 4);
if(fl—' = 1) then Q — Qo3;
else GiveRedundantCode(q,p-iq, NEWCOND,n+1,Q o 7);
end
end
end
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1.3 Continued Logarithmic Fraction:

Continued
Logarithmic
Fraction

This way of coding rationals allows easy-coding-decoding binary digits. We now consider the following

unique coding of [ao, .. ., @n]cr:

a,
P = gu + a a1
q 9u1 2
a 20,2
2%2 4 - 503
295 g
.+ e

with the condition on the logarithmic partial quotients

0,020
ai>1Vi>1

By factorizing at each level the partial quotient (if we suppose fl—' > 1, otherwise fl—' = [0] o [coding of P%]),
we find

2% +
1
2011—ll0+ 1
2a2—a1+a0+

2a3—a2+a1—a0 + .

2an—an_1+an+z—---+(—1)"ao

-

[2(10, Qe1=ao 2an—an_1+an+z—---+(—1)"ao]

which is a continued fraction. We term it continued logarithmic fraction because of the fact that it can
be ciphered just by taking the logarithm in base 2 at each step (the remaining number is I#ﬂiq). This
factorization was introduced in an unpublished paper of Gosper in 1977.

For instance, if ALG.4 is applied to %, we have the following steps:

step () fl—' a; a; | sum
0 Bll=ao 1|1
1 16—1 0=a; —ag 1 0
2 g 0=ay—a1 +ag 0 0
3 % 2=a3—as+a;—ag 2 2
4 % 0=a4—a3+taz—a;+ag| 0 0

So finally, it comes that 28 = [2/1/1/4/1] = [2/1/1/5] = [1/1/0/2/2]c..

Since the partial quotients of that coding are generally small?, we can code p, a partial quotient, as
I(p) = 170 (a (p)-string of 1 followed by a 0).

Hence, we have I(0) = 0, I(1) = 10, I(2) = 110, ,{(3) = 1110, .... With that binary sized coding,
C’L(%) =100100001100110.

This simple algorithm can be implemented in hardware with a simple look-up table (this look-up table
is described by a small number of states. For a complete description of that table, see [16]).

2From classical material on continued fractions it is known that the partial quotients in the continued fraction expansion
of a randomly chosen % € [0,1] ([13]) will have the value 7 with the probability essentially given by p; = log, (1 + m)
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ALGORITHM -IV — CoNTINUED LOGARITHMIC FRACTION

INPUT: f]—' ,ged(p,g) =1

OUTPUT: [ag/ ... /an]cy = [ah/ - - ./al]

ALGORITHM:
1:=0;
sum := 0;

if (p < q) then

while (¢ # 0) do

begin

ap := 0;
1:=1;
tmp = p;
pi=g;
q := tmp;
end;

begin

a = [log, 2J;
a; := a} + sum;
tmp:=gq;

g :=p—2%g;
pi=tmp;
sum = a;;
t:=14+1;

end
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1.4 LCF - Lexicographic Continued Fraction:

Lexicographic
Continued
Fraction

This way of representing rational numbers has been introduced by Matula and Kornerup in 1985([3]).
We say a code follows the lexicographic order iff given two strings s(a), s(b) of binary digits denoting the
rationals a and b:

a<bs s(a) <s(b)
a="b<s s(a) =s(b)
a>bs s(a) > s(b)
Note that the relational symbols <,=, > used when comparing a with b, and the relational symbols
<,=,> used with s(.) are not the same. If p = 2™ 4+ S°7 5,2 is an integral number, then we define
I(p) = 1™0by_1...bo as its lexicographic coding.
For instance, we have I(1) =0, I(2) = 100, I(3) = 101, I(4) = 11000, .. ..
In general case, when we want to code 2, we first code the sign, then the partial quotients [ao/ .. . /an].
Taking into account the fact that the even convergents are smaller than the odd ones, and the sign of the
rational (Signed LCF), it comes:

1o LCF([ao/ ... /an]) for [ag/ ... /an] > 0.
00 LCF(|[ao/ - - - /an]|) otherwise

SLCF([ao/ai/ ... /an]) = {

where,

lol(ag)ol(ai)o...ol(az,) for [ag/.../an] > 1.
0ol(ag)ol(ar)o...ol(az,) otherwise

LCF([ao/a1/ ... [azm]) = {

_ LC’F([ao/al/ .. ./0,2"]) o l(a2n+1) if [(1,0/0,1/ .. ./a2n/a2n+1] Z 1
LCF(lao/ar/. .. [azm/0zn11]) = { LCF([ao/a1/ ... [azm]) o l(aznt1) otherwise
Worst case representation-induced precision loss for any real number by a fixed length representable
number of the system has been shown to be at most 19% of bit word length, with no precision loss

whatsoever induced in the representation of any reasonably sized rational number (a complete description
of the proof can be found in [3]).

Using the probability of a; = j (p; = log, (1 + m)), it follows that:
i pi
110.415
210.170
31 0.093
4 0.059

An average partial quotient will be coded, therefore, by n bits where

. 1
n = 2.:(2|_log2 7| + 1)log, (1 + m) ~ 3.51...

k3
This yields straigthforwardly the observation([3]):
Observation 1 From the known disiribuiion of partial quotient size, it follows that the canonical con-
tinued fraction ezpansion of LCF ezpansion of a rational f]—' = [ao/.../an] = bobiba...bx_11 yields an
expected convergent to convergent ratio ofe% =3.51...

We conclude the description of LCF by a property on the gap sizes between two adjacents LCF
representation coded by a k-string:

Property 6 Given € > 0, then for sufficiently large k, the mazimum gap size will be at least 2~ (a+6)k
for a = %10g2(5 + 2\/(_3) = 0.82682... and the minimum gap size will be no bigger than 2(=¥=9% for

b = log, 3£/5 = 1.38848....

A description of the proof can be found in [3].
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1.5 Matrix Representation of Continued Fraction Expansion:

We have seen that the general principle of continued fraction was a suite of partial quotients a;,0 < 7 < n.
If we take the convention of writing fl—' = (p q), then we can write fl—' = [ao/ . ../an] as a product of easy-
and-inversible matrices as follows:

If n is odd:

=pa0=E0=00x (o T )(u, 1) (a o) ) (a )

If n is even:

=ea=En=00x(o )0 ") (o ™ ) 0)(a )

Let p be a partial quotient, p = 2™ + 2?2_01 2°b;, then we have:
WaNAY
0 2

(-G 1)-G 1 )G
(b 0)=( 0)-(et D)< 1)-(00)

Since the length of the coding is not fixed, we must specify the length by a leading symbol: "u”.
Hence p is denoted by u...wb,_1by_2...00 = u™by_1bp_2...bo. While p is entered piecewise thanks to

SIS

—_ =

—_
o

7 times

its radix representation of its partial quotient, simple product of matrices are performed.

Since the coeflicient of the factorization belongs to {0, %, 1,2}, performing a product of matrices with
these generating matrices correspond to left/right-shift and sum. The input process must keep track of
the last bit entered, so it can perform the switch matrix when the last u is read.

Regarding the next sections in the remaining of this article, this factorization is useful if we consider
a cell that can perform arithmetic on binary continued fraction of variable length and it is required that
its operands must be entered piecewise.

. 10 . n— . . .
For example, if ( p 1 ) with p = 2™ + Ei:ol a;b;: the cell will receive the input u...ub,_1...b9

7 times

switch

—N
TN
gl\)ll—\
—_ o
N—
X
X
TN
o

fNII—\
—_

—_ o
N—
——
TN
=
—_ o
N—
X
—N
TN
S N
—_ o

)x...x(z (1))}><CELLUNIT

bob1.ebn_1 n u entered
input || even matrix | odd matrix
2 0 10
U
0 1 0 2
switch Lo L1
11 0 1
1 1
vol ()| o 3)
0 1 0 5
= ()G )
3 1 0 3

A rational number can therefore afeter be denoted by a 2-vector ((p q) = Zl) be written as a product
of simple inversible matrices.
Note: We can avoid the even-odd matrix problem by using matrices of the following form:

(V)
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since

0 1 0 1
1 a2iy1 1 ay

In the last section, we define a multicontinued fraction by means of matrices. The switch matrix is
no more used and an homogene writing?® is used.

1.6 Radix Coding:
Radix

We consider, now as it is often used in pratice, a rational 2 in a radix representation (% =0.75 =
0.11)2). A number z has its integral part |z| and its fractional part z — |z|. Both parts can be coded
g
n

in radix representation. A number p = Z 2%h; = 2"b, +2™b, 1 +...+ 2_k+1b_k+1 +27%p_4 is coded
i=—k
as u,"_lbnbb1 ...b1bob_1...b_ with the alphabet B = {u, 0, 1} where u is a leader code allowing to count
the length of the integral part.
For instance, 7.375 = (111.011); = uu111011.
We can also use, more elaborate form of coding based on radix representation ([11][13][16]), like the
two’s complement fixed-point numbers (C-2) ,...

1.7 Redundant Binary Representation (RPQ):
Redundant
Radix

In the algorithm developed later, redundancy will allow us to bound delays between inputs and outputs.
Outputs will be produced faster, and the velocity of streams of data in the pipeline computational tree
will be higher. LCF provides the bit-grained the structure without redundancy. If p is an integral number,
then [p]z = by, ...bo where b; € {1,0,1}, is one of its coding. We constrain redundancy as follows:

R(p) = u" 'bpbn_1...bo with |b,| =1
satisfying the range constraint:
mlil1<p< 2t —1forn>2
and for p = 0, we have R(p) = by = 0.

Definition 1 For n > 2, a self-delimiting signed bit string u™ bpb,_1...b1bo is admissible iff when
bubn_1 = 11 or 11, the sign of by_2b,_3...b1by agrees with that of by,.

For example, the string (111); = 1 is inadmissible but (111); = 3 is admissible.

The test must be easy to perform, since in practice, a stream of bits will enter piecewise the arithmetic
cell.

For any redundant continued fraction, we obtain the following coding of fl—' =lao/.../an]:

R(g) = R(ap) o R(a1)o...o R(an)

In general, all the algorithms which deals with the enumeration of redundant representations of a
number are recursive. In the redundant radix representation, the range constraint is defined by 2" 141 <

3The ”switch matrix” of a j-multicontinued fraction is unique and defined as ejt+1 where ej ;1 is the (7 4+ 1)-th unit
vector in base Q711!
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ALGORITHM -V — RADIX REPRESENTATION

INPUT:

A real number z.

OUTPUT:

Its radix representation in the list Q.

Note that the operator o is a concatenator. Hence aob#boa ,a #b.

Procedure IntegerPart(x,Q);
x:integer;
Q: queue;

begin
length: integer;

length := 0;

while (z # 0) do
begin
Q «— (z mod 2) o Q;
z = z div 2;
length := length + 1;
end

Q - ulength o Q

end

Procedure FractionalPart(x,Q);
x:integer;
Q: queue;

begin
if (x=0) then EXIT,;

if (z > %) then FractionalPart(2x-1,Q 0 1);
else FractionalPart(2x,Q o 0);

end

begin

Empty(Q);
IntegerPart(|z],Q);

Q — Q o ”‘”;
FractionalPart(z — |z],Q);
end
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Figure 1: Number of redundant codings for integers = € [0, 2048].

lp| < 2"*! — 1. Hence, we have [log,(|p| +1)] — 1 < n < [log,(|p| — 1)| + 1, which depending on the
value of |p| gives 2 or 3 different choices for n.

Let’s take an example: we’d like to have the representations of 10 = (1010);. Computing the n-range
gives: 2 < n < 4. So, the different kind of format are:

bsb2b1bo
babsbabibo
bsbab3babibo

Let’s take, for instance, the format byb3bab1by. Then, since 10 is positive, we have by = 1 but 2* = 16,
so we have to code —6 in redundant radix representation with at most format of length 3 : b3byb1bg since
by = 1. The last point shows the recursive process.

Proceeding in that way, we find the 8 different codings for z = 10:

The output displayed below is porduced by the MulCF-function program described in annex. The
alphabet denoting the results is {[1], 0, 1} where [1] denote 1.

>1[11[1]11[1]0
>1[1]1[1]J010
>1[1]o[11[1]0
>01[111[1]0
>01[1]010
>010[1][1]0
>0011[1]0
>001010

Note: Redundancy can be present both in the partial quotients (see for example RPQ) and in the binary

representation of these partial quotients.

2 Computation of Functions of One Variable:

2.1 Notations and Introduction to the Problem:

To understand the underlying principles of the general algorithm, we begin by a presentation of the

general concept. We want to compute the following function f(z) = Z:_I'I_'g where z is a variable (z1). The
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ALGORITHM -VI — REDUNDANT BINARY REPRESENTATION

INPUT:
An integer z: call: RedundantNumber(z,””, MAX NUMBER) where MAX_NUMBER represents the max-
imal number of bits that can be used to code it.

OUTPUT:
All the redundant binary radix codings for z as defined previously.

Procedure RedundantNumber(x,s,m)
x:integer;

m:integer;

s: string;

begin
mincode:integer;
maxcode:integer;
i:integer;

if (z = 0) then Display(s0™); else

begin

mincode := log, ||z| + 1| + 1;

maxcode := log, ||z| — 1| + 3;

maxcode := MAX(mazcode, m);

for 7 := maxcode downto mincode do
begin
if (z > 0) then RedundantNumber(z — 2i_1,30ma’XCOde_i1,i—1);
else RedundantNumber(z + 2i_1,30ma’XCOde_iT,i—1);
end

end

end
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1.000000000 | % 1/00

1.500000000 | 2 1/2/00

1.570000000 | 137 1/1/1/3/14/00

1.570000000 | 157 1/1/1/3/14/00

1.570700000 | 1570 1/1/1/3/27/1/2/1/1/1/4/c0
1.570790000 | 137078 1/1/1/3/31/1/2/16/4/2/00
1.570796000 | 232099 1/1/1/3/31/1/41/1/1/2/1/3 /o0
1.570796300 | 5707963 | 1/1/1/3/31/1/121/3/1/4/3/1/1/2/00
1.570796320 | 217471\ 1/1/1/3/31/1/138/1/2/2/1/4/4/cc0
1.570796326 | 133398163 \ 1 /1 /1/3/31/1/144/1/18/8/2/1/7/4/c0

Figure 2: Approximations of 7.

computation can also be seen in term of matrix using the convention z = (p ¢) if z = Zi, ged(p,g) =1 (in
practice, its always the case since irrationals must be approximated to a closer rational according to the

selected precision):
a b a b
e=@nx (¢ %) =eax (2 })

For example, if we take f(z) = 32+l we have the general matrix notation f(z) = (z 1) x ( 3 2 )

— 2z+3? 1 3

Our algorithm takes its input piecewise and must also deliver output piecewise. Thus, it is possible to
develop a pipeline structure corresponding to the evaluation of a more complex function. If # is coded into
its continued fraction [ag/a1/ ... /axs], the partial quotients ag, @1, . . ., @, will be successively entered (the
partial quotient defines the size* of the input). At step 4, the first i partial quotients will be consumed
and the result of f(z;) where z; is the i-th convergent of z is known. It is therefore possible to consider
a process that approximate a real to a rational written in continued fraction and deliver its successive
partial quotients to the process that compute the function.

EVALUATION OF 7| | COMPUTATION OF £(3)|

Observation 2 It is worth noting that the (i + 1)-th partial quotient a;(c) determined at step® o when
performing approzimation of ¢ = [ao/a1/.../ai/...] is the same as a; iff there ezists two consecutive
steps o1 and o where a; = a;(01) = a;(02).

2.2 Consuming Input Piecewise:

If we note X = (2 1) = (p ¢) = z, we can rewrite the function into

Y=Xx<{ I''xI }xFx{ 0 'x0
—— N———
Identity matrix Identity matrix

We can group the terms in a different way

Y={ XxI"! 3 x{IxFx01'}x 0 (2)
—_——— —_—— N~
input process update process output process

4The size is seen as a parameter which defines the granularity of the atom.
5 The notion of step, here, denotes the current rational approzimation.
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ALGORITHM -VII - CoNsUMING INPUT

Scan the input until a partial quotient a;;1 is available or the termination signal is perceived. Upon

the termation signal, depending on the parity of ¢, perform the product of matrices S, x F; (¢ is even)

or S, x F; (¢ is odd) else input a;1 is F; by multiplying M, 1 with F;: ¥ = X x Xi(_;ll) X (Miy1 x Fy).

where I, O are well chosen inversible matrices (i.e. det O = detI = 1). Given F and the shape of X, it
can be deduced that both I and O are (2 x 2) matrices.

We can write the latest equation by expanding X = z = [ao/.../an] = My X ... X My where
M,, ..., My are inversible matrices representing the partial quotients (we associate the matrix M; to the
partial quotient a;).

Property 7 Letz = [ao, ..., a2i] be an even continued fraciion, then we can rewrite z in term of products
of simple matrices:

choose row

=T (4 D) (4 )

Se

if = [ao, . .., @2it+1], then the choose-row matriz is (1 0) ; Hence
choose row

- TG ) (L ) (2)

Q

If X is the matrix coding of = [ag/ . .. /a2i], then we can input a suite of Id transformations (theses
transformations can be expressed as M x M ~1!), namely

(L) () (DM D )= (4 D)

Expanding X = Ms; X ... x My in the equation and using the fact that M x M ! = Id, we obtain

v {(a )0 ) (w 1))

piecewise input

Let us denote X2; (X2i4+1) the matrix denoting the 2i-th (respectively (27 4+ 1)-th) convergent of z.
Then we can write

X x X5;' x (X9i x F)

We denote by F; the result of the product of matrices X; x F' where X; is the matrix coding the i-th
convergent of z. Since as the end of the algorithm, we will have consumed a,, (and the current convergent
is X,,), we will have

Xx X' x(XnxF)=XxXy' x F,

But as depending on the parity, X = S, x X, (even parity) or X = S,, x X,, (odd parity), it follows:

e niseven: Y = S, x F,
enisodd: Y =5, x F,

The algorithm to consume input is therefore easy.
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2.3 Producing Output Piecewise:

We now focus on the problem of delivering output while inputing. Our result »r = f(z) can also be written
in the continued fraction format. Hence, if » = [bo/.../bs;], its matrix representation is (0 1) x May; x

...XM().
P, n_ (1 0 1 byjs 10
r_?:(pq)_(sz 1)><(0 1 X ..o X bo 1

We will also denote by F; the resulting F when (¢ + 1) inputs have been processed:

o 1 0 1(1,2,'_1 1 0
F’_(a% 1)(0 1 )X(ao 1)XF

And for convenience, we will term F the current F;. So we have always Y = C; x F at step (¢ + 1) where
C; is the selector matrix defined by

C. — (01) <= 1iiseven
71 (10) <= iisodd

When the i-th input has been consumed, ¥ = f(z;) where z; is the ¢-th convergent of z.

Y is a two dimensional vector Y = (p’ ¢'). This vector represents the rational Z—: which can be written
in [bo/.../b2;]. We must therefore assert that ¥ denotes always a positive rational number. This defines
the output condition.

Depending on the parity of the output index, we must check if producing output is possible by asserting
the output condition P(a):

Pla) = F1y—aFi2) >0 <= output index is even
| —aF1)+ F2)>0 <= output index is odd

where F(;) term the ith column of F
It is worth noting, that if some accumulation of inputs is done, we can just multiply the input matrices
and then compute the product of the resulting matrix with the current F. This statement corresponds
to the equation
Y =X x X7 x (Mg x ... x Myy1) xF;

accumulation
Y=XxX;'xM xF,

where M’ represents the product of matrices My X ... x M;y1:M' = X X Xi_l.

We choose, for the velocity of the algorithm, the larger a that satisfies P(a) (in practice, as it is
presented with the generalized matrices, we use the decision hypercube which determines in a constant
time which a, if there exists such a a, must be delivered).

When no input can be performed (for instance, oo has been entered®) then we choose a row of F
depending on the input parity. This step corresponds to compute the product of matrices ¥ = S, x F,
(second row) or Y = S, x F, (first row). This row represents the rational number Z—: = r which can be
represented by a continued fraction.

We then merge both results (the continued fraction representing Z—: and the previous results delivered
before) taking care of the output parity when the algorithm has read oo as input. Indeed, if the output

parity is odd, then the next output that could have been produced will be even (and the factorization of

p—: begins by af,) so the normalization is already done. Otherwise, we add the first coefficient of Z—: and
the last output.
In term of matrix representation, if [ro/.../r;] has been produced like output when the algorithm

catches oo and if [f1/.../f;] denotes the remaining rational Z—:, then it follows:
Y =X x X' X Fj x My, X ... x My, x My, X ...x My,

where F; = ( 1 g ) if (j +4—1)is odd or ( g 1 ) otherwise.

8This can be denoted by a signal in an hardware realization.
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ALGORITHM -VIII - FUNCTION OF ONE VARIABLE

Process 1:Consuming input
Scan the source until a partial quotient a; (corresponding to the i-th input) is available . Update F by
performing the multiplication of matrices M; x F'.

Process 2:Producing output
Find the larger a such that P(a) is satisfied by intersecting the two interval conditions. Output M; and
update F' by performing the right-side product of matrix F' x M]-_l.

Process 3:Calling termination
Depending on the output parity, choose the first or the second row of the current F.

As the final result expressed as product of matrices must denote a continued fraction, we must have
an alternance of the kind of partial quotient matrices My,, ..., My,, M;,, ..., My,. But as My, is of kind
"even”, we must have M, that must be "odd”. So that if M, is not "odd”, we insert between M,, and
Mj;, an Id matrix which corresponds to a null partial quotient.

The last case, implies that we must not deliver output directly, but wait that there is another output
(partial quotient) to deliver the previous one.

In practice, once the termination signal is catched, we input accordingly to the input parity M, and
produce output until Sippus X F represents a switch matrix (Sinpus is the input switch matrix.

A graphic simulator MCF-graphic’ that traces each step of the algorithm has been written. In
annex, a ATpXoutput given by MCF-SIM. is enclosed.

Finally, one of the more interesting things, is that we can combine in a same cell both the way we
input and output data. Indeed, in the previous example we have chosen I, O such as they satisfy the
inversibility and that our initial vector can also be factorized in the same way as I. Then, without a lot
of modification we can use several codes:

1. Continued Fraction

2. Continued Logarithmic Fraction

3. Lexicographic Continued Fraction

4. Redundant Partial Quotient (RPQ)

5. Redundant Bit-grained Continued Fraction
6. Radix

7. Redundant radix

The reader is invited to read the first section dealing with the codings of numbers ,to see how to
proceed. For each format of output, we must change accordingly the output condition. For instance, in
the radix representation, we must perform the sum of the elements belonging to each column of F to
determine how many inputs must be processed before output of the bit of order k can be produced (2F).
Indeed, assume we have the bit of 2* as input, then if 7 denotes the sum of the chosen column, then the
relation 727 < 2% must be satisfled. To bound output delay, we see in that example that it is preferable
to have a redundant coding of number which tightens the output delay.

7This simulator allows both function of continued fractions and multicontinued fractions to be computed
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3 Introduction to Generalized Matrices:

In this section, we study the computation of a function of n rational variables (X; = (21 1),...,X, =
(zn, 1)) into the space Q (we denote F this mapping function). F represents a mapping function of Q™
to (Q expressed as follows:

F.o"~0
Xl,...,Xn — f(:l,‘.l,...,l‘.n)

We want to provide input piecewise and supply output piecewise, thus allowing a pipelined structure for
evaluating complex rational functions.

For our purpose, we introduce the notion of generalized matrix in which components are denoted by
product of matrices which cannot be evaluated while the algorithm runs. Let us consider the following
example:

Consider the matrix M defined by

M— ad ¥\ [ azte hetdr
"\ d )T\ ayr+cy bazr+ds
Then M can be rewritten as follows:
1 0
(ar:l)x(a1 bl)x (ar:l)x(a1 bl)x
( ad v ) ¢y dy 0 c1 di 1
d d )~
as bz 1 as bz 0
(ar:l)x(c2 dz)x(o) (ar:l)x(Cz dz)x(l
We can rewrite the previous equation into the following form:
al bl
(al bl) (ml)X(cl dl)

C’ d, as b2
(z 1) x ( ey d )

By denoting M; = ( Zi Zi ) and M, = ( Z; Zz ), we finally obtain a compact writing which will

be used in the remaining article:
( a,’ b’ ) _ (m 1) X M]_
¢ d )\ (21)x M,

The mapping function can, then , be expressed as term of generalized matrix: The computational function
we allow, can be denoted by:
In dimension 2, we allow computation of functions that can be represented by

al bl
(:L‘.z 1) X ( €1 dl )

as bz
(:L‘.z 1) X ( ey dz )

(2)
(21 1) x ( (z2 1) x M! )

(z2 1) x MY

(:L‘.l 1) X

or simpler in

And to extend that notion to the general case, we introduce the recursive definition of M(-):

M(zz,...,2p) )

M(zz,...,2p)

M(z1) = (21 1)><(‘Z Z) and  M(zy,...,on) = (21 1)><(
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Each input X; is characterized by a (1 x 2) matrix (2-vector) representing the variable z; =
(pi ¢;) = (% 1) = (z; 1). We allow transformations on each variable of the following type:7(z) = 7 (£)
% = %. Since a, b and ¢, d can also be result of the same kinds of transformations, we can generate
with that recursive process polynomial rational functions of n variables.

It is worth noting, that the matrix (z; 1) is multiplied by 2:~! generalized matrices and that only the
matrix variable (z,, 1) are multiplied by integral coefficient 2 x 2 matrix (we term concrete matrix this
kind of matrices, on the contrary we say M is virtual if it iiis a generalized matrix). The computation of

F(z1,...,z,) required then 2"~1 (2 x 2)-matrix (2"*! numbers of Z). The family of functions described

. . sN(x; s )+ N(z; Y .
by the recursive process can also be expressed recursively: iNEiii’ ’i ;iNgii’ ’i ; where N is the
2 % prrmam % E R {2

generic recursive functions ; By recurrence hypothesis, it can be shown that the family of functions
generated by the process is:

SN
Il

S

v v; Un
E B(v) x 27" ...x]* ...z}
V=(V1,...,95)EV

Uy u; Un
E B(v) x z7* ...z} ... &Yy
U=(U1,een )EV

F=

where
V is a vector in {0, 1}" and B(o) is the binary number indexed variable representing by o.
B((Ol, ey On)) = BZ;=1 2i-1,,
For instance, taking n = 2, and expanding the sums in the numerator and denominator ,we obtain:

{ axzyt+bxztexy+d }
Fy =

o xey+bxe+cd xy+d
Several steps (different kinds of events) are to be observed before describing entirely the algorithm:
e The way input data are processed piecewise by allowing interleaved entrance.
e The output condition to supply result partial quotient r;
e Reducing the depth of the computational tree when a variable has been entirely entered.

We also investigate the possibility to change the format of numbers and, hence, combine either rep-
resentation of numbers in radix, redundant radix, continued fraction, logarithmic continued fraction,
redundant continued fraction, ...

In dimension =, the function (f(z1,...,z,)) that can be computed is a fraction of two polynomial
functions of n variables.

Pnum(z'la S ] m’n)
Pden(z'la sy m’n)

flza,...,zn) =

Definition 2 We can write this function in extenso as follows:

2" -1 n—1 J-@.zi

. 2t
> a5 ] =
=0 i=0

flz, ..., z2n) = =
271 n—1 i
®2
. Jzi
q25+1 Z;
7=0 1=0

where g; € N,V j € [0,2"*1 — 1] and ® represenis the binary operator AND(-,-).

Developing the kind of function for n = 3 (three variables z1, z2, #3) , we obtain:

02!
2%

7 2
> ][ =
7=0 1=0
7 2 jG?i
Y az+1]] =
7=0 1=0

f(m'la L2, Illg) =
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0010 0011 0001

000

00— | 0101
0111

0110

1010 1011 1001

100

1101

110
111 1111

Pnum(m17m27m3) Pden(m17m27m3)

T3
T

Figure 3: The Gray code on H.

We denote by (+)2, the binary representation of a number (for example (1010); = 10).

f(m'la T2, Illg) —
9(0000) +9(0010), 1 +4(0100)5 £2F9(0110)5 £2Z144(1000), £31+9(1010), T3T11+G(1100), T3T21+G(1110), T1T 2% 5

9(0001) +9(0011)5 £1+4(0101)5 T2+ (0111)5 T2Z1F+4(1001)5 T3HG(1011), T3T1+G(1101), T3T2+G(1111), T1T 2% 5

21, 22, 23) = qo 1+ q2%1 + qaZ2 + geT2T1 + G823 + q10T3%1 + q12T3T2 + g1421T2T3

1,T2,23) =

Y g1+ g3%1 + gs522 + gro2T1 + go3 + ¢1123%1 + q13T3T2 + g15L1T223

The i-th coeflicient ¢; can be placed on a 4-hypercube H according to its index :. Numbering the

hypercube H with a Gray code, the integral coefficient g; is positioned on the node that has its Gray
code equals to . The figure 3 shows how the 4-dimensional hypercube H is numbered with a Gray code.

The repartition of the coefficients g;, 7 € [0, 15] is shown in figure 4.

90 gs g3 q

ds q4 qr gs

gs dio0 g1l q9

q12 i Q15 q13

Figure 4: Positionning the coeflicients ¢; on H.
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3.1 Consuming Input Piecewise:

In our algorithm, we can interleave data from any variable once information is available. Hence, a process
scans permanently if a partial quotient from any variable is available. Variable (z; 1) denote the rational
Z—:_', ged(pi, ¢i) = 1. In the following we develop the update process when variables are entered in term
of partial quotients (further types of codings are analyzed at the end of that paper). Let (p ¢) denote
a variable. We have (p q) = (% 1) = [ao/@1/ . ../an]. Using non-redundant partial quotients, each
variable (z; 1) can be rewritten in term of products of simple inversible matrix:

If n(® is odd:

B Lo 1 0 1 0\/1 o), 10
(1:,1)-(10))((0 1 )(a(nlll 1)(01%) 0)(0 ]1 a(()@) 1

If () is even:

1 0 1 o), 1 o 1 0 1 0
: = i n- +1 i i
(zi 1)=(01) x ( NON )( 0 1 0 1 ai) 0 a1

These matrix factorizations can be expressed simply by two kinds of easy-inversible matrix:

. 1 0
e Even Matrix: E(aglj)) = ( ) )

% 1

. (@)
o Odd Matrix: O(aglj)_l) = ( 3 az{[_l )

The inverse matrix can also be expressed in term of these generating matrix:

. % % 1 0
e Even Inverse Matrix: E_l(ag-)) = E(—a( )) = ( () )

J 2 —ay/ 1

1 6) Q) 1 —a$),
o Odd Inverse Matrix: O (azj_l) = O(—azj_l) = 0 1J .

Notice, that the leading matrix (0 1) or (1 0) allows to choose among the 2 rows of the (2 x 2)-matrices :
( b % ) or ( Pit1 i1 ) (this way of proceeding takes into account the reciprocity Euclid’s

Pit1 Qi1 Di qi
algorithm).

We can rewrite the equation characterizing the computational functional matrix by replacing each
variable denoted by (z; 1) by its appropriate partial quotient factorization.

Then, when an input of any variable is available, say from variable z;, we perform the 2¢~! generalized
product of matrix.

Indeed, the computational function can be seen as a tree where levels represent the index of variable
and left edge, right edge, respectively the M;(.) and M2(.) generalized matrix. Each leafis a real (2 x 2)
matrix and each internal node is a virtual matrix. We consider each edge as a link to a (1 x 2) matrix
(when all the products after this node as been produced).

Suppose that al? is available, updatings on each subtree rooted at a node in depth i — 1 must be
performed in parallel. Depending on the parity on j, we must perform the matrix product O(%) x M or
E(3) x M (odd respectively even parity). If M is a real (2 x 2) matrix (i.e. ¢ = n) then that product
can be done directly, otherwise we must update each node in the subrooted tree according the arithmetic
operation.

Let us examine, the way we update generalized matrices when we perform a left-side product of a
matrix by a generalized matrix:

i 1) x M
Consider the product ( @ b ) X (2i41 1) Y.
c d (:L‘.H_l 1) x Mo

As we know that My, M, are (2 x 2) matrix, we can rewrite the equation such that each of the
coefficient of the generalized matrix is expressed.
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_ o

o o

= o

o o

which straightforwardly gives:
1 0
((L‘.H_l 1)(0,M1 + sz) 0 ((L‘.H_l 1)(0,M1 + sz) 1

((L‘.H_l 1)(CM1 —|—dM2)( ; ) (:L‘.H_l 1)(CM1 +dM2)( 2 )

We can therefore use the same notation and contract the last equation (and then reform a generalized

matrix) in:
( (zig1 1)M] ) _ ( (ziy1 1)(aM;y + bM,) )
(Tip1 1)M; (@it 1)(cMy + dMy)

The aM; + BM> operation can be dealt with recursivity as follows:
Since M;, M, are generalized matrix, we can add each component by a recursive process which ends

when reaching a leaf, i.e. a concrete (2 x 2) matrix.

a X + B x

"

aM;j + BM,
aM| + BMY

The recursivity stops when M and M} are leaves (in that case, the result is computed immediately).

This operation can be realized fastly in an hardware implementation (when the number of variables
is fixed, we update in parallel each leaf by a butterfly® chip.). One input can be processed at most in the
same time (regarding the modifications of leaves).

This is trivially equal to:

8 This principle is also used in the Fast Fourier Transform. It is worth noting that in an hardware realization, the
complexity of consuming input is constant
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3.2 Another Way to Process Input:

A partial quotient @ must be proceeded according to the i-th variable #;. We can first reorganize the

computational generalized matrix, such as z, is permuted with z;. Then we perform the input by

just performing the 2°~! multiplications in parallel with ( é T ) (odd) or ( i (1) ) (even). The

problem is therefore to reorganize the generalized matrix T denoting the function f(z1,...,2i,...,%n)
into a generalized matrix 7' which will denote f'(z1,...,Zn,...,2;) such that f(z1,...,zi ..., 2n) =
f(z1,...,&n,...,2;). This permutation of the variable can be denoted by its unique signature, so that

the problem is to find the transformation which can permute two successive variables z; and z; 1.

3.2.1 Analyze in Term of Matrices:

Let us consider the factorization

(:L‘.H_l 1)M1
(2iy1 1) Mo

We want to find a transformation R, such that if R is applied on T, the new generalized matrix
computing the same function can be written as:

T:(:L‘.,' 1))((

(2 1)M]
R(T) = (2441 1) x ( o 1)1 )

Let us develop the function denoted by T' according to respectively z;;1 and z; and factorize it again
following z;41 and z;:

N, Dl)

. Ny D,
(ziy1 1)( N} 2 )

zit1 N1+ N| ;1D + D}
(:L‘.,' 1) X , ,
;11N + Ny 211 D2 + Dy

(:L‘.,' 1) X

(zizit1 N1 + 2z N{ + ziy1Na + N ziziy1D1 + D] + ziy1D2 + Dy)

Factorizing:

z;Ny + N2 z;D1+ D,
:L‘.,'N{ =+ Né :L‘.,'.Dll =+ D’z

(N By)

R (M o)

2 2

(:L‘.H_l 1) X (

! !
The new matrices, corresponding to that computation, are M{ = ( N Dy ) and Mj = ( N} h )
N, D, N; 5

3.2.2 Using the Hypercube Structure:

Processing the input of a partial quotient p of variable z; can be seen as rotating the hypercube such
that the variable z; takes the orientation of z, and then processing the input of partial quotient p from
variable z], = z;. The rotation of the hypercube is always constrained by the orientation of the output
axis®. Once this rotation is done, processing input can be done by multiplying the (2 x 2) input matrix
M (p) with the 2"~ concrete matrices.

9The output axis can also be interpreted as variable z.
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Observation 3 Rotating the hypercube H, so that the i-azis and the n — azis are swapped, corresponds
for each node to swap the bit of weight n with the bit of weight ¢ of its Gray code.

(zp...Ti...20)2 = (Ti... Ty ... 2Z0)
An input of matrice M = @ b in dimension i is noted | * b . Sothat if M = [ @ b
c d c d /. c d

is an input corresponding to the i-th variable (z;), we must perform the updating

d

( (Z b ) X ‘ Generalized Matrix Denoting f‘

3.3 Shrinking the Computational Tree when an Input is Exhausted:

When no more partial quotient can be entered in variable ¢, 4 is said to be exhausted (in an hardware, it can
be a specific signal or a symbol representing oo which, in that case, denotes the continued fraction infinite
expansion. The computational tree can be collapsed into a smaller one where the level corresponding to
the variable ¢z has been deleted and the remaining nodes below level ¢ have been updated according to
the parity of the last input of that variable. The update process is simple since only two cases can occur:

e z; ended with odd parity: then the switch matrixis (1 0). And performing the multiplication yields
to choose the top son.

e z; ended with even parity: then the switch matrix is (0 1). And performing the multiplication
yields to choose the bottom son.

In term of matrix writing, this correspond to the product:

Even Parity:
(2iy1 1) M,
01)x = (ziy1 1)M;
(01) ((mm D | = D

Odd Parity:

(:L‘.H_l 1)M1 _ )
(o) ( (2241 1)M; ) = (pien DI

It must be noted,that when an exhaustion operation is performed, the function becomes a function of
n — 1 variables and can then be set to a hypercube of dimension n (instead of n + 1). This corresponds
to select the nodes n which gray code satisfies:

e z; ends with even parity: n ® 2¢ = 2¢

e z; ends with odd parity: n® 28 =0

3.4 The Output Condition:

To allow pipelined evaluation of complex functions, we must also deliver the result piecewise. For that
purpose, we must assume that the result is in some interval :[rg, r1]

Remind that in the case where the output is expressed as a non redundant continued fraction, we
have

Prot 'Pe1if p is odd
gr—1' gr

Pr Pr—1 : :
{5 =} ifris even
which represent a simplex in dimension 1 (for further information about the simplex, refer to the lin-
(:L‘.z 1)M1 )

X

ear and geometrical book [2]). We must assure that the 4 coefficients of the matrix ( (22 1)M.
T2 2
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bl

4 ) are positive, hence conserving the convex property of the output simplex (the output matrix

(

a’
c’
. 1 azrq1
is
0

1 ) or ( al (1) )) Performing the product, we obtain the following generalized matrix:
27

(:L‘.z 1)(0/M1( ; ) —|—C,M1( 2 )) (:L‘.z 1)(b,M1( ; ) —|—d’M1( 2 ))
(:L‘.z 1)(0,,M2( ; ) —|—C,M2( 2 )) (:L‘.z 1)(b,M2( ; ) —|—d’M2( 2 ))

a' Y
(:L‘.z 1)M1( c’ ) (:L‘.z 1)M1( d’ )

a' Y
(:L‘.z 1)M2( c’ ) (:L‘.z 1)M2( d’ )

The operations to determine if an output can be produced are done inside the datastructure since the
right-side product of matrix doesn’t conserve the datastructure.

The frames inside the matrix show the rigidity of the datastructure that must be conserved:

)\ (o
) (5 4)

We have exibited the two components on our single opaque structure(M; = ) in order to

ease the visualization. The operations to perform are
o M| — aM]+bM/
o M{ «— cM{+dM/
o M}« aM}+bMY
o M} — cMj)+dM)

But since, in the general case, M, M{', M}, M} are also generalized matrices, we must execute a
recursive process on both the updating and conditions procedures (indeed, we do not know the parity
of variables before they end and we must therefore assume the condition on both cases). So, that each
row of real matrix: eje; must satisfy:

® ae; —cea > 0
e ce1 —cey >0

We see that this output condition represents the bottleneck of the algorithm. This output condition
can nonetheless be computed quickly as described later with the decision hypercube. A more exhausted
study and generalization of the output condition is given with the decision hypercube.

3.5 Changing the Format of Numbers:

In order to have a bitwise grained algorithms, we must refine the input and output in the previous
algorithm. This can be achieved by noting the two matrix factorizations of a simple partial quotient.

(o 1)=0% T)A0 ") (3 7))
(b 1)=(a 2 )l 1)~ (5 1)}
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where .
p=2"+) b2
i=0

We want to have a one-to-one relation between the bit string in input: u™® b, _1b,_2...b1bo and the
matrix. So that, when one bit is available, the corresponding matrix is applied in our output process.

We decompose ( ) into a product of simple matrices:

(»#)=(02) (3 1)
(T )= (0 1)

Since our coding is u n—1bn_2...b1bo, we must perform a switch matrix when input switch between
the last 4 and b,_;. This matrix takes into account the uw which has been simplified and the matrix

10
an 2»

2% 2™\ |
and( 0 1 )1n

n—lb

( Lo ) or ( L1 ) So that, depending on the parity of the partial quotient, we have:

11 0 1
1
Se:(z )
2 2
SO_(Ol)

These matrices are simple and performing multiplication with another (2 x 2) matrix just corresponds
to shift-or-add operations. In an hardware implementation, each partial quotient must be entered as
follows: a leading sequence of u™~! which indicate the length n, then successively b,_1,...,59. For
instance 7 is represented by the binary string 111011. There are many codings that are available (some
of them are redundant and allow output to be produced fastly). It is worth noting that we can mix
input/output coding format since each format has its own factorization matrix (see before for a complete
definition of codings).

N O©

and the odd switch matrix

3.6 Computing the Tree-like Matrix Given a Function:

We describe in this part an algorithm which takes a function f = H and give its generalized matrix
factorization following z1, ..., z,. We factorize both numerator N(-) and denominator D(-) following z;.

It comes
o :lllNl(:llz, .. .,:L‘.n) —|— Nz(:l}z, .. .,:L‘.n)

:lllDl(:llz, .. .,:L‘.n) + Dz(l‘.z, .. .,:L‘.n)

That function can be written in the matrix form:

Nl(l‘.z,...,l‘.n) Dl(l‘.z,...,l‘.n)
Nz(:l,‘.z,...,l‘.n) Dz(l‘.z,...,l‘.n)

f:(:l,‘.l 1))((

where Ni(-), Na(-), D1(-), D2(:) are obtained by the same process.

With the trivial case (which ends the recursivity) f = % =(z; 1) x ( Z ; )

3 2 3 . . . .
Seyzt2ry 4321y The factorization is done successively on z,y, z.

Let us develop the algorithm on f = Toyzi2203

Factorization according to z:

po 2Bz +2y) + (32 +y)
 z(4yz) + (22 + 3)
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Current generalized matrix:

Jyz +2y 4yz
(ml)x( 3z+y 2243

Factorization according to y:

y(32+2)
y(42)

. y(1)+(32)
y(0)+(2243)

Current generalized matrix:

Factorization according to z:

2(3)+(2)
® 2@+
2(0)+(0)10
2(0)+(0)

2(0)+(1)
2(0)+(0)

2(3)+(0)
2(2)+(3)

At that step, the factorization is finished and the generalized matrix obtained is

- (zl)(g 4)
(zn(o )

)

)

- (z”(?

Y

=3
0

The coefficients can also be placed on the hypercube H and the hypercube is unfolding to give the

generalized matrix (remind there is a one-to-one relation concerning the nodes between of complete tree

of depth k and an hypercube in dimension k).

wih oo oo o

3.7 Analogy with the Hypercube Structure:

Each coefficient og the generalized computational matrix M (denoting the function) can be positioned
on an hypercube in dimension n + 1(let us recall that each coeflicient g; denoting a monome is set on the
node that has the same gray code as j). Let us consider a simple arithmetic operator C(A, B) which takes
to hypercubes 1, H2 (dimH; = dimHz) in input and deliver the final hypercube H = A+ H1 + B+ H,.
This operation can be performed recursively. Indeed, remember that a hypercube in dimension n is
constituted by 2 hypercubes of dimension (n — 1) in which corresponding vertices are linked (form the
edges in the (n + 1) dimension). Let us denote H; = ['H(ll) 'H(lz)] and Hp = ['Hgl) ’ng)]. If dimH; = 2
then Hy = [a1 b1] (H2 = [az b2]) and the cell C(A, B) deliver [A* a1 + B*az A+by+ B*by]. Otherwise,

we perform the recursive process:

[AxH®D + B+HY 4+HP + BHP)

10We allow to have a denominator which is null 0 at step 7, > 2.
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3zyz+2zy+43z+y

Figure 6: Representation of f = Toyzi2203

o Cell (4, B) Axar+ Bxa
Input of (z2 1) ( é IB; )
a b1

C(A,B) C(C\ A VA

c Hypercube Hypercube
' d dim 3. dim. 2.
a2 b,
C(4;B) C(CN))
C(4, B) c(d,
Co d2

Figure 7: Analogy with the hypercube structure.
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ALGORITHM -IX — BUILDING THE GRAY’s CODE

INPUT:
The dimension k of the hypercube to build and the 2* data defining the function of k£ — 1 variables.
Call: BuildHyperCube(k,0)

OUTPUT:
The hypercube

ALGORITHM:

Function BuildHyperCube(k,x) : HyperCube ;
k:integer;
x:integer;

begin
‘H: HyperCube;

if (¢ = 0) then H = LoadData(z);

else H = BuildHyperCube(k — 1, z) ® BuildHyperCube(k — 1,z + 2%~ 1);
return H;

end;

3.7.1 Construction of Gray Code:

To develop an efficient algorithm based on the hypercube structure, we need to enumerate nodes correctly
such that when an input on z; is done, only particular edges will work. The most famous enumeration
of the nodes of an hypercube is Gray code.

Property 8 In dimension k, two nodes of the hypercubes are connected by an edge only if their binary
representations differ with one bit. So that, if ny = ar_1...a0 and ng = by_1...bg then ni is connected
to ny iff XOR(ny1,nz) = 29 for some jO < j < k— 1. Furthermore, the edge e = (ny,nz) is termed a
j-edge connecting the vertices ni and ns in dimension j.

We denote by @ the XOR function. Hence we have XOR(n1,n2) = n1 @ ny = n2 ®ny. The procedure
to enumerate the vertices on th k-hypercube (and load data accordingly), is therefore easy:

Property 9 Ifn = by_1...bo is a vertex belonging to a k-hypercube, we say n is even (odd) according
to the i — th dimension iff by = 1 (respectively b; = 0). So that each j-edge connects an even vertez ny
with an odd vertez ny (furthermore, ny differs from ny in the (7 + 1) bits).

3.7.2 Processing Input and Output in the Hypercube H:

Inputs are now proceeded efficiently, considering the parity of its current partial quotient. Let us consider
an input of variable z; : Only the (¢ + 1)-edges will be active. Taking into account the parity of the
partial quotient, the following computations must be performed:

e Even Parity: It corresponds to the input matrix ( a ) in dimension 7. The value of the even

1
vertex will be changed into v, «— v, + av,.

e 0Odd Parity: It corresponds to the input matrix ( é T ) in dimension i. The value of the odd
vertex will be changed into v, «+ v, + av,.

The output condition is also realized efficiently according to the first dimension (it can be seen as a
variable zo). If @ can be delivered as output, the remaining coefficient of each node of the hypercube
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dim 3.

010 011

dim 1

Origin

100 101
dim 2

110 111

Figure 8: Construction of the Gray Code.

must be positive (hence, when the algorithm will be finished, we select the 1-edge respectively to the
parity of variables z1,...,zy.).
Nlustration of the active edges are shown for a 3-hypercube (function of two variables z; and ).

3.7.3 The Butterfly (<) Operation:

We describe in this present part, how to perform a multiplication between a (2 x 2)-matrix M (which
represents an input) and an hypercube H in dimension n according to the i-th dimension (variable z;).
b

M can be written as ( @
c d

). Then the operation to perform is:

a b
( c d )i T
where > denotes the multiplication.

If dim’H = 2 (one variable z1, H = ( 30 32 )) then we define the < operation as
1 93

a b [ a b g g2
(Cd)imﬂ_(c d)x(‘h g3
this yields straightforwardly to the matrix

ago +bg:  ags + bgs
cgo +dq1 cqz + dgs

Figure 11 explains why the p<-operation is called ”butterfly”.

If dim’H = n is greater than 2 then A can be decomposed on to two hypercubes H; and H; according
to the +-th dimension:

We eliminate all the i-edges (i.e. the edges that connect two vertices n; and ny such that ny@ny = 2i).
We obtain two hypercubes of dimension n — 1. We denote by H; the hypercube that has all its edges
even (é-even vertices i.e. if n is a vertex of H; then n @ 28 = 0) and by M, the one that has all its edges
odd (i-odd vertices i.e. if n is a vertex of H; then n @ 2¢ = 2¢).

The butterfly operation < is defined by two steps: the initial step and the recursive step.

Homogeneous Step:
a b a b i b i a b
(C d)ille—(c d)N[Hl—Hz]—[( d)ONHl_(C d)QleHz]
E.N.S. Lyon & Odense Universitet
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000 001
aj bl
010 011
]
d;
[25)] b2
100 101

Cy dZ

110 111

Figure 9: The 3-hypercube once the coeflicients are loaded.

Proceed on Variable

Active edges are shown in bold

L1

L2

Output (zo)

Figure 10: Active edges according to the ¢-th axe.
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q2 g3
do q1

ago + bgx cqo + dgu
ags + bgs cqs + dgs

Figure 11: The butterfly operation ().

Note that the input of the matrix M in dimension ¢ is now 2 inputs of the same matrix M but
in dimension 0 (this corresponds to the homogene operation step - it corresponds to a rotation of the
hypercube).

We must know define how the butterfly operation is performed when the matrix must be entered in
dimension 0. This is defined by the unique equation
Recursive Step:

(28) o= (2 8)moatm=i(2 ) ot (23) w0

where s(j) is defined according to the first step (multiplication in the ¢-th dimension as follows:

(4)

() = j=1—1— 7+ 2 jump the initial step
= j + 1 otherwise

At the last recursive step (this step is defined by dimH =2)j=n (¢ Zn)or j =n—1 (i = n) and
we perform the < operation on 2”1 hypercubes of dimension 2.
This observation has leaded to the general property:

b
d
consider each i-edge e = (nq,ny) of the hypercube H where ny (ny) is the value of the even (respectively
odd) vertez and perform in parallel with the <1 operator.

Property 10 Given o (n + 1) dimensional hypercube H, performing ( Z ) 1 H corresponds to
i

® Ny «— any + bny
® Ny «— cny +dny

Theorem 1 If'H is the hypercube coded the generalized functional matriz then entering an input matriz
M from variable i corresponds to the butterfly operation H «— M; <M.

3.7.4 An example: f(z1,23,23) = %

To illustrate the previous concept, we develop in this part the steps generated when computing f(z1, z2, z3) =
Zi1+Zotxs with

om1:[0/2]:%
¢z, =[0/3]=1
.$3—[4]:%
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Figure 12: Generalized matrix of f(z1, zg, z3) = ZitZat2s,

T1ToTs
0000 | 0001 1001 |
(22 | 2 z10 Bl
1011 1010
= | [=2 z22] 222
o010 o011
1100
25 ] o oo BE
1110
o110 Z7_| o111 - ,;15
Figure 13: The 4-hypercube used to compute f(.,.,.)
The result is f(1, £,4) = 2 =[7/4].
The first step is to compute the generalized matrix denoting the function (see figure 12).
As the function f(.,.,.) has 3 variables, we must use a 4-hypercube. We represent it as usual where

each vertex has an integer register which will be updated according the inputs (figure 13). Each step
of the algorithm is detailed in the figure 14. According with the parity of each input variable (z1:0dd,
z2:0dd, z3:even), we choose the 0-edge!!: 100 = (1000,1001). The remaining value is % which can be
written as its continued fraction format [1/4]. Hence, our final result is [6/0/1/4] = [7/4] (the 0 partial
quotient comes from the fact that our output process ends with the even parity). In reality, the algorithm
reads the termination signal (co) for z1, z2 and z3. It, then output partial quotients until it can output
oo. Proceeding in that way, it delivers successively 0/1/4/cc.

3.7.5 Algorithm on the Hypercube:

From the materail developed before, the algorithm on the hypercube structure appears to be quite simple.
It first loads the generalized matrix on the hypercube and then scans input until no more partial quotients
are to be processed. Each time a partial quotient p is available form z;, it performs the a * p+ b-operation
on all i-edges. If output can be produced, it delivers the corresponding partial quotient.

11We set the bit in the i-th dimension according to the parity of the i-th variable. If z; ends with an odd parity, we set
0, otherwise 1.
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| Events || 4-hypercube coefficients

o000
o 1 o o 1000

o
= 2 °

Load coeflicients o015 ooiT

1101 1100
o100 o101

1111 1110

o110 o111

1010

Input 0 and 2 from z; o0oro 01T

1101 1100
o100

1010

Input 0 and 3 from =, ooro oorT

1101 1100

o100

Input 4 from z3 - ootz

1101 1100
o100

Output 6 o015 01T

1101 1100
o100

Figure 14: Steps generated when computing f(%, %, 4)
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ALGORITHM -X — ALGORITHM ON THE HYPERCUBE

INPUT:

A generalized matrix representing the function of 4, ..., z,.

OUTPUT:

For a set of value 1 = valuey, ..., £, = valuey, the result f(valuey,...,value,).
ALGORITHM:

Build Hypercube(n + 1);
while(TRUE) do
begin
Process 1: Wait for partial quotient p from z;;
Proceed p on each i-th edge
Process 2: If producing output is possible!?, choose the next partial quotient according to the number
representation
end;

4 An Algorithm Based on the Hypercube to Compute f(z1,...,z,) =
Pnum(mla'":mn) .
Pden(mla'":z’n) '

At the end of the previous section, we have introduced the analogy between the generalized matrices and
the hypercubes. Processing input and output on the coeflicient hypercubes have been detailed previously
(see the < operation) but the efficient computation of the output condition has been hidden. In this
section, we first develop the decision hypercube which allows to compute efficiently the extremum values
of the function f and we end with the bit level algorithm which is closed to a concrete implementation®3.

4.1 The Decision Hypercube

In the algorithm described previously, the bottleneck of the output stream comes from the output condi-
tion which required too much time when computed. To eliminate this latency, we introduce the notion of
the decision'* hypercube, which allows to determinate whether output can be produced or not by com-
paring the extremum points of the function. Let us consider the evaluation of a function of n variables
as described before. The main idea is to determine Frange(z,. .., z,) the set of points generated when
©1 €]61,0;62,0[,. .+, %n €]6n,0;6n,1[. When a partial quotient p of #; has been processed in the coefficient
hypercube, the new variable 2} = ﬁ has its range in ]ﬁ; ﬁ[. In particular, whenever the first
partial quotient of variable z; has been entered, we know that the tail of z; which corresponds to the
new variable lies between A =]1;oco[ and this interval A does not change after, so that 6,0 = 1 and
;1 = oco. The general notation of intervals allows as it will be demonstrated alter to mix various formats
of numbers without changing the theory but only the bounds of variables.

Let us consider the non redundant continued fraction when #; €]l;00[ V i € [I,n], i.e 60 =
1 and 6;1 =00 Vi€ [1,n].

The Frange point set is defined as the result of the function F on the generalized interval I =

IT;=116i0; 6ial

Frange = {f(®1,...,2n) , V @1 €]61,0; 61,1, ..., &n €]6n,0;0n,1[}

or in the general interval notation

13 A complete study of the implementation in hardware of the algorithm for two variables z and y has been analyzed in
(6]

14 The decision hypercube contains information about the range where the next partial quotient belonging to the result
lies. This notion was first introduce in a paper of Kornerup and Matula in [7].
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n
Frange — f(H]&,o; 8i1[)
=1
Hence, if at each step with a little amount of work, Frange is known, we have the information that
the result is between the bounding limits m and M of Frange where m and M are the extreme values
of Frange (m = min Frange and M = max Frange.

Observation 4 If [m, M|NN = {r} then we can produce with certitude the output pariial quotient r.

4.1.1 Definition of the Decision Hypercube:

Prum(Z1,00020)
—pumitlynmnl  where P, and Pgzen are
Pien(Z1,myTn) ? num d

both polynomial functions of n variables. We build the hypercube as H; ® H2 where H; is an hypercube
in dimension n in which each vertex defined by its binary Gray’s code b,, ...b; contains the value of the
evaluation of the function Pynym(T(b1),...,T(by)) where T(-) is a simple function defined as follows:

The function f(zi,...,z,) can be written in f(z1,...,2y) =

. 1=6;
T(bits) = { 0= 6;;

For example, the vertex v belonging to the hypercube H; denoted by its Gray’s code (01011); contains
the value of f(T'(1),T(1),T(0),T(1),T(0)) = f(81,1,62,1,62,0,63,0,64,1,650). We define in the same way
the n dimensional hypercube H; denoting the value of Py.y,.

These two hypercubes are linked to form the H-hypercube in dimension n 4+ 1 with a new low bit
bo. It is worth noting that since the coeflicients of both polynomes are integers and the bounds of each
variable are also integers, the nodes of H are integers.

We term d,, the value stocked in the node having gray code n. It follows that

Pnum(T(bl): ey T(bn)) _ dbn...bll
Pien(T(b1),...,T(bn))  dp,..5:0

At the beginning of the algorithm , when the coefficients are loaded on the coefficient hypercube, we
compute (or load) the value Ppym(T(b1),...,T(bn)) and Paen(T(b1), ..., T(bs)) in the decision hypercube
for each b; € {0,1},...,b, € {0,1} (each vertex of the hypercube H). The extremum values, m and M,
are computed!® (or loaded). We denote by indez,, = (my ...m1)2 (indezpr = (M, ... M;p)2) the node

dox; . daxind 1
2rindesm 4l — gy (respectively M crmtl — ).
2xindew g

F(T(b1),...,T(by)) =

wich gray code is index,, (respectively indezpr and value

doxinderm

4.1.2 Updating the Decision Hypercube when an Input is Performed:

When processing input of a partial quotient from z;, let say p, we operate the transformation on z;:

1

T; 2> T =p+ —

Z;
where z, denote the new variable (2] €]1;4o00[). Hence, if our function was f(z1,...,%i,...,2,) =
% where N(-), N'(-), D(-), D'(-) are polynomial functions of n—1 variables z1, ..., Zi—1, Zit1, .- ., Zn,

we have the new function
_ziy(N'+pN)+ N’

!
flze, .. 2. 2n) = 2:(D' + pD) + D

So that the new coefficients in the coefficient hypercube are (updated by the butterfly operator) :
e N— N +pN
e NN—N

e D D' +pD

151n reality, these values are only computed when the function is well-defined. A function is term well-defined if it does not
admit a point where the result of the function is undefined. This case can occur only when both numerator and denominator
are nulls % but % is oo
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e DD
and the updated value in the decision hypercube are

e for the minimum bounding fn(T(b1),...,T(bi—1), T(0),...,T(bn)) = M%

e for the maximum bounding f,(T(b1),...,T(bi—1), T(1),...,T(bn)) = M%

If we are working with ;0 = 1,8;1 = oo V ¢ € [1,n] we have

e for the minimum bounding fn(T(b1),...,T(bi—1), T(0),...,T(bn)) = %

e for the maximum bounding f,(T(b1),...,T(bi—1), T(1),...,T(bn)) = %g:i—gg%

Re-writing, the last equation in matrix form, we obtain

m bounding— ( (N'+pN)b; o+ N (D' +pD)bio+DY\ _ { pbio bio+1 " N D
M bounding— \(N'+pN)éi1+ N (D' +pD)6;1+D )  \ pbi1 6i1+1 N' D

and with 6,0 =1,6;1 =0 Vi€ [1,n]

N +pN+ N D+pD+D\ _ (p+1 1 o N D
N’ + pN D' +pD - p 1 N D

This generalized operation (dealing with a (2 x 2)-matrix and an hypercube) has been described in
the butterfly (><) process. Each time, a new partial quotient is processed, the decision hypercube is also
updated accordingly. So that, if the index of m and M can also be updated, the output condition is
known in constant time (O(1)).

But let us examine the output process before!

4.1.3 Updating the Decision Hypercube when an Output is Performed:

If r is the next partial quotient to produce in output, our function can be written as follows:

1
flzg, .., 2) =P+ ——m—
( ’ ’ ") fn(mla"':mn)
When producing output we obtain the new function coded in the coefficient hypercube f,(z1,...,2,) =
m If f(z1,...,20) = zigig, then the new function is
:L‘.lD + D,
fn(mla ) m’n) ==

z1(N — Dr)+ N’ — D'r

The analogy with the coeflicient cube can still be done with the right-side product of matrix:

D N-Dr (N D y 1 1
D N -Dr ) \N D 0 —r

This operation (right-side multiplication) has also been explained in the previous sections (see the
butterfly operation ).

4.1.4 Updating the Index of m and M:

The purpose of this part is to explain how it is possible to update the index of both extremum values
with simple process when an input or output is processed. We begin by a nice property linking both
indices (indezy, and indezpr).
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Property 11 If indez,, = (my...my)2 is the indez of the minimum(whenever the funciion is well
defined) then we have indexys that is defined as the complementary binary number:

indezpr = tndezy, = (My...My)2 = (M1 .. -1y )2

It follows from property 11 that only one index has to been known. This property can be prooved
using the well-definedness of f and the monotony following variables z1, ..., z,.
Two cases can occur when the index indez,, (and by property 11 also indezps) must be updated:

e Input of partial quotient p from variable z;: The function f can be factorized following z;, which
leads straightforwardly to

:L‘.,'N—I—N’
f((ll]_,...,{lln) = m

When we input a partial quotient p from z; we operate the transformation

1
z; > a+ —
i
where 2] is the new variable lying in the new interval A; =]é; 0; 8;,1[ where both 6; o and é; 1 have
been updated following the same transformation.

This transformation can also be expressed when considering the new variable z;:

1
i —p

which can be decomposed in two steps following the scheme;

translation inversion ]-

T, — Ti—p
i —p

Regarding the trace of the function in I = H?:1]5i,03 8; 1], the transformation acts as follows
— Step 1 : Substract p from z;. This corresponds to translation of the tracing to the ”left” (see
figure 15). Since the function is monotonic regarding z; (increasing or decreasing) the index
of both the minimum value and the maximum value have not changed.

— Step 2 : Once step 1 has been processed, we operate the inversion z; — Il So that if the
function was increasing regarding z; it becomes decreasing and vice-versa (see bottom of the
figure 15). We have changed both index by flipping the bit m; into m; and M; into M;.

e Output partial quotient » (from z(): When we output a partial quotient r from the coefficient
hypercube, we perform also accordingly the following diagram:

translation inversion ]-
flze, .. 2n)  — f(e1,...,2n)—7 — For, oz —r

But if we look at the trace of f each value has been first decreased by r so that both the position
where min and maz are does not change and after we perform the inversion so that the position
where min stands, contains now the maximum value and vice-versa(see figure 16).

4.2 The Bit Level Algorithm:

We develop here how partial quotient can be entered and output piecewise at the bit level. For that
purpose, we describe how the algorithm works when partial quotient are entered bitwise. We then
introduce the general tables for the LCF and RPQ formats.
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Figure 15: Transformations of Frange when an input on z; is processed.
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Figure 16: Transformations on Frange when an output is processed.
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4.2.1 General Principle:

Since we can can factorize with products of matrices the partial quotient according to the bit level format,
the input process does not change. It is worth noting that the coefficients of the matrices are simple
and belong to the set § = {—%, 0, %, 1,2}. So that when an input matrix is processed in the coefficient
hypercube, only shift/add/multiplication operations are used. As inputs are processed, Frange the image
set of f is updated. We want also to deliver output piecewise according to a selected format with the
eternal condition that the result lies in ]1; oo[ (partial quotient interval). Backtracking this condition for
each factorizing matrix M, we obtain the corresponding intervals Ajs so that if Frange € Ays then we

can output M (indeed we know that the result lies in ]1; ool).

Frange M, Frange'

A A

where A; is the initial interval defined by Frange and Ay is the new interval defined when we output
the matrix M.
Denoting by the ®-sign the output operation, we can write

Af =AM
but Ay is known, so that for each different M, we compute the associated interval
Ap = Af [0%4] M-!

We describe now the results of the computation for the LCF and RPQ formats. The tables can also
be found in[16].

4.2.2 Using the LCF Format:

The lexicographic continued fraction format has been described in the first section (pages 1.4-1.4). We
now give the automate that deliver the sequence of matrices denoting the partial quotient and the different
output intervals.

Given a LCF representation of z = £,z € Q, the automate (see table 1) delivers the matrix represen-
tation of the continued fraction denoted z.

In the tables denoting the automate, n stands for the partial quotient a, so that in the beginning
n is null. The column where stands the matrices describe which transformation must be performed on
the coefficient hypercube. For example, 2 = [0/1/1/2] has for LCF code the sequence of bits (1010011),
where the first bit denote its sign (1:positive) and the second its reciprocity (0 : fl—' < 1).

When using the LCF format as output, at the beginning we set the state of the output to A. If Frange
is in an interval (as defined in table 1) then we output the corresponding matrix (or bit) and go to the
new state.

Observation 5 If the format we use allow redundancy then there exzists at least one state S where some
of its intervals overlap

4.2.3 Using the RPQ Format:

We give here in table 2 the automate characterizing the RPQ format. Please note that m denotes the T
bit.
For example, we can see that the RPQ format is redundant if we take the inserection of intervals:

e State A: | —2;2[N] —4;0[£ 0
e State B: ] — 1;00[N] — 2;2[#£ 0
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State | Interval | Bit Digit | Matrix | New n | New State ||

start — — ( é (1) ) 0 A
A [0; 0] 1 ( é (1) ) 0 B
(sign) J—eool| 0 [ (G 1)) o B
B [15 00 1 é (1) 0 c
(reciproc.) [0;1] 0 (1) é 0 E
C [2; 00| 1 ( 3 (1) ) n+1 C
(Unary mode normal) [1;2] 0 ( (1) _11 ) n Dyz0, En=o
D [2; 0o[ 0 ( % (1) ) n—1 | Dunzo, En=0
(Binary mode normal) [1;2] 1 ( _%% (1) ) n—1 | Dpzo, En=o
E [2; 00| 0 ( 3 (1) ) n+1 E
(Unary mode reverse) [1;2] 1 ( (1) _11 ) n Fpz0,Cn=o
F [2; oo 1 ( % (1J ) n—1 | Fnzo,Crn=o
(Binary mode reverse) [1;2] 0 ( _%% (1) ) n—1 | Fpzo0,Ch=o

Table 1: The automate characterizing the LCF code.

|| State | Interval | Bit Digit | Matrix | New n | New State ||

start — — ( é (1) ) 0 A
A =151 0 ( 0 ) 0 A
(Unary) 10; 4] 1 ( (1) _22 ) n+1 B
]1—4;0[ m ( (1J g ) n+1 B
]1—2;2| u ( é g ) n+1 A
B 11; o0] 1 ( _%% (1) ) n—1 | Bnzo, An=0
(Binary) | ] —oo;—1[| m ( % 2 ) n—1 | Bazo, An=0
1—-2;2 0 ( % (1) ) n—1 | Bpzo, An=o

Table 2: The automate characterizing the RPQ code.
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5 The Szekeres Multidimensional Continued Fraction:

In this present section, we formalize the algorithm described by Szekeres in term of products of simple
inversible matrix. We then apply these transformations in the computation of complex functions. G.
Szekeres introduced new algorithms for generating higher dimensional analogue of the ordinary continued
fraction expansion of a single real number. The algorithm described in the remaining, takes a real k-vector
(a1,@z,...,a) and deliver a (k+1)-vector in N¥*1: (ay, ay, . . ., ax, b) where S oo, R —ad oo,
(ifV ¢ € [1, k], e; € Q then the algorithm ends with a; = fraca;b). Szekeres conjectured, on the basis
of extensive computation, that the intermediate vectors produced by the algorithm contains the best

simultaneous rational approximations to (e, ..., cg).

5.1 Best and Good Rational Approximation to a real:

As the continued fraction contained in ]0, 1] are the reciprocal of those contained in [1, co[, we suppose
that 0 < oy < 1V ¢ €[1,k]. It is known from the Theory of Numbers that each number can be written
in a continued fraction (which is infinite when it is an irrational).

a =[a1/az/as/...] ,a; > 0 (5)

We say g is a best rational approximation to o when |Qa — P| < |ga — p| for all rationals f]—' with

0 < ¢ < @. The sequence of convergents Z—" = [@1/...,as] is then precisely the sequence of best

approximations to .

We term good rational approximation to & when |Qa — P| < %| In that case, the sequence 2z+itPn

Tqn+1+4qn
with 1 < 7 < anq2;n € {0,1,2,...} of intermediate convergents contains the sequence of good approxi-

mations to a.

5.2 Good and Best Rational Approximations of a real k-vector:

We can extend the previous notion to higher dimension. Given a « k-vector: a = (a1, ..., ar), we want
simultaneous rational approximations %, ..., 2 to o, ..., with the same common denominator Q.
We say (Py, Py, ..., Px,@) is a best approximation if

i— P i — Di
max {|Qa 1} < max {lges —pil} (6)
for all the rational k-tuples %, ey pq—’“ with 0 < ¢ < Q.
We say that (P1, Pa, ..., Px, @) is a good approximation if
*|Qa— P} < 1
wax{Q%|Qo — Bif} < (7)

In the following section, we describe an algorithm that takes a real vector and gives its best rational
approximation where the denominator of each rational is the same.

5.3 Algorithm to Compute Approximations to a Real k-vector:

We first suppose without loss of generality that the real vector @ = (ay,...,a;) to approximate is
constrained by

I1>a1>as>...>a; >0 (8)

Indeed, we can memorize the sign of ¢; first, so that we input only non negative real numbers. If
one component is null, then the problem is to approximate a (k — 1) real vector. We can also before

processing normalize the real vector by n = so that the resulting vector o’ = ($,...,%%)

1
max;{a;}+1
satisfy the input condition.

We must also assume that 1, a1, ag,. .., af are linearly independent over the rationals, i.e.:

k n
a0+2aia,~:0:> Z|a,~|:0 (9)
i=1 =0
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where a; € Q.

The continued k-fraction, which is denoted by [b1/b2/...] is a sequence (finite, if the real vector
contains no irrational and infinite otherwise) of positive integers b; with which we associate the k-tuple
(a1, ..., o) of real numbers via the algorithm described below:

Let us define s,, the partial sum of the first m results:

We define a boolean function e(n) ,n > 1 as follow:

| if n= sy for somem

€(n) { if n # sy, for any m (11)

It is worth noting, as each term b; is strictly positive, (s )nexn form an increasing suite. And then

the determination of €(.) insure the determination of by, by, . ... In particular, if by, b2, ..., b, is a finite
sequence, we then have e¢(n) = 0 for all n > s,.

000...0 I** 000...000 1= 00 1*" 000000000000 —......
M~ M~ M~
n1=by ny= b1 +b» Nr=5r

Proofs and hints of the algorithm are not given. The reader can obtain these results in the original
paper of G. Szekeres or a paper written by Cusie.
First, we define a set of integral vectors A:

A(n, ) = (AN (n,5),..., A®)(n,5)) ,¥ j € [0, k] (12)

where A(n, j) represents a (k + 1) vector at step n in the algorithm.
We then define a sequence of positive integer:

B = (B(n,0),...,B(n,i),...,B(n,k)) ,ne€{0,1,2,..} (13)

Our algorithm consists in updating both A and B vectors according to the real o vector.
Initial assignment:

we assign initially:

() N 0, 0<5<i<k
a0, ={ P pEisis (14
and

B(0,7) = A(0,5) =1, V j € [0, ] (15)

Matrix Formm—
In matrix notation, we define A(n) as (k+ 1) x (k + 1) matrix and B(n) as a (k 4 1)-vector at step n.

AO(n,0) ... AO)(n,k)
A(n) = S (16)
A®)(n,0) ... A®)(n, k)
and
B(n) = (B(n,0),..., B(n, k)) (17)

with the initial conditions
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A0y =| ° ! (18)
0 0 1
A(0)~1 is therefore:
1 -1 0 0
0 1 -1 .. 0
A0)t =] o1 (19)
0 ... 0 1 -1
0 0 1
B(0)=(11...1) (20)

The new state described by B(n+1) and A(n+1) is achieved by performing a transformation denoted
by T'(e(n+1), u(n)) where u(n) is an integer bounded by 0 < p(n) < k determined in step n by a procedure
which is detailed later. Note that this way of proceeding is inductive.

Transformation on A:

AD(n+1,0)= (1 —e(n+1))AD(n,0) + e(n + 1) A (n, u(n)) ,i € [0, k] (21)
AD(n+1,u(n)) = AD(n,0) + A (n, u(n)) ,i € [0, k] (22)
AD(n +1,5) = AO(n,5) ,1<j < k,j # p(n) (23)

Matrix Formm—
The transformation associated is denoted by T'(e(n+ 1), u(n)) where ¢(n+ 1) is a boolean value and u(n)
locates the transformation.
By denoting I the identity matrix and e;, the (& + 1) vector, where only i-th component as value 1
and the others 0, it follows:

T(e(n+ 1), u(n)) = T(e, p) = I + ple, — eo)eh + eoe;‘f (24)
l—e 0 ... 1 ... 0
0 1 0 ... 0
Tlem=| . o 1 0
0 0 ... 0 ... 1
Computations generated by these transformations are very simple since € is a boolean value.
e c—=10
10 ... 1 0
0 1 0 0
TOM=19 19 ... 1 ... 0
0 0 0 1
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0 0 1 0
0 1 0 0
Thr=11 ¢ 1 0
00 ... 0 ... 1

The rank of these transformations are rank(7'(e, u)) = & + 1.

Transformation on B:

B(0,5) = AO(n+1,5) (25)

B(n) is always the first row of A(n)
We call the a(n) k-vector the n-th approximation fraction to « defined by

_ A, p(n—1))  A®(n, u(n - 1))

Yooy 26
B(n, u(n — 1)) B(n, u(n — 1)) ) (26)
which is written by factorizing out the common denominator,
1
a(n :—A(l)n, n—1 ,...,A(k)n, n—1 27
() = G5y A = 1) (m, (n — 1)) (27)

To complete our algorithm, we must specify the computation of y(n) and ¢(n+ 1). For that purpose,
we define the set of (k + 1) positive real numbers I'(n) = {y,; : 0 < j <k} ,n € {0,1,2,...} where

Yo=1—a;
F(O) = Yoj = Q5 — Q541 ,J € [[Lk - 1]] (28)
Yok = Qg

Note that since we have ensured 1 > a1 > ... > 0o > ajy1> ... > 0> 0,7, >0,V j€[0,k].
Then, €(n + 1) is determined as follow:

We express now the inductive process which define the transition from I'(n) to I'(n + 1):

w
o
~—

Vnt1)o = (1 — 2¢(n + 1)) (Yno — Ynpu(n)) (
Y(m+1)p(n) = e(n + 1)’}’"0 + (1 - e(n + 1))7nu(n)) (
7(n+1)j = Ynj ,fOI‘ 1 S .7 S k: .7 ;é IU,(TL)

—
w W
N =
~— N

Matrix Formm—
Let us consider I'(n) as a (k + 1)-vector, namely:

Ynk
The following transformation depending on € must be performed in order to obtain I'(n + 1):
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!
1—2¢ 0 ... 2-1 0
0 1 0 0
e : S 33
r(e) bw— € . 0 1—-€e ...0 (33)
: 0 IR
0 0 1

1 -1 0 ... ... O
0 1 -1 (0)
Ir = (34)
SO
0o ... 0 1 -1
0 1

In order to complete the description of the algorithm, we must now describe the computation of u(n).
But before, we recall the reader on the < relation between two vectors. Given a, b two vectors (which we
order increasingly by a permutation of their components, in @', ') , we say a < b if there exists an index
j such as a; < b} and Vi€ [1,5— 1] ,a; = b].

We define the (k + 1)-vector

A(n,j)  A(n,0)

Y9 = B3~ Blw,0) )

Then p(n) (recall that 1 < p(n) < k) is defined to be the largest integer ¢ such that for every
1,1 <¢<t, we have

V(n,i) < V(n,t) or V(n,j) =V(n,h) (36)

It follows straightforwardly from the definition of u(.) that p(0) = k.
It must be noted that if « is a rational vector (embedded in IR space), then the algorithm will stop at
some step n. Indeed, we have therefore

0
0

M= . | =0 (37)
0

Vi>mn, e(t) =0 (38)

In the general case, where at least one of the components ¢; is irrational, Szekeres has proved that

lim yn; =0,V j € [0, k] (39)

5.4 Application of the Szekeres’ Algorithm in the Computation of Y = F x X:
We want to compute Y = X x F where X is a (k + 1)-vector defined by (d @1 ... ax) representing the

point (% ... %) of QF which is computed by the Szekere’s algorithm with rationals a,...,a, that

are known piecewise and F is a (k—+1 x 2) matrix (the result is an ordinary continued fraction). We want
to process inputs and deliver output piecewise. Inputs are entered in continued fraction format and can
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ALGORITHM -XI — SZEKERES’ ALGORITHM

Input:
A vector a = (e, ..., o) which satisfies 1 > alpha; > ... > a; > a1 > ... > alphap > 0 (see 8).

Output:

A k-multicontinued fraction, best approximation of . If @ has one of its component irrational, then
the user must choose a step n where he wants to have his approximation (he breaks the loop), else the
algorithm stops at a step denoted also by n. The approximation to & can be obtained from the remaining
A (see equation 8).

Algorithm:

p=k;

I'=1Ir x T,

€ =ComputeEpsilon(u);

A = A(0);

while(NotFinished(T')) do
begin
A=A xT(ep);

pw =ComputeMu( A);

€ =ComputeEpsilon(p, T');
I'=Tr(e) x T

end;

E.N.S. Lyon & Odense Universitet



[ 4 @ L
0 1 10
1 7

Figure 17: Convergence of a a;(r) to a; for [1/2/3] = 2.

be interleaved (for instance, we process the partial quotient pg-l) of variable a;, then partial quotient pg)
of variable a;). If one of the input variables is an infinite continued fraction, then, our algorithm has an
infinite number of steps, but the result is refined at each step such that we can have an approximation
to the exact result at any step. Referring to the Szekeres’ algorithm, we can factorize the n-th rational

approximation to X? in

X7T(n) = A(0) x {T(e(1), u(0)) - - - T(e(s), p(i — 1)) ... T(e(n), u(n — 1))} Xepn_1) (40)
A(n)

where e;‘f(n_l) is the transposed (p(n — 1) + 1)-th unit vector which choose the right column in A(n).

= e

p(n — 1) line — (41)

T _
€u(n-1) =

L e

0

We can output piecewise by the same process described in the computation of ¥ = F x X. The main
problem is to provide input piecewise, i.e. to deliver transformation T'(e(%), u(z)). This problem is the
same as to compute €(2) when the current inputs ,that have already been processed , approximate X.
We must assume for correctness of calculus, that the transformation T'(e(4), u(2)) done when a certain
amount of input data have been entered, is the same as if we have waited for all inputs to be entered and
then produce the transformations.

As input data are entered in continued fraction format, we can know if the current variable a;(r)(a;(r) =
[a(()i)/ .. ./ag)] is the r-th convergent approximated to ;) is lower or greater than a;. Indeed, it depends
only on the parity of 7. If r is even then a;(r) < a; else a;(r) > a;.

Considering the first step of the algorithm, i.e. case n = 0, we must determine when €(1) can be
known surely. For that purpose we must determine if

0 if"}/oo > Yok -
1 . 42
e { Jimez e (42)

But 790 = 1 — a1 and yor = o, so we must determine which case is true:

0if 1 —a; > a.
aw{ m ()
Using the property of increasingness of the even convergents ag, ag, ..., as, ... and decreasingness of
the odd convergents a1,@s, ..., @2i+1,- .- (see figure 17), it comes that 1 — (o1 + o) > 0 is true when it

can be determined safety that (a1 + ) is a upper bound (parity of both a1 and e is odd) . Proceeding
in the same way, we can assert that 1 — (a1 + @) < 0 is true when oy and oy are even and their sum is
greater than 1. To resume, computation of (1) can be achieved when «; and oy have the same parity
and their sum assert the condition (in their current approximation to the initial value).

Z—; odd even
odd | Determined if 1 > oy + a3 Wait
even Wait Determined if a7 + g > 1
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The general problem is to give the boolean value of yo > 7, at a step of the algorithm where only
some, but not all, the inputs have been processed.
Let us call o the state of the algorithm described by the inputs already entered:

o= (al,--.,a) (44)
(3) (3)

where o is the last approximation to a; done by considering the input a yee e Gy (r(¢) + 1 partial

quotient of a; have been processed so far).

(€) (@) ]

r_
o = [ag yee e Gy

We will design by yni(0) the approximation of v, at step n when o is the current state. The problem
is to deliver the state of "y,0(0) > Yn,(o)” which can take three different values:

e TRUE in that case, we have v,; > v,0 when « is known.
e FALSE: in that case, we have v,; < Yp0 when « is known (remind that yni 7 Yno)-
e UNDETERMINED: When either TRUE or FALSE can be decided.

Our algorithm gives bound to the value yy;:

7ni(U) - Am'(o-) <ni < ’Ym'(o-) + Ani(o-) (45)

”

The value of "y,0(¢) > Ynu(0)” can be determined only if:

® Y0(0) — Ano(0) > Yapu(o) + Anu(o), and in that case, the result is TRUE.
® Y0(0) + Ano(0) < Ynp(o) — Apu(o), and the result is FALSE.

Otherwise, the result is UNDETERMINED and we must wait for another input a;(¢) which will
change o in ¢’.

We ensure that each trust interval associated with «,; is non-increasing when o changes to ¢’

Once €(n) can be computed, we must update I' and A:

e e(n)=1
Tno = Y(n-1)u(n—1) = V(n-1)0 (46)
Ynp = V(n-1)0 (47)

e e(n)=1
Tno = Y(n-1)0 = V(n—1)u(n-1) (48)
Tnp = V(n-1)p(n—1) (49)

The decide to stock vy, as a function linear function of a; with integral coefficient, hence performing
?symbolic” calculus upon these functions.

Yni(0) = Z aij(n)o; (50)

where, for convenience of writing, we have ag = 1.

When a transformation cannot be decided because of its UNDETERMINED state, more inputs
must be performed (leading to a ¢’ state), shrinking the value of e; ,% € [1, k], and then shrinking the
interval A(c) into A(o”).

At each time a computation of €(n) is possible or an input is proceeded, we first compute the new
trust interval and then check is we can perform a new transformation.
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Figure 18: Computing Transformations Piecewise

The trust intervals are computed as follows:
K
Bnil0) = 3 aig(n) # Aa, (o) (51)
7=0

where Ay, =0 and Ag,, = lai(o) — ei(a”)].

Then, the boolean value of ¥,9 > 75, can already be known, if in state o, we have:
Yo(o) — Ao(c) > vu(o) + Ay(o)
or

70(0) + Ao(0) < 7u(0) = Aulo)

Otherwise, more inputs have to be processed, and updatings on A and T' are done, until one of the
two conditions is satisfied.

6 An Algorithm for Computing Functions On Variables Entered
in Multicontinued Fractions Format:
In this section, we show briefly how an algorithm based on multicontinued fractions can be developed

using the same principles described in the previous sections. We first define a k-multicontinued fraction
(by means of an algorithm) and associates its matrix representation. Then we show how it is possible
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ALGORITHM -XII - COMPUTING A k-MULTICONTINUED FRACTION

INPUT: A (k + 1)-vector of N*¥*1: & = (p; ... pi q) with ¢ > 0.
OUTPUT: The k-multicontinued fraction [fo, so,- - -, fn, Sn] denoting z.
ALGORITHM:

1:=0;

while (z # ex4+1) do

begin

For each i € [1,k] do p} := L%Ji
fi=@ ... )

z:=(p1—pig ... Pk — Prd 9);

Choose j such as p; = maxie|[1,k]|{P1; co DR}
g =[]

8 = ¢ xej;

1:=14+1;

end

to follow the path of the previous algorithm and extend the computational function to several variables
coded by multicontinued fractions.

6.1 Definition of a k-multicontinued Fraction:

We represents by z = (p1 ... px q) the point of Q* defined by the k-uplet (% %). Given a point

P of R* we can first approximate by the Szekeres’ algorithm P to P’ such as P’ is now a point of QF.
P’ can be represented by a (k+ 1)-vector z = (p1 ... px ¢). We associate to # a multicontinued fraction

defined by
L= [fO: 30/ .. /fn: sn]

where f;, s; Vi € [0,n] are k-vectors of IN* defined successively by the following algorithm:
Given a (k + 1)-vector z = (p1 ... px g) with ¢ > 0 of Q**! denoting a point of QF, we compute its
multicontinued fraction by applying to z a succession of two steps.

z=(p1 ... D q):u

Computing f;, s;:

e Step 1: Processing the numerator p; V i € [1, k] Compute for each numerator p; the integer number

a; such as p; — a;q > 0. For each 7 do z := z — a;qe;.

e Step 2: Processing the denominator ¢ Find p; such as p; is the maximum value and compute b
defined by ¢ — bp; > 1. Compute z := = — bp;jep 1.

We obtain a new (k + 1)-vector 2’. If 2’ = eg 1 then we stop the algorithm (this corresponds to the
oo signal) else we inject 2" and obtain fi11, sit1,...
For example, if we run the algorithm on the 3-vector of N3 (5 3 7) denoting a point of )2 then we find:

1. e fo=(00)

o so=(10) =2 =(532)
2. e fi=(21)

051 =(10)>a' =(111)
3 e f2=(11)
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e s5=(c0o0)—az' =(001)
Hence, z = (5 3 7) is represented by the 2-multicontinued fraction:

2 =[(00),(10)/(21),(10)/(1 1), (00 00)]

Please note that if =z is a 2 dimensional vector then the l-multicontinued fraction is a continued
fraction obtained by the algorithm is [ao, a1/ . ../a2n, Gan+1] such that ag, = 1.

6.2 Matrix Representation of a Multicontinued Fraction:

We represents the k-multicontinued fraction of # by means of matrices in order to formalize the compu-
tational function in term of product of matrices.

Let X be a (k + 1)-vector of N*¥*! denoted by its k-multicontinued fraction [fo, s0/f1,51/ -/ fn, Su)
then X can be written in term of product of matrices as follows:

X =epy1 X Sp X Fy X ... %X 5 x Fy

where S;, F; are defined by
E

S; =1d+ ZM]'k X §;.€f

j=1

and

k
F,=1d+ ZMk]' X f,’.e]'

j=1
where . is the scalar product and My; = (m)a[1,k+1]be[1,k+1] IS the matrix defined by mas = 1ifa =k
and b = j, mgp = 0 otherwise.
Mi]' —=e€; X e;-
It’s worth noting that F; and S; are inversible matrices.

k
Si_l =1d— ZM]'k X 8i.€5

j=1

and

k
Fi_l = Id— ZMk]' X f,’.e]'

j=1
6.3 Computing Functions of One Variable Entered in the MultiContinued
Fraction Format:

Once the matrix representation of the multicontinued fraction has been defined, we can formalize the

computation in term of matrix which are entered piecewise®®.

F . Qk N Qn
X=p1 ...;9) = F(X)=(filer ... x)ye.ey fulzr ... zx))
In term of matrices, the computation can be seen as performing the product
Y=XxF
where F is a (k + 1) x (n + 1) matrix defining the function F.

16 Piecewise here means at the ”s” or ”f” level.
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a1,1 ... G1lnpi41

(1 .- Prg) X
ap.1 ... Gpni1l

di ... dni1

(n+1) columns
The function f;(-) is defined by

k
Z ajipj + dig
P1 Pr j=1
fi( * ) = k

Z @i nt+1P5 + dn+1q

j=1

But % = z;, so it yields to

k
> ajiz; +di
j=1

fi(zy, .. @) = —
Y Gjn+1; + dust

j=1

The scheme is always the same:

V=XxI1xIxFx01x0

But X is a (k+1)-vector that can be rewritten according its multicontinued fraction [fo, so/f1, 81/ - - -/ fu, $n)
to:

X =epy1 XSy X Fy x ... x 51 x F1 x 5 x Fy

We denote by Sim,; the (k = 1) x (k+1) matrix defined by S; x F; x ... X So x Fo. Siém,; can be interpreted
as a k-simplex (see the appendix corresponding to the simplex A). Each time, input is received (f;1+1 and
$i+1) the new simplex Sim;;1 = Siy1 X Fiy1 x Sim; shrinks so that

Vol(Sim;y1) < Vol(Sim;)

When no more inputs can be consumed (inputs are exhausted), we shrink the simplex to a single point
defined by the last line of Sim,, :

X =egy1 x Sim,,

The output can also be interpreted as a n-simplex that shrinks each time an output is produced.
Since we do not know when the input will be exhausted, we must always assure that e; x Sim; x F is a
n-multicontinued fraction (each number is positive). This condition denotes the output process.

Definition 3 We denote by M (M. ) the I-th column (respectively the l-th line) of the matriz M.

Output Process:

e The F-type : F; —piF.(x41)>0, V i€ [1,k]
e The S-type : Fxy1)—piFi >0,V i€[l,k]
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6.4 Computation of Functions of Several Variables Entered in the Multicon-
tinued Fraction Format:

We develop in this part how to used the generalized matrix to compute functions of n variables entered

in multicontinued fraction format Xy,..., X,, where X; = (p(li) oo p(9)®) (I(-) denotes the application
that code the length of vector X1,...,X,). We want to compute:

F.0®x. . xQ®» __qr
: - (fl(Xla---:Xn):---:fT(Xla---:Xn):f7‘+1(X1:---:Xn))

X, = (p(ln) pg("n)) gn)

The generalized matrix M(X4,..., X,) denoting the computation is defined recursively by:

M(Xs,..., %)

_ (1) (1)
M(Xy,...,Xn)=(py’ ... Pyyiy Q1) X :
% )= (P i o) i zme | M(Xaz,. .., Xn)

denominstor \ M (X2, ..., Xp)

and
a1 G1n
M(Xn) = (p(ln) s Pg(nn)) QH)
A(n),1 - Ci(n)n
Ay(n)+1,1 -+ Gi(n)+1,n

For example, all the computable functions of X; = (p(ll) pgl) q1), X2 = (p(lz) pgz) pgz) g2) and X3 = (p(ls) gs)
in Q™ can be denoted by the generalized matrix M (table 3).

We can do the analogy between the generalized matrix and a n-block structure defined by the scalar
product (X) of graph

Meshl(l)xl(z) X...K Meshl(i)xl(Hl) X...K Meshl(n)x(7+1)

The mesh graph Meshy, «i, is also obtained by a scalar product of two ”lines”:

Meshy, x1, = Meshi, x1 X Meshixi,
S—— S——
horizontal line of length 1 vertical line of length Io
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(3) a(o) G(O)
(P @) x | (5 G
0,2 1 P a27n+1
(1) (1)
a A
(p}” qs)x( éli aéﬂi)
(pt? B8 57 42) “ a(léi a(lé) .
(" aa) x | (3) oN
2,1 2,n+1
(3) (3)
a aq
(p{”) 4a) x ( ORI i )
2,1 2,n+1
(4) (4)
a Q1n
(Pt gs) x ( ) @ )
a3 1 @2,n+1
(5) (5)
a aq
oo (] i)
2 2 2 ’ n
M= 0 0 gy | O 860 2 ) O o
( (3) ) x a1 @1n+1
P1’ g3 (6) a,(6)
2,1 -+ Q241
(7) (7)
a a
(Pt gs) x ( ) G )
2,1 G2,m41
(8) (8)
(3) % 0,171 P a17n+1
o o= (4 )
(9) (9)
a aq
e ()
o 5 4 o
3 n
NG
2,1 P a27n+1
(11) (11)
a a
% g3) {in) i’
a
2,1 2,n+1

Table 3: The generalized computational matrix
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A A Few Words About the Simplex

Definition and Volume of a Simplex

We just give here the definition and the volume of a simplex. If further information is required, the
reader can find information in [2]

Definition 4 An n-simplez is a set point composed of n + 1 vertices defined by

n wi >0
S:iutd pici, 4 Yigpmi=1
i=0 u,c; €V

where V is the space where the simplex is embedded.
Property 12 This yields straightforwardly that S is convez.

Note that u is the reference vector (translation of the simplex).

Given a simplex, we want to compute its volume. For that purpose, we define the unit volume as the
size of the polytope defined by the unit vectors of V. Then, supposed we are given A = (a1,a2,...,85) a
basis of R™ space, o an endomorphism which verifies that V i € [1,n] ,0a; = b; where b; are the vectors
defining the simplex. then it follows that the volume of the simplex is

011 oo O1q
Vol(S) = |deto| =

Opl ... Opn
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Appendices — Tools

These appendices describe how to use the different programs that have been
implemented during the training period. When it is required, a brief description of the
input and output files are given.

The programs can be found in fnielsen@imada.ou.dk --- Directory entrance: EXEC/

If further information is required, please do not hesitate and mail to
fnielsen@ens.ens-lyon.fr.
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B The MCF-Simulator program:

The MCF-Simulator was one of my first program implemented. It deals with multicontinued fractions as
introduced before.

B.1 The type of functions allowed:

Let X denote a n-multicontinued function: X = (k1 k2 ... k, d). X represents the n variables: z; =
%1, Ty = %2, ceny ’%". The program uses the simplex theory where both input and output is interpreted

as a simplex that shrinks to its final value. Regarding with the problem of termination, the result is
approximated to its correct value for k > 2. We allow the computation of f(X) as follows:

11 Ti12 Tip
T21 T22 T2p
Tn1 Tn2 . Tnp

The matrix B = (Tif)i € 1,n],5 €L, represents a mapping function from Q™ to QP. The programs

described each step. Inputs are proceeded randomly.

B.2 A session with MCF-Simulator:

At the shell prompt, type MCF-Simulator. You obtain the following welcome message:

TTY MCF-SIM. Multicontinued Fraction:
1993 -- v1.0 Computation of Y= X F

Do you want to retrieve information of a file (0:NO/1:YES):

You can proceed entries automatically, if a file containing the information existed. The format of the
file is described later. Once answering 0 to the first question, you have the possibility to create a IWTEX
file describing the steps genered by the program. If you activate that option, a filename will be requested.
Successively, n and p must be entered. For example, we have chosen the following parameters:

Latex Option (1:YES/0:NO) :0

Size X:2

Size F:2

Matrix [1,2] must be entered row by row (each return carriage validating the current row
[ ol>

You enter therefore the (» — 1)-multicontinued fraction and the computational matrix.

Matrix [1,2] must be entered row by row (each carriage return validating the current row
[ 01>1 5

Matrix [2,2] must be entered row by row (each carriage return validating the current row
[ 01>1 2

[ 11>5 2

START: —--Computation of X * Y--

The programs simulates the behavior of the algorithm on the multicontinued fraction. At each step, the
volume of both simplexs (input and output) are computed. If that volume is infinite, the convention is
to display —1.
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B.3

Description of the input file:

Data can be retrieved automatically using a source file that contains the following information (the file
displayed below is ex):

1 « IATRX option (1 if selected, 0 otherwise)

ex.tex < only if the JATEX option is selected

2 « Dimension of n (vector in Q™~1).
2 « Dimension of p (vector in QP~1).
7 5 «— The multicontinued fraction (here it represents the point of Q : g)

10
2 3

B.4

} The computational matrix

How to use the graphic interface:

A graphic interface has been developed. The program allows a step-by-step execution when the button
—-STEP-17 is invoked. At the shell prompt, you just type MCF-graphic. The main window appeared. You
the select, —\READ DATA-. The file is the same as the one used in MCF-Simulator, except that it does
not contain the JATEX option.

Description of the buttons:

—READ DATA- Display a subwindow which allows to enter the filename.
—~MANIPULATION- This subwindow allows to convert numbers in different codings.

-SHOW INPUT- displays a window where the input simplex is drawn in a plane (if the dimension
is higher than 3, then it chooses the first three components).

—-SHOW OUTPUT- the same for the output simplex.
—STEP- execute one step in the algorithm.
—QUIT- exit.

Comments can be added in the text window and saved (like a texteditor).

B.5

Output delivered by MCF-Simulator:

17 when a button BUTTON must be pressed, we note this event -BUTTON-
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B.5.1 FETEX output: an example
We display below the output delivered by the program once compiled:

IATEX output of MCF-SIM-
Computation of

Y=XxF

r=(rs)x (5 5 )x (5 7)

Input piece of the 0-th component : 1 with entrance parity 0 The state produced by input is then:

r=(25)x (3 5 )x(5 V)
(i 7)

The state produced by outputing 0 : 1 with parity 1is:

v=(2 5)x(5 5 )x(17)

Input piece of the 0-th component : 2 with entrance parity 1 The state produced by input is then:

r=(2 1) (5 3 )x(17)

With the input simplex:

With the input simplex:

The state produced by outputing 0 : 6 with parity 0 is:

v=(2 1)< (5 5 )=(1 %)

Input piece of the 0-th component : 2 with entrance parity 0 The state produced by input is then:

v=(o)x(5 5 )=(1 %)

With the input simplex:

The state produced by outputing 0 : 0 with parity 1 is:

1 0 7 6
Y:(O 1)><(2 3)><(1 1)
Here, all the variables habe bee processed previously. We perform the product of matrix.The resulting vector is:
(2 3)

. . ST T ¢
The output produced by the algorithm is: Component 0:1/6/0/1/2/c0 The result of the computation is z

B.5.2 Hardcopy of MCF-Simulator:
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{Read Data) (Manipulation’) {(Show Input’) (Show Output)

[11/2a] 0271 finfinity

[15/231:0/1/1/1/7/infinity

Rank 1 has been chosen [0] with parity [0]
Hew Input Simples:

10
01 0
o0 1
Hew F:
1 1
o1 1
o0 1
OUTPUT 0x([0] with parity 0
————NMNew Output Simplex:
1 0 0
o 1 0
] 1
New F:
1 1 1
o 1 1
0 0 1
QUTPUT 0x[1] with parity 0
———Hew Output Simplex:
1
o1 0
]
New F:
1
o1 1

1]
Rank 0 has been chosen [0] with parity [0]
Hew Input Simples;

1
01 0
o 01
Hew F:
1 1
o1 1
o 0 1
OUTPUT 1x%[0] with parity 1
————MNew Output Simplex:
1
o 1 0
]
Hew F:
1 0
o1 1
0o 0 1
OUTPUT 0x[11 with parity 1
Hew Output Simplex:
1
o1 0
oo 1
New F:
1
o1 1
oo 1

A

[ Continued Fraction Manipulation
Rational:
Cont. Frac.:
Cont. Log. F.:
Radix :
® Input Simplex
Bt 0.1e+04)
VoIl INF.

Wt 0, 0 a(1 ﬂ

‘home/fnielsen/EXEC

fnielsen

Figure 19: The graphical interface.
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C The MulCF-Simulator program:

The program uses the principle of generalized matrix to compute function of n variables that are entered
in the continued fraction format. Inputs are proceeded randomly. The type of function that can be
evaluated has been studied in the second section. Computing the corresponding generalized matrix to a
function of k variable can sometimes be heavy. The user can use MulCF-function which given a function
of k variables, computes the associated k-generalized matrix (2”~! (2 x 2)-matrices). The program is
simply called with MulCF-Simulator filename where filename is the source file. Both operands and
generalized matrix are written in filename, following the format :

e n: Number of variables (defined the dimension)
e nrational numbers p;¢; designing Z—f. The variables must be entered following the order z,,, 2y, 1, . . ., Zo-

e the n-generalized matrix.

testMulCF is displayed below:

3

I
-

W =N ==
N

~—

11 (variable z3
2 1 (variable z; =

3 1 (variable z; =
00
01
10
00
00

01

10
00
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D The HyperCF-Simulator program:

This program implements the algorithm according the hypercube structure. The inputs are proceeded
randomly. The source file is decomposed in three part:

e The number n of variables (build the hypercube in dimension n + 1).
e The n-generalized matrix
e The n numbers, written in the continued fraction format: [ao/ ... /an].

We display below, for example, a model (filename: testHyperCF):

12
34

12
04

[1/2/3/4/5]
[9/8/17]

To run the program on that example, type:
beethoven /EXEC 61> HyperCF testHyperCF | more

Then, the program begins by creating the hypercube and loading the data (generalized matrix and
variables).

Simulator on the hypercube structure:

Create hypercube in dimension 3
Loading data in a Gray’s coding
Hypercube is ready to computation
Loading 2 numbers in CF format

[ 1] < 5> 225/ 157

[ 2] < 3> 520/ 57
Numbers loaded

The generalized matrix can be also computed using MulCF-function which is described in the next
annex.
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E The MulCF-function program:

This program has been written to ease the creation of source files to the simulators. Indeed, computing
handly the generalized matrix given a function of n variables can require time... This program has been
written using flex and bison.

A session with MulCF-function is shown below:

beethoven ~/EXEC 79>MulCF-function

2>x [2]*x[1]*10+5+x [2] #4+2+x[1]+3/1+4*x [2] *7*x[1]
H

Execute current statement...

Numerator[4]:

BO*x[1]#x[2]+4*x[1]+2*x[2]+3

Denominator[2] :

1+28*x[1]*x[2]
[50 28]

[2 0]

[4 0]

[3 1]

First, the user must enter the dimension of the generalized matrix (the variables are numbered

z[1],2[2],...,z[n]). Then, a delimiter ”>” is used, and the function is entered:%
The statement is validated and the generalized matrix computed when a ”;” (delimiter) is encountered.

The grammar of MulCF-function is:

PROG : STATEMENT | PROG STATEMENT
STATEMENT : INTEGER SUPERIOR POL DIVIDE POL DELIM
POL : POL + TERM | TERM

TERM : TERM * TYPE | TYPE

TYPE : x[ INTEGER ] | INTEGER

E.N.S. Lyon & Odense Universitet



F The SzekeresMCF program:

The Szekeres’ algorithm allows to have the best rational approximation of a set of n real numbers. The
program shows that the number of steps required to have a correct approximation is high. In practice, this
algorithm can not be used as an input process to a program that computes functions on multicontinued
fractions as it has been studied.

The input file contains the n numbers that must be approximated by a n-multicontinued fraction.
These numbers must be entered in decreasing order and must not be superior to 1'®. For example, if we
want to approximate to a 3-multicontinued fraction 0.66667,0.12345,0.0343412, the corresponding input
file is:

0.66667
0.12345
0.0343412

To run the program on that file, the user must chose also a file that will contain a precise description of
each step. For example, if toapproxime is the file containing the previous information, the user type at
the prompt:

schumann ~/EXEC 19> SzekeresMCF toapproxime /dev/tty2

If the user do not want to have all the information of each variables, the display file can be set to
/dev/null.

schumann ~/EXEC 20> SzekeresMCF toapproxime /dev/null

18 The user is invited at read the part concerning the description of the algorithm
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Conclusion and Perspectives:

to end this rapport with a summary of what has been done and
I WOULD LIKE what must still be studied. I have developed, by generalizing
the concept described in [4][5][7][8], an algorithm which computes a function of n variables that can be
entered piecewise and deliver output also piecewise. The decision cube has also been generalized leading
to the notion of decision hypercube. A definition (different from the Szekeres’ one) of multicontinued
fraction has been chosen and an algorithm based on that representation has been outlined. Further
studies on the decision ”Block” is required but I am quite convinced that it follows the principle evoked
in the algorithm which computes function on continued fraction numbers. In summary there are several
interesting open questions related to the efficiency of this unit:

e Regarding pipelining, how can the depth of parsing trees be reduced employing the generality of
the operations allowed by f(z1,...,2,) T

e Regarding time complexity, what are the respective performance of the algorithm applied to different
matrix factorization like LCF, RPQ, ...

e Regarding space complexity, in terms of space/time/accurancy (coefficient AT19) tradeoffs, what is
the appropriate register size in the unit to most effectively support our proposed bit-serial on-line
pipelined computational environment.

Nielsen Franckf,
University of Odense,
Denmark,

August 12, 1993.

1 Email: fnielsen@ens.ens-lyon.fr

19The AT coefficient denotes the factor Area x Times. A unit that has a better AT is considered better.
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