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Abstract. Statistical mixtures are semi-parametric models ubiquitously met in data science since
they can universally model smooth densities arbitrarily closely. Finite mixtures are usually inferred
from data using the celebrated Expectation-Maximization framework that locally iteratively max-
imizes the incomplete likelihood by assigning softly data to mixture components. In this paper,
we present a novel methodology to infer mixtures by transforming the learning problem into a se-
quence of geometric center-based hard clustering problems that provably maximizes monotonically
the complete likelihood. Our versatile method is fast and uses low memory footprint: The core inner
steps can be implemented using various generalized k-means type heuristics. Thus we can leverage
recent results on clustering to mixture learning. In particular, for mixtures of singly-parametric dis-
tributions including for example the Rayleigh, Weibull, or Poisson distributions, we show how to
use dynamic programming to solve exactly the inner geometric clustering problems. We discuss on
several extensions of the methodology.
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INTRODUCTION

Consider a finite statistical mixture with k ∈ N components of density
m(x|Λ,W ) = ∑k

i=1 wi p(x|λi) with W ∈ Δk the positive weight vector belonging to
the open k-dimensional probability simplex Δk and Λ = {λ1, ...,λk} the respective k
parameters of the mixture components. Mixtures are universal density estimators: For
example, Gaussian mixtures are defined on the support X = Rd and find countless
applications in imaging (e.g., Kernel Density Estimators based on isotropic Gaussian
kernels, KDEs) while Gamma mixtures are useful for modeling distances on X = R+.
Mixtures are conceptually used to probabilistically model sub-populations within an
overall population: To illustrate this point, consider for example modeling the height of
a country population: it is reasonable to assume that its distribution follows a density
that is a mixture of k = 2 sub-populations: a Gaussian component for modeling men
heights and another Gaussian component for modeling woman heights.

To sample a variate x ∈ X from a mixture m(x|Λ,W ):

• First, choose a component l according to the weight distribution w1, ...,wk (multi-
nomial), and then

• Draw a variate x according to p(x|λl).



Conversely, the most common method to infer a mixture model from a set of Indepen-
dently and Identically Distributed (IID.) set of observations x1, ...,xn (without the labels
li called hidden/missing/latent variables) is the Expectation-Maximization [1] (1977) al-
gorithm. The EM algorithm monotonically maximizes the likelihood function:

l(x1, ...,xn) =
n

∏
i=1

m(xi|Λ,W).

EM can be trapped into a local maximum and further needs a stopping criterion or loop
forever, otherwise. From a technical viewpoint, handling semi-parametric mixtures is
different from regular parametric models since often the mixture density exhibits the
problems of identifiability and Fisher information irregularity among others, see [2].

Recently, several approaches of Theoretical Computer Science (TCS) have been pro-
posed [3, 4] to study the learnability complexity of mixtures: A mixture m is said ε-close
to a mixture m̃ (both with k components) when:

• ∀i ∈ {1, ...,k}, |wi − ŵπ(i)| ≤ ε ,

• ∀i ∈ {1, ...,k}, KL(p(x|λi) : p(x|λ̂π(i)))≤ ε ,

where π(·) denotes a permutation and KL(m : m′) =
∫

x∈X m(x) log m(x)
m′(x)dx is the

Kullback-Leibler information divergence (commonly called relative entropy). It has
been reported that for a ε-learnable Gaussian mixture m that satisfies the following
conditions:

• mink
i=1 wi ≥ ε ,

• KL(p(x|λi) : p(x|λ j))≥ ε, ∀i �= j,

there exist polynomial-time algorithms [3, 4] in n and 1
ε that ε-closely estimates m.

Furthermore, core-set techniques [5] have been designed for dealing with massive data
sets when learning mixtures.

LEARNING MIXTURES BY SOLVING SEQUENCES OF
GEOMETRIC CLUSTERING PROBLEMS

The EM algorithm monotonically maximizes the incomplete data likelihood (or equiva-
lently incomplete log-likelihood li). This is usually intractable to solve exactly in closed-
form because of the log-sum terms:

li(x1, ...,xn) =
n

∑
i=1

log

(
k

∑
j=1

wj p(xi|θ j)

)
.

Consider the complete likelihood by introducing the indicator variables zi, j with
zi, j = 1 iff. li = j (i.e., observation xi emanated from component l j), and zi, j = 0
otherwise:



lc(x1, ...,xn) = log
n

∏
i=1

k

∏
j=1

(
wj p(xi|θ j)

)zi, j =
n

∑
i=1

k

∑
j=1

zi, j log(w j p(xi|θ j)).

The k-MLE methodology: Maximizing the complete likelihood

The complete log-likelihood optimization can be rewritten as follows:

max
W,Λ

lc(W,Λ) = max
Λ

n

∑
i=1

k
max
j=1

log(w j p(xi|θ j)), (1)

≡ min
W,Λ

n

∑
i=1

k
min
j=1

(− log p(xi|θ j)− logw j), (2)

= min
W,Λ

n

∑
i=1

k
min
j=1

D j(xi), (3)

where the c j = (wj,θ j)’s denote the cluster prototypes and the D j(xi) =− log p(xi|θ j)−
logw j are the potential distance-like functions. Thus maximizing the complete likeli-
hood amounts to a geometric hard clustering [6, 7] for fixed w j’s: minΛ ∑i min j D j(xi).
Note that the distances D j(·)’s depend on the cluster prototypes c j’s. This viewpoint is
related to the classification EM [8] (CEM, or hard EM/truncated EM) that can be used
to initialize an EM.

We describe the generic k-MLE approach:

1. Initialize weight W in the open probability simplex: W ∈ Δk

2. Solve minΛ ∑i min j D j(xi) (center-based clustering, weights W fixed)
3. Solve minW ∑i min j D j(xi) (parameters Λ fixed)
4. Test for convergence and go to step 2) otherwise.

The k-MLE method can be interpreted as a group coordinate descent optimization
strategy. Consider the uniform weight W = ( 1

k , ...,
1
k ) and isotropic Gaussian compo-

nents. Then step 2 amounts to solve for a k-means clustering problem [9]. In general,
k-means is NP-hard (non-convex optimization) when d > 1 and k > 1 and solved exactly
using dynamic programming [10] in O(n2k) when d = 1. Various heuristics have been
proposed for k-means:

• Global: Kanungo et al. [11] swap method that yields a (9+ ε)-approximation,
• Seeding techniques: random seed (Forgy [12]), k-means++ [13], global k-means

initialization [14],
• Local refinements: Lloyd’s batched update [9], MacQueen’s iterative update [15],

Hartigan single-point swap update [16], etc.

Similar to k-means, data are assigned to their closest cluster with respect to the poten-
tial functions D j(xi) =− log p(xi|θ j)− logw j. Let C1, ...,Ck denote the cluster partition.
Note that if we consider a k = 2 mixture, we cannot classify exactly the observations



from the corresponding sub-populations because we lack the missing labels: In classi-
fication, the minimum error is called Bayes’ error [17] and can be upper bounded us-
ing Chernoff information [17]. For solving the geometric clustering problems for fixed
weight vectors W , we can characterize the optimal cluster assignment using generalized
Voronoi diagrams.

Furthest Maximum Likelihood Voronoi diagrams

The geometric clustering problem consists in finding the prototypes (cluster centers)
c j’s that minimizes the objective function: minΛ ∑i min j D j(xi). It partitions the data into
k clusters and fits the MLE inside each cluster. We assign data to clusters according to
the Furthest Maximum Likelihood (FML) Voronoi diagram:

VorFML(ci = (wi,θi)) = {x ∈ X : wi p(x|λi)≥ wj p(x|λ j), ∀i �= j}, (4)
Vor(ci) = {x ∈ X : Di(x)≤ Dj(x), ∀i �= j}. (5)

This amounts to an additively weighted Voronoi diagram with anchored distance Dl(·)
at each cluster Cl: Dl(x) =− log p(x|λl)− logwl .

Updating the mixture component weights

In step 3 of k-MLE, we have to solve the optimization problem: minW ∑i min j D j(xi).
This amounts to solve for:

arg min
W∈Δk

−n j logw j = arg min
W∈Δk

−n j

n
logw j,

where n j = #{xi ∈ Vor(c j)}= |C j| denotes the cardinality of cluster C j. Thus, we seek
for:

min
W∈Δk

H×(N : W ),

where N =(n1
n , ...,

nk
n ) is the cluster point proportion vector ∈Δk. Since the cross-entropy

H×(N : W ) is minimized when H×(N : W ) = H(N), we deduce that W = N. In other
words, at step 3, we update the component weights W of the mixture by taking the
proportion of points falling into the k clusters.

Case study: Mixtures of exponential families

An exponential family mixture has component densities that write canonically as
pF(x|θ) = exp(t(x)	θ −F(θ)+ k(x)) with:

• t(x): the sufficient statistic in RD where D denotes the family order,
• k(x): an auxiliary carrier term with respect to the Lebesgue or counting measures,



• F(θ): the log-normalizer also called cumulant function or log-partition function.

Exponential families have log-concave densities, meaning that the potential distance
functions D j(x)’s are convex. Thus the geometric clustering problems are k-means type
clustering problems with respect to convex “distances”. Using the duality between expo-
nential families and Bregman divergences [18], we get the potential distance functions:

Dw,θ (x) =− log p(x;θ)− logw = F(θ)− t(x)	θ − k(x)− logw, (6)
= BF∗(t(x) : η)+F∗(t(x))+ k(x)− logw, (7)

where F∗(η) = maxθ (θ	η −F(θ)) is the Legendre-Fenchel convex conjugate. Thus
the ML farthest Voronoi diagram turns out to be equivalent to an additively-weighted
Bregman Voronoi diagram [19] (affine diagrams).

The k-MLE method for mixtures of exponential families, k-MLEEF, is therefore
rewritten as follows:

1. Initialize weight W ∈ Δk

2. Solve additive Bregman k-means: minΛ ∑i min j D j(x) with D j(x) = BF∗(t(x) :
η j)− logw j

3. Update weight vector W as cluster point proportion
4. Test for convergence and go to step 2) otherwise

Step 2 is solved using an extended version of Bregman k-means (convergence proofs
for Lloyd’s batched heuristic is reported in [20] and for Hartigan’s single swap heuristic
in [25]). Given a ML farthest Voronoi partition, we compute the MLEs θ̂ j’s inside each
cluster as follows:

θ̂ j = argmax
θ∈Θ ∏

xi∈Vor(c j)

pF(xi;θ).

The MLE is found by solving the moment equation:

∇F(θ̂ j) = η(θ̂ j) =
1
n j

∑
xi∈Vor(c j)

t(xi) = t̄ = η̂.

The MLE for exponential families is consistent, efficient with asymptotic normal
distribution:

θ̂ j ∼ Nor

(
θ j,

1
n j

I−1(θ j)

)
,

where the Fisher information matrix is:

I(θ j) = var[t(X)] = ∇2F(θ j) = (∇2F∗(η j))
−1.

The MLE may be biased (e.g., normal distributions) and is guaranteed to exist and be
unique [21, 22] when:

T (x1, ...,xn) =

⎡
⎣ 1 t1(x1) ... tD(x1)

...
...

...
...

1 t1(xn) ... tD(xn)

⎤
⎦ (8)



of dimension n× (D+ 1) has rank D + 1 [21]. For example, there are problems for
undefined MLEs of multivariate normals (MVNs) with n < d observations (unbounded
likelihood is ∞). The maximal likelihood is l(x1, ...,xn) = F∗(η̂) +∑n

i=1 k(xi), where
η̂ = ∇F(θ̂).

The generalized k-MLE method

Weibull distributions or generalized Gaussians are parametric families of exponential
families [23]: They are not exponential families when considering all free parameters
but can be interpreted as parametric families F(γ) of exponential families when consid-
ering some fixed parameters γ . Reducing the number of free parameters of high-order
exponential families is also useful to obtain one free parameter with convex conjugate
F∗ approximated efficiently by line search (e.g., Gamma distributions [24] or general-
ized Gaussians [23]). (Indeed, fixing some of their parameters yields nested families of
exponential families [24].) To extend k-MLE to those kind of distributions, we further
attach to each cluster prototype c j the family Fj of distributions (i.e., c j = (wj,θ j,Fj))
and we set Dw j,θ j,Fj(x) = − log pFj(x;θ j)− logw j. The standard k-MLE considers all
families identical: Fj = F . We describe the k-GMLE methodology:

1. Initialize weight W ∈ Δk and family type (F1, ...,Fk) for each cluster
2. Solve minΛ ∑i min j D j(xi) (center-based clustering for W fixed) with potential func-

tions: D j(xi) =− log pFj(xi|θ j)− logw j

3. Solve family types maximizing the MLE in each cluster C j by choosing the
parametric family of distributions Fj = F(γ j) that yields the best likelihood:
minF1=F(γ1),...,Fk=F(γk)∈F(γ)∑i min j Dw j,θ j,Fj(xi).

4. Update W as the cluster point proportion
5. Test for convergence and go to step 2) otherwise.

Theorem 1 The k-GMLE algorithm learns a mixture from a set of n IID. observations
by solving a sequence of geometric hard clustering problems: The k-GMLE algorithm
guarantees the monotonous convergence of the complete likelihood into a (possibly
local) optimum.

In [25], we build upon recent results on k-means to propose a k-MLE algorithm
that learns automatically the number k of mixture components, and present several
probabilistically guaranteed initializations for k-MLE (Step 1). The k-MLE algorithm
is fast and uses only linear memory: This contrasts with EM that requires to store O(nk)
soft weights, the soft membership weights zi, j ∈ (0,1). Furthermore, cluster assignment
in k-MLE can be accelerated over the naïve brute force search by using tree search
structures like the vantage point trees [26] or the ball trees [27].
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FIGURE 1. Learning a mixture of singly-parametric distributions using dynamic programming.

k-MLE for learning univariate mixtures of singly-parametric
distributions

Cauchy, Rayleigh or Poisson families of distributions are univariate indexed by a sin-
gle parameter. For exponential families (say, Rayleigh or Poisson, but not Cauchy), the
geometric clustering problem amounts to a dual 1D weighted Bregman clustering [18]
on 1D scalars yi = t(xi) (where t denotes the sufficient statistic). The farthest ML Voronoi
diagram has connected cells, meaning that an optimal clustering has necessarily the
structure of non-overlapping intervals. In 1D, k-means (with additive weights) can be
solved exactly using dynamic programming in O(n2k) time [10].

Consider the mixture weight vector W given, the k-MLE cost is: ∑k
j=1 lc(C j) where

C j are point clusters. The optimality equation of dynamic programming is illustrated in
Figure 1:

MLEk(x1, ...,xn) =
n

max
j=2

(
MLEk−1(X1, j−1)+MLE1(X j,n)

)
,

where Xl,r = {xl,xl+1, ...,xr−1,xr}.
We build the dynamic programming table from l = 1 to l = k columns, and from the

m = 1 to m = n rows. We then retrieve the clusters C j’s from the table by backtracking
on the argmax j. See [10] for implementation details of 1D k-MLE.

Theorem 2 Learning a finite mixture of singly-parametric distributions with prescribed
component weights can be done optimally with respect to the complete likelihood us-
ing dynamic programming provided that the Maximum Likelihood Voronoi diagram of
distributions has connected cells.

CONCLUSION AND DISCUSSION

We described a generic methodology, dubbed k-MLE (and its extension k-GMLE),
to learn finite statistical mixtures by solving iteratively sequences of geometric hard
clustering problems [7]. k-MLE optimizes the complete likelihood while Expectation-
Maximization locally optimizes the incomplete likelihood. In particular, for exponential
families, k-MLE geometric problems are solved by dual additively-weighted Bregman
hard clustering problems. It is therefore different from the soft Bregman clustering
proposed in [18] that was shown to be the EM algorithm in disguise. We showed how to
extend the basic k-MLE method to handle independently for each cluster the family
of distributions that can be used for the mixture component. For singly-parametric



family, we presented a simple dynamic programming method for solving the sequence of
geometric interval clustering problems. Experimental results are reported in [23, 24, 25,
10]. We end up with the following open problem: Find the best (1+ ε)-approximation
algorithm for learning mixtures maximizing the complete or incomplete likelihood.
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