A Concise and

Introduction to Practical
. Introduction to
Programming AlgorEnms in Java

Algorithms In Java

Chapter 7: Linked lists

Frank NIELSEN
Bx
>4 nielsen@lix.polytechnique.fr

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 1

Agenda

 Cells and linked lists

 Basic static functions on lists

* Recursive static functions on lists
* Hashing: Resolving collisions

« Summary of search method
(with respect to time complexity)

ﬂ A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Summary of Lecture 7

Searching:
» Sequential search (linear time) / arbitrary arrays
» Dichotomic search (logarithmic time) / ordered arrays

Sorting:
» Selection sort (quadratic time)
* Quicksort (recursive, in-place, O(n log n) exp. time)

Hashing

Methods work on arrays...
...weak to fully dynamic datasets

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 3

Memory management in Java:
AUTOMATIC

» Working memory space for functions (stack):
PASS-BY-VALUE

» Global memory for storing arrays and objects:
Allocate with new

* Do not free allocated objects, Java does it for you!
GARBAGE COLLECTOR
(GC for short)

http://en.wikipedia.org/wiki/Java_(programming_language)
‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 4

Memory management

DRAM: volatile memory
1 bit: 1 transistor/1 capacitor,

constantly read/rewritten Pynamic RAM
HDD: hard disk, static memory
RAM cells
Dynamic memory: Linear arrays... py:
Problem/Efficiency vs Fragmentation... | |*| =T

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielse

class Toto

{

Visualizing memory

String name;

Toto (double xx, String info) A representation

{this.x=xx;
// For mutable object do this.name=new Object (info);
this.name=1info; }

b

Functions Heap
class VisualizingMemory
{ :
public static void Display(Toto obj) Display
i (pass by reference)
System.out.println (obj.x+":"+obj.name) ;
}
main
?ubllc static vold main (String[] args) inti@lbWes)
int i; Double [] arra
Toto var=new Toto(5,"Favorite prime!"); Toto var
double [] arrayx=new double[10];
Display (var); local variables
} stack execution alg'_ayi
} pass-by-value objects
persistent

E A Concise and Practical Introduction to Programming Algorithms in JEVQB-RBEHSERRAEIsen

Garbage collector (GC)

No destructor:
e for objects
e for arrays

Objects no longer referred to are automatically collected

You do not have to explicitly free the memory
Java does it automatically on your behalf
Objects no longer needed can be explicitly “forgotten”

obj=null;

array=null;
‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Flashback: Searching

» Objects are accessed via a corresponding key
e Each object stores its key and additional fields

* One seeks for information stored in an object from its key
(key= a handle)

* All objects are in the main memory (no external 1/O)

More challenging problem:
Adding/removing or changing object attributes dynamically

2 A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 8

Linked list: cells and links

e Sequence is made of cells

» Each cell stores an object (cell=container)

» Each cell link to the following one
(=refer to, =point to)

* The last cell links to nothing (undefined)

 To add an element, create a new cell that...
...points to the first one (=head)

* Garbage collector takes care of cells not pointed by others

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 9

Linked list: cells and links g =

head tail termination
12| «1+—>»> 99| e+—>»37

Cell = wagon .
Link = " Container:
INK = magne Any object is fine

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 10

Lisp: A language based on lists

Lisp (1958) derives from "List Processing Language”
Still in widespread use nowdays

(list '1 '2 'foo)
(list 1 2 (list 3 4))

12| «—>» 99| e—» 37| &>

(12 (99 (37 nil)))
(head tail)

http://en.wikipedia.org/wiki/LISP

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Advantages of linked lists

» Store and represent a set of objects

* But we do not know beforehand how many...

» Add/remove dynamically to the set elements
Arrays: Memory compact data-structure for static sets
Linked lists: Efficient data-structure for dynamic sets

but use references to point to successors
(reference= 4 bytes)

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 12

Linked lists

7 —= 13 ——== Y ——== 16

AN

head reference

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

13

Dynamic insertion

Insert 33
J

Constant time operation -
(think of how much difficult it is to do with arrays)

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Dynamic deletion

16

LY

Delete 9

Constant time operation
(think of how much difficult it is to do with arrays)

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

15

Abstract lists

Lists are absftract data-structures supporting
the following operations (interface):

Constant:
Operations:
Constructor:

Head:
Tail:

ISEmpty:
Length:
belongTo:

Empty list listEmpty (null)

_ist x Object — List
_ist — Object (not defined for listEmpty)

_ist — List (not defined for listEmpty)

_ist — Boolean
_ist — Integer

_ist x Object — Boolean

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 16

Linked list In Java

e null is the empty list (=not defined object)

* A cellis coded by an object (class with fields)

» Storing information in the cell = creating field

(say, double, int, String, Object)

* Pointing to the next cell amounts to contain
a reference to the next object

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

17

public class List
{

int container;
LList next;

// Constructor List (head, tail)
List(int element, List tail)
{
this.container=element;
this.next=tail;

}

static boolean isEmpty(List list)
{// in compact form return (list==null);
1f (list==null) return true;
else return false;

}

static int head(List 1list)
{return list.container;}

static List tail(List 1list)
{return list.next;}

}

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Common mistake

« Cannot access fields of the null object
e Exception nullPointerException Is raised

e Performatest if (currentCell!=null)

to detect wether the object is void or not,
before accessing its fields

static 1nt head(List 1list)
{1f (list!=null)
return list.container;
else
return -1; }

ﬂ A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 19

public class List

{...}
class ListJava({

public static void main (String[] args)

{
List myList=new List(23,null);

}

J Function stack Memory

Container (int)
Reference to list

main

MyList (4 bytes)
Reference

H A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

20

main /

/

class ListJava({

public static void main

{

Y

12‘
~ /.
6

null

List u=new List(6,null);
List v=new List (12,u);

}

(String[]

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

args)

21

main /

6 | null

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

22

main //

null

u=new List(lo6,u);

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

23

Browsing lists

Start from the head, and
inspect element by element (chaining with references)
until we find the empty list (termination)

static boolean belongTo(int element, List list)

{
while (list!=null)

{

1f (element==list.contalner) return true;
list=1list.next;

}

return false;

Linear complexity O(n)

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 24

List: Linear search complexity O(n)

class ListJava({

public static void main (String[] args)
{

List u=new List (6,null);

u=new List (l6,u);

u=new List(32,u);

u=new List (25,u);

System.out.println(List.belongTo(6,u));
System.out.println(List.belongTo(17,u)):;

}
) static boolean belongTo (1n

List list)

{
while (list!=null)
{
1f (element==list.container) return true;
list=1list.next;
}
return false;
}

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

class ListString

{

Generic lists

ListString next;

// Constructor
ListString(String name, ListString tail)
{this.name=new String(name); this.next=tail;}

static boolean isEmpty(ListString list)
{return (list==null);}

static String head(ListString list)
{return list.name; }

static ListString tail (ListString list)
{return list.next;}

static boolean belongTo(String s, ListString list)
{
while (list!=null)
{
1if (s.equals(list.name))
return true;
list=list.next;

}

return false;

}

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

26

class ListString

{

Generic lists

ListString next;

static boolean belongTo(String s, ListString list)
{
while (list!=null)
{
1f (s.equals(list.name))
return true;
list=list.next;
}

return false;

}
}

class Demo{...
ListString l=new ListString("Frank",null);
l=new ListString("Marc",1l);
l=new ListString("Frederic",1l);
l=new ListString("Audrey",1l);
l=new ListString("Steve",1);
l=new ListString("Sophie",1);

System.out.println (ListString.belongTo ("Marc", 1)) ;
System.out.println(ListString.belongTo ("Sarah",1));

}
‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

27

Length of a list

static int length(ListString list)

{ A
int 1=0;
while (list!=null)
{1++;
list=1list.next;
}
return 1;

Note that because Java is pass-by-vélue
(reference for structured objects),

we keep the original value, the head of the list,
after the function execution.

System.out.println(ListString.length (1))
System.out.println(ListString.length(l));

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

28

Dynamic insertion;
Add an element to a list

static ListString Insert (String s, ListString list)
{

return new ListString(s,list);

}

Call static function Insert of the class ListString

l1=ListString.InSert ("Philippe", 1);
l=new ListString("Sylvie",1l);

ﬂ A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 29

Pretty-printer of lists

Convenient for debugging operations on lists

static void Display(ListString list)

{
while(list!=null)

{

System.out.print (list.name+"-->");
list=1l1st.next;

}
System.out.println("null");

J

Philippe-->Sophie-->Steve-->Audrey-->Frederic-->Marc-->Frank-->null

ListString.Display(1l);

ﬂ A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 30

Dynamic deletion: Removing an element
Removing an element from a list:

Search for the location of the element, 5
if found then adjust the list (kind of list surgery) |[£=

> * > > >

4
.. =
... e
llllll

A

‘
V.next=w.next

V wW=v.next

Garbage collector takes care of the freed cell

Take care of the special cases:
e List is empty
» Element is at the head

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 31

Dynamic deletion: Removing an element

static ListString Delete(String s, ListString list)

{

// 1f list is empty

1f (list==null)
return null;

// If element 1s at the head
1f (list.name.equals(s))
return list.next;

// Otherwise
ListString v=1list;
ListString w=list.next; //tail

while (w!=null && ! ((w.name) .equals(s)))
{v=w; w=v.next;}

// A bit of list surgery here

1f (w!=null)

V.next=w.next; _ _ , ,
Complexity of removing is at least the complexity of

return list: finding if the element is inside the list or not.

‘E} A Concise and Practical Introduction to Programming Algorithms in Java rank Nielsen

Recursion & Lists

Recursive definition of lists yields effective recursive algorithms too!

static 1nt lengthRec (ListString list)
{

1f (list==null)
return 0O;
else
return l+lengthRec(list.next);

System.out.println(ListString.lengthRec (1))

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 33

Recursion & Lists

static boolean belongToRec (String s, ListString list)
{

1f (list==null) return false;
else

{

1f (s.equals(list.name))
return true;

else
return belongToRec (s, list.next);

System.out.println(ListString.belongToRec ("Marc",1));
Note that this is a terminal recursion
(thus efficient rewriting is possible)

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 34

Recursion & Lists

Displaying recursively a linked list

static void DisplayRec (ListString list)
{
1f (list==null)
System.out.println("null");
else

{

System.out.print (list.name+"-->");

DisplayRec (list.next);

ListString.DisplayRec (1) ;

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

35

Copying lists

Copy the list by traversing the list from its head,
and cloning one-by-one all elements of cells
(fully copy objects like String etc. stored in cells)

static ListString copy(ListString 1)

{
ListString result=null;

while (l!=null)
{

result=new ListString(l.name, result);
1=1.next;

}

return result;

}

ListString lcopy=ListString.copy(l);
ListString.Display (lcopy)

Beware: Reverse the list order
‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

36

Copying lists: Recursion

Preserve the order

ListString.

ListString

ListString.

ListString
ListString

DisplayRec (1) ;
lcopy=ListString.copy(l);
Display (lcopy);
lcopyrec=ListString.copyRec (1) ;
.Display (lcopyrec);

Sophie-->Audrey-->Frederic-->Marc-->null
Marc-->Frederic-->Audrey-->Sophie-->null
Sophie-->Audrey-->Frederic-->Marc-->null

H A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Building linked lists from arrays

static ListString Build(String [] array)

{
ListString result=null;

// To ensure that head is the first array element
// decrement: from largest to smallest index
for(int i1=array.length-1;1>=0;1--)

result=new ListString(array[i],result);

return result;

}

String [] colors={"green", "red", "blue", "purple", "orange", "yellow"};
ListString 1lColors=ListString.Build(colors);
ListString.Display(lColors);

green-->red-->blue-->purple-->orange-->yellow-->null I

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 38

Summary on linked lists b

* Allows one to consider fully dynamic data structures
« Singly or doubly linked lists (LList prev, succ;)
o Static functions: lIterative (while) or recursion

* List object is a reference
(pass-by-reference of functions; preserve head)

» Easy to get bugs and never ending programs
(null empty list never encountered)

* Do not care releasing unused cells
(garbage collector releases them automatlcally)

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Hashing: A fundamental technique

e Store object x in array position h (x) (int)

« Major problem occurs if two objects x and y
are stored on the same cell: Collision.

Key issues in hashing:
* Finding good hashing functions that minimize collisions,

» Adopting a good search policy in case of collisions

Object Obj=new Object ()

int 1; int 1;
array[i] i=h (Obj);// hashing function
array[1]

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 40

Hashing functions

» Given a universe X of keys and for any x in X,
find an integer h(x) between 0 and m

» Usually easy to transform the object into an integer:

For example, for strings just add the ASCII| codes of characters

* The problem is then to transform
a set of n (sparse) integers

;3

into a compact array of size m<<N.
(<< means much less than)

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 41

Hashing functions
Key idea Is to take the modulo operation

h(k) = k mod m where m is a prime number.

static int m=23;
// TRANSCODE strings into integers
static 1nt String2Integer (String s)
{

int result=0;

for (int J=0;73)<s.length();J++)
result=result*31+s.charAt (j)
// this is the method s.hashCode ()

return result;

}

// Note that m 1s a static wvariable
static int HashFunction(int 1)

{return 1%m;}
‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

public static void main (String[] args)

{

String [] animals={"cat","dog", "parrot", "horse","fish",
"shark","pelican","tortoise", "whale", "lion",
"flamingo", "cow", "snake", "spider", "bee", "peacock",
"elephant", "butterfly"};

int 1i;
String [] HashTable=new String[m];

for (i=0;i<m;i++)
HashTable[i]=new String("-->");

for (1=0;i<animals.length;i++)
{int pos=HashFunctilion (String2Integer (animals[1i]))
HashTable[pos]+=(" "+animals[i]);

}

for (1=0;i<m; i1++)
System.out.println ("Position "+i+"\t"+HashTablel[i]):;

}

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

43

Position O
Position 1
Position 2
Position 3
Position 4
Position 5
Position 6
Position 7
Position 8
Position 9
Position 10
Position 11
Position 12
Position 13
Position 14
Position 15
Position 16
Position 17
Position 18
Position 19
Position 20
Position 21
Position 22

--> whale
--> snake

--> COW
--> shark

--> fish
--> cat
-

--> dog tortoise

--> horse

--> flamingo

-—>
--> pelican

--> parrot lion

-->
-->

Collisions in
the hash table

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

44

Hashing: Solving collision
Open address methodology

...record in another location that is still open...

» Store object X at the first free hash table cell
starting from position h(x)

» To seek whether X is in the hash table, compute h(x)
and inspect all hash table cells_until h(x) is found or a
free cell is reached.

Complexity of search time ranges from
constant O(1) to linear O(m) time

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

45

String [] HashTable=new String[m];
// By default HashTable[i]l=null

for (1=0;1<animals.length;1++)
{

int s2int=String2Integer (animals[1i]);
int pos=HashFunction(sZint) ;

while (HashTable[pos] '!'=null)
pos=(pos+l) 3m;

HashTable[pos]=new String(animals[1])

}

Position O
Position 1
Position 2
Position 3
Position 4
Position 5
Position 6
Position 7
Position 8
Position 9
Position 10
Position 11
Position 12
Position 13
Position 14
Position 15
Position 16
Position 17
Position 18
Position 19
Position 20
Position 21
Position 22

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

whale
snake
bee
spider
butterfly
null
null
COW
shark
null
null
null
fish
cat
peacock
dog
horse
tortoise
flamingo
pelican
parrot
lion
elephant
46

Hashing: Solving collision
Chained Hashing

For array cells not open, create linked lists

—=4 1 te=m

di1tem

N H1tem
1
o tem
5
4
= tem
5
T
G
10 tem
) tem

Can add as many elements as one wishes

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

47

ListString [] HashTable=new ListString[m];

for (1i=0;i<m; i++)
HashTable[i]=null;

for(1=0;1<animals.length;1++)

{

int sZ2int=String2Integer (animals[1]);

int pos=HashFunction(sZ2int);
HashTable[pos]=ListString.Insert (animals[1],HashTable[pos]);

}

whale—>null
hee—>snake—>null

for (1i=0;i<m; i++)
ListString.Display (HashTable[1i]);

shark—>null
null
null

null
fizsh—2>null
peacock—2>cat—>null
null
tortoise—>dog—>null
horszse—2>null
flamingo—>null

null

pelican—>null
lion—parrot—>null
e lephant—>null

null

ﬂ A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 48

Executive summary of data-structures

Data-structure Initializing Search Insert

Array O(1) O(n) O(1)
Sorted array O(nlogn) O (logn) O(n)
Hashing O(1) Almost O(1) Almost O(1)
List O(1) O(n) O(1)

Arrays = Pertinent data-structure for almost static data sets
Lists = Data-structure for fully dynamic data sets

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 49

Java has many more modern features

FORTRAN
1960 -~ = - - - - = 92D COBOL | [Lisp |-
Simula 67 \ LA *
Algol 68
1970 [Smalltalk 72 o —— F’rcllﬂg
".ll'll'l" /

x‘xx \ Clu Modula-2

1980 [Smalltalk 80\ - - - - - _X_ \o_ T — -
\ S C++ Ada Oberon
\ Objective C
Self Eiffel Modula-3

1990 - — — — = —— N mmm e m e

__{ANsIC+

SR Ada 95

Objects/inheritance, Generics, APls

‘E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen 50

We presented the concept of linked lists:
A generic abstract data-structure with a set
of plain (while) or recursive static functions.

In lecture 9, we will further revisit linked lists
and other dynamic data-structures using the
framework of objects and methods.

Ins_Front | Ins_Rear| DeI_Frnnt| Search |

o o1 o 54 —f 799 o
1 2 3 17 g
Last

http://www.cosc.canterbury.ac.nz/mukundan/dsal/LinkListAppl.html

http://en.wikipedia.org/wiki/Linked_list .

E A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

OO0 ST O

.hmuln'-:-'m%mumn1a|u1gu1u
UNDERGRADUATE TOPICS LIRS
k= ' In COMPUTER SCIENCE B
= S

Undergraduate Tapics in Computer Science (UTICS) delivers high-

quality instructional content for undergraduates studying in all areas of
computing and information science. From cor fourdational and theoretical
miaterial 1o finalyear topics and applications, UTICS books take & fresh,
concise, and modern approach and are ideal for self-study or for a one- or
two-semester m;irsze.-?he texts are all authored by established f:uper‘ts in
their fields, reviewed by an international advisary boanrd_and cantain
riumerous examples and problems. Many include fully worked solutions.

— . o k) . Al

Frank Nielsen UNDERGRADU

A Concise and Practical Introduction to i MF
Programming Algorithms in Java

e A concise and

e oo s e st i e s v Practical
Introduction to
Programming
Algorithms in Java

I

programmers to control the instruction workflows. Functions with pass-by-
value/pass-by-reference argumenis and recursion are explained, followed by a
discussion of arrays and data encapsuiation using objects.

The second part of the book focuses on data structures and algorithms, describing
sequential and bisection search technigques and analysing their efficiency by using
complexity analysis. terative and recursive sorting algorithms are discussed followed
by linked lists and common insertion/deletion/merge operations that can be carried
out on these. Abstract data structures are introduced along with how to program
these in lava using object-orientation. The book closes with an introduction to more
evolved algorithmic tasks that tackie combinatorial
Comroree Sciewce optimisation probkems.

Exercises are included at the end of each chapber in order
for students to practice the concepts leamed_ and a final
section contains an overall exam which allows them to
evaluate how well they have assimilated the material
covered in the book.

BABT U] SWYI0 S|

2uwweliSoid 03 UORINPOIIUI [BIRIEI PUE B5]IUDD W

@ Springer UTics

springer.com

‘q A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52

