
1A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

1

Frank NIELSEN

nielsen@lix.polytechnique.fr

A Concise and
Practical
Introduction to
Programming
Algorithms in Java

Chapter 2: Conditional structures and loops

2A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Upper case versus Lower case
Java distinguishes between
uppercases (A..Z) and lowercases (a..z)

Unix differentiates upper/lower case filenames
class UpperLowerCase
{

public static void main (String arguments[])
{
int MyVar;

// this variable is different from MyVar
int myvar;

// Generate a syntax error at compile time:
// cannot find symbol variable myVar
System.out.println(myVar);
}

}

3A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Reserved keywords

Reserved keywords in Java:

You cannot choose reserved keywordsreserved keywords for variable names:

class ReservedKeyword
{public static void main (String arg[]){

double x,y;
// Generate a syntax error:
// "not a statement"
int import;
}

}

4A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Displaying versus Computing
● You need to display if you'd like to see the result of
 evaluating an expression
● System.out.println displays on the console with a return carriage
● System.out.print displays on the console without a return carriage

Java is not Maple nor SciLab!

Confusing in Maple:
Interpreter: compute:display

5A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Output: Displaying values & messages
● System.out.println(stringname): displays a string with a return carriage

● System.out.print(stringname): displays a string without return line

● System.out.println(value): converts (cast) numerical value into a string
 and displays it

● System.out.println(''The value of x is ''+x):
Converts the numerical value of x into a string and concatenate that string
with the constant string '' The value of x is ''

Display=write to console or to text file if it is redirected (as in java toto > result.txt)

6A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

More on System.out.print[ln]
Equivalences of stream output:

System.out.print(''\n'') = System.out.println('''');
System.out.print(''Hello INF311 \n'') = System.out.println(''INF311'');

Priority order+casting operations...

7A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Display: String concatenations...
Cumbersome to type several
System.out.println and System.out.print

Shortcut: String concatenations « + »...
int a=1, b=-2;

System.out.print("a="); System.out.print(a);
System.out.print(" b="); System.out.println(b);

System.out.println("a="+a+" b="+b);

String s1="Lecture in", s2=" Java";
String s=s1+s2;// string concatenation
System.out.println(s);

Operator (expression)

8A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

/* Declare a constant (not a variable)
 to bypass using Math.PI */

final double PI = 3.14; // constant

Declaring constants

Numeric bug in predicate !
// Constant

final double PI = 3.14;

int a=1;
double b=a+PI;

if (b==4.14) // Equality test are dangerous!!!
 System.out.println("Correct result");
 else
 {System.out.println("Incorrect result");
 System.out.println("a="+a+" b="+b+" PI="+PI);
 }
}

9A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Syntax and compilation
Syntax errors are easy program bugs (mistyping?)
...But syntaxically correct program may be difficult to understand

Protecting Java Source with Code obsfucation
Avoid reverse engineering of applications

int i=3;
// syntax below is valid!
int var=i+++i;

What is the value of var?

10A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Program: Data,computations + workflow
The control structures define the set of instructions being executed
(aiguillage des trains)

For example, a branching condition:

if (a<b) [then]

c=a; // Do-something-1
else
c=b; // Do-something-2

There are two potential instructions paths depending on the predicate:
● a<b, -> c=a;
or
● a>=b, -> c=b;

c is selected as
the minimum

 of a and b

In Java, we do not use the word then

11A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

ControlingControling program workflow
Two kinds:
● Branching tests: (if else, switch)
● Repeat structure: Loop (while, for)

Predicate: true or false
if there is a numerical error at
that stage we take the wrong
flow and this yields a bug, with
potential desastrous effects.

Key difference with maths.

12A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Annotating programs: comments!
Writing comments is good for (1) yourself and

for (2) others to proofread and debug your code

In fact, there are some paradigms to write in a single file both
● the clean documentations, and
● the code.

Exempla gratia (e.g.) cweb, Literate programming, etc.
http://www.literateprogramming.com/

In INF311, we rather write short programs, so we consider the standard comments:

// This is a single line comment
/* I can also write comments on
 several lines

by using these delimiters */

D. Knuth

13A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Comments: single versus multiple lines
(Jcreator IDE)

14A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Comments...
with errors!

The compiler is verbose: Try to fix the first error first (greedy approach)

15A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Comments...
repaired... = Syntaxically correct program

Do not forget:
Writing good comments is as important as writing source code
You will thank yourself for doing this once you look back at your programs months later

16A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Structures of Java programs
● Comments // or /* */
● Constants (Math.PI, etc.)
● Variables (typed) with valid identifiers (not reserved keyword)
● Operators +,-,/,%, etc. for expressions
● Reserved language keywords: if, for, while, etc.

A set of instructions is called a block
Blocks can be delimited by parenthesis {Block}

{ // This is a block
// (non control structure inside it)
var1=Expression1;
var2=Expression2;
var3=Expression3;
...
}

17A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Structures of java programs: Blocks

Block 2

Block 1

Principal block

18A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Conditional structures:
if (predicate) Block1 else Block2

Essential control structure for executing a (block of) operations if a condition is true
(or false for the else-Block)

if (condition) Instruction

if (condition) {
Instruction1;
Instruction2;
Instruction3;

... ;
}

if (condition)
BlockForTrueCase
else
BlockForFalseCase

Block=sequence of instructions
predicate

19A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Conditional structures: Compact form
if (predicate) Inst1 else Inst2

Conditional instruction for singe instruction block can be called
using the ternary operator (3 operands) « ? : »

BoolOperand1 ? TypeOperandTrue2 : TypeOperandFalse3

2.718281828459045 difference with max=0.423310825130748

double x1=Math.PI;
double x2=Math.E;

double min=(x1>x2)? x2 : x1; // min value
double diff= (x1>x2)? x1-x2 : x2-x1; // absolute val.
System.out.println(min+" difference with max="+diff);

20A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Instructions and conditions
 Instructions always terminate with a semi colon ;

 (except potentially the last one in a block)

A set of instructions encapsulated in { } is a block
The block has the same syntax as an instruction

Variables can be declared in a block

A condition is a boolean expression
that returns either true or false :

= A predicate

21A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Variables and blocks

Very different from C++!
 (Java better controls the syntax of programs, better semantic)

We cannot declare twice a same variable in encapsulated block

22A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Variables and blocks: Scopes

Error!!! Variable l is not defined in the block it here

23A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Boolean operators for comparisons
a==b Test of equality (for basic types)
a!=b Test for difference [equivalent to ! (a==b)]

Inequalities:
a<b True if and only if (iff.) a<b
a<=b True iff. a<b or a=b

a>b True iff. a>b
a>=b True iff. a>b or a=b

Beware: a=b is assignment not test (test of equality is ==)
Typing helps you avoid this mistake:
int a=3;
if (a=3) System.out.println("THEN-PART");
 else System.out.println("ELSE-PART");

incompatible types found : int
required: boolean

24A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Boolean operators for comparisons

25A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

(6-2) == 4 evalutes to true but 22/7 == 3+1.0/7 evaluates to false

Boolean operators for comparisons
Boolean comparisons are of type boolean

class Boolean{
public static void main(String[] args)

{
boolean b1 = (6-2) == 4;
boolean b2 = 22/7 == 3+1/7.0 ;
boolean b3 = 22/7 == 3+ 1/7;

System.out.println(b1); // true
System.out.println(b2); // false
System.out.println(b3); // true
}

}

26A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

More on boolean operators: Tables
Unary operator:Unary operator:
NOT !

Binary Binary connector operatorsconnector operators::
AND &&

OR ||

27A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Priority order for boolean expressions
Lazy evaluation of boolean binary operators:
● If a is false we do not need to evaluate b in a && b
● If a is true we do not need either to evaluate b in a || b

28A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Few remarks
Key difference between assignment (=) and logical test ==

Do not forget the semi-colon at the end of Instructions;

 Indent your code and structure it into blocks for clarity
Think of nested if control structures

if (condition1)
{BlockT1;}

else
{

if (condition2)
{BlockT2;}

else {BlockF2;}
}

Nested if

29A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Nested conditionals (nested if)

Set curly brackets { } to increase code readibility

30A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Loops: While/do for iterations
Structure for iterating

● Process a single instruction or a block until the given boolean expression is true
 (thus may loop forever... and program may not terminate)

● Boolean expression is re-evaluated at each round

● We can exit the loop at any time using the keyword break;

while (boolean_expression)
single_instruction;

while (boolean_expression)
{ block_instruction;}

do
{ block_instruction;}

while (boolean_expression);

At least, the loop
is executed once.

31A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Loops: Euclid' GCD algorithm

While

Do

Greatest common divisor of two integers a and b

32A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Loops: Newton's method
Converge to a root of the function f

Setting
y=f'(xprev)(x-xprev)+f(xprev)=0
give new value for x

Use to calculate the square root function
f(x)=x*x-a

 double a = 2.0, x, xold;

 x = a;
 do{
 xold = x;
 // compute one iteration
 x = (xold+a/xold)/2;
 System.out.println(x);
 } while(Math.abs(x-xold) > 1e-10);

1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
1.4142135623730949

33A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Loops:
Syracuse and termination conjecture

do
{ block_instruction;}

while (boolean_expression);

Nobody knows whether this programs stops for any given input (open problem)
No counter example from simulation so far but no termination proof too!

Replace x by x/2 (for x odd) and x by 3x+1 (for x even)
Start from any given x, does the replacing alway terminate (x=1)

do{
 if ((n%2)==0)

n/=2;// divide by 2
else
n=3*n+1;

} while (n>1);

34A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Loops: Perpetual movements...

Always ensure that loops terminate when programming

int i=0;
while (true)
i++;

for(i=0;i>=0;i++)
 ; // common mistyping error

for(i=0;i>=0;i++)
 { }

Easy to do when programming.... ESC key or Control-C to escape!

35A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Loops: Breaking the loop with break
Read a sequence of non-negative natural integers and
compute the cumulative sum of the sequence.

Observe the shortcut:
sum+=n; that is equivalent to assignment sum=sum+n;

36A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Loops: For... iterations
● Allows one to execute a block of instructions, and
● Increment the counter at each round
● Semantically equivalent to a while loop
● Often used for program readibility (e.g., for a range of integers)

for(instruction1; boolean_condition; instruction2)
block_instruction3;

instruction1;
while (boolean_condition)

{block_instruction3;
instruction2;}

Equivalence with While construction

37A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Loops: For... iterations
for(instruction1; boolean_condition; instruction2)

block_instruction3;

class ForLoop
{

public static void main(String args[])
{
int i, n=10;
int cumulLoop=0;

for(i=0;i<n;i++) cumulLoop+=i;

int cumul=(n*(n-1))/2; // closed-form solution
System.out.println(cumulLoop+" closed-form:"+cumul);
}

} We get 45

38A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

int cumulLoop=0;
for(i=0;i<n;i++) cumulLoop+=i;

Loops: For... iterations (unlooping)

int cumulLoop=0;
i=0; // Initialization
cumulLoop+=i;
i++; // i=1 now
// i<n so we continue...
cumulLoop+=i;
i++; // i=2 now
// i<n so we continue...
cumulLoop+=i;
...
cumulLoop+=i; // i=n-1
i++; // i=n now
// i is not i<n so we stop...

Unlooping...

39A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Examples of for loop: IsPrime
Program that determines whether a given integer is prime or not.

209=11x19

40A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Multiple choices: switch
Avoid nested if-else structures for multiple choices

class ProgSwitch
{public static void main(String arg[]){

System.out.print("Input a digit in [0..9]:");
int n=TC.lireInt();

switch(n)
{
case 0: System.out.println("zero"); break;
case 1: System.out.println("one"); break;
case 2: System.out.println("two"); break;
case 3: System.out.println("three"); break;
default: System.out.println("Above three!");

 break;
}}}

41A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Natural integers and int
Difference between mathematics (infinite precision) and computing.

Computing: discrete algorithms working on finite representations
of numbers

Source of many bugs !!!

Typically, an algorithm can be correct but its implementation
buggy because of numerical errors.

int: maximum machine-representable int is 2^31-1
(in the old days, written as 2**31-1)

long: maximum machine-representable long is 2^63-1

42A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Overflow problems...
A toy example

Computes 2^s, but at some point 2^64 cannot fit 64-bit, we get first
- negative number (leading bit set to 1 by the arithmetic logic unit - ALU)
- then zero!!!!

43A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Overflow problems: revisited

Declaration
inside the For

Increment:
i++
or
++i

Multiplication is just
a bit shift << to the right

44A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Floating points & numerical precisions

64-bit IEEE 754 floating point.

http://en.wikipedia.org/wiki/IEEE_floating-point_standard

● float (32-bit) or double (64-bit) have sign, exponent and matissa parts

● Examples: float a=0.3; float b=2e-8 (scientific engineering); float c=1.1f;

● Math class contains important ''constants'': Math.PI, Math.E, etc.
 and transcendental functions: Math.log(), Math.exp(), Math.sin(), Math.cos()

32-bit IEEE 754 floating point.

45A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Loosing numerical precision...
 A bug

Usually, difficult to
test for the zero
(use threshold or better analysis)

46A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Loosing associativity rule
Rounding & truncations to fit the standard yields the loss of associativity

Better to add numbers having already the same exponent decomposition...

47A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Computing Euler-Mascheroni 's constant

48A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Types and conversions: Cast operator
● All variables and constants are typed: Math.PI is a (static) double

● Variables should be declared according to their type: double x; int i; etc

● The type of variable determines the operator and meaning:
Exempla gratia, 3.0+2.1 (double) or ''Hello ''+'' INF311'' (String)

● The expression is also typed (by the compiler)

● For assignment =, the left-hand side (variable) and right-hand side (expression)
 should have the same type.

Casting types
with parenthesis (type):

double x=3.14;
int i=(int)x;

double x=(double)i;

49A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Converting strings to numbers...
Use Type.parseType(String stringtoparse)

50A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Declaring functions in Java

class INF311{

public static typeF F(type1 arg1, ..., typeN argN)
{
// Description
Block of instructions;
}

}

● This kind of function is also called a static method
● Functions must be defined inside classes
● A function not returning a result has type void

(also known as a procedure)

A glimpse at functions

51A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Defining the body of a function in Java

class INF311{
public static typeF F(type1 arg1, ..., typeN argN)

{
// Description
Block of instructions;
}

}

Body of a function

 Body should contain an instruction return to indicate the result
 If branching structures are used (if or switch) ,
 then a return should be written for all different branches.

Otherwise we get a compiler error! (why? => not type safe!)

52A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

A few examples of basic functions
class FuncDecl{

public static int square(int x)
{return x*x;}

public static boolean isOdd(int p)
{if ((p%2)==0) return false; else return true;}

public static double distance(double x, double y)
{if (x>y) return x-y; else return y-x;}

public static void display(double x, double y)
{System.out.println("("+x+","+y+")");
 return; // return void
}

public static void main (String[] args)
{
display(square(2),distance(5,9));
int p=123124345;
if (isOdd(p)) System.out.println("p is odd");
else System.out.println("p is even");
}

}

53A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

53

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53

