
1A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Frank NIELSEN

nielsen@lix.polytechnique.fr

A Concise and
Practical
Introduction to
Programming
Algorithms in Java

Chapter 1: Expressions, Variables, and Assignments

2A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Contents

● Learn to program with/in Java

● Computing as a science
(some basic principles)

● Popular (computer) science

HCI BMI
MANET

3A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Jobs & Jobs & Computer ScienceComputer Science

● Industry
● CS Industry
● Others (information systems)

● Administration

● Research & Development

Not feeling fluent with CS today, is like not being able to drive a car !

A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Digital worldDigital world
 Benefits of the analog-to-digital paradigm shift?

• DissociateDissociate contentscontents from from supportsupport : digitize/“binarize”

Contents become mere
 binary 0/1 strings

A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Digital worldDigital world
• Universal player (machine) and dedicated devices

“Multiple 0/1 readers”

A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Digital worldDigital world
• Generic algorithms:
 copying, compressing, transmitting, archiving, etc.

Raise the question: What is the (digital) information?

•Text
•Music
•Image
•Video
•Data

A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Digital world: Why 0/1 bits?Digital world: Why 0/1 bits?

Binary numeral systems:
Information, first needs of counting...

8

Unary numeral systems:

Logarithmic number of bits for countingLinear number of bits for counting vs

4 bits
for counting

0 to 15

A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Nature of computing?Nature of computing?
•Generic algorithms:

copying, transmitting... ...genetics...

DNA (double-helix structure of DNA)

1953, James Watson and Francis Crick (Nobel prize)

Genetics

A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Nature of computing?Nature of computing?

First envisioned by Erwin Schroedinger (What is life?, 1944)

Transmit crystals?

Nobel, Physics 1933

LIFE???

A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

 Digital world/computingDigital world/computing
Ubiquitous computing= computing everywhere

New features

Digital = Binary + Calculations

Example:
Computational
photography

11A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Computer science is not programming PCs

Computers
=

computing machineries

Difference engine of Charles Babbage
(conceived in 1822 on paper, built much later on)

Computing is a principle of reality (and science)
Watson and Crick 1951 (DNA double helix heredity)

Computing is 21st Century's Science of integration

12A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

INFORMATIQUE=INFORmation + autoMATIQUE
Information= Data sets, input (discrete binary sequences of 0/1)
Automatic= General recipe that works on any input

 = ALGORITHM

Al-Khwarizmi
 (790 - 840)

Al-Khwarizmi: Scholar of
 scientifically flourishing Bagdad:

● Algorithmi (latinization) -> Algorithm
● Al jabr -> Algebra
Provide readers a generic pipelinepipeline solution
to solve a quadratic equation:

http://www.akiti.ca/Quad2Deg.html

13A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

2121stst century computer science century computer science
● Computers (and computing) are omnipresent

-> Ubiquitous computing (Mark Weiser)

Computers are abundant and versatile:
1952-1999

Xerox parc chief scientist

● Computing impacted all Sciences:
 Computational sciences

Eg., Biology -> Systems biology
(simulation-prediction-experience in wet lab)

● The Science of computing is Computer Science (CS):
 Deep theoretical questions and important technologies

 (eg., medical imaging such as DT-MRI, economy)
DW-MRI

(Many more devices than PCs)

Science of
Integration

(complex systems)

14A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Flavor of my research in computer science
Visual computing:
● Computational geometry,
● Computer vision,
● Computer graphics,
● Machine learning

For example, tackling computational photography
Reinventing the photography: taking, sharing and experiencing photos... Reinventing the photography: taking, sharing and experiencing photos...

Smile shutterDigital camera
Analog camera

Everything has yet Everything has yet
to beto be

invented!!!invented!!!
Beyond 2D pixels

Beyond single flash
etc...

15A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Computer science is (also) for creative minds
Not only the hardcore mathematical problems to solve,
but also innovation by unleashing the power of
digital calculus for soft problems:

Human Computer Interactions (HCI), design

Example: computational photography project (2004)
Non-photorealistic camera (NPR)

NPR Camera

16A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Algorithms and their performances
(resource/complexities)
There is usually not a single recipe for solving the task:

Eg., compute 5422x2319
(human decimal, machine binary, indian base 60, many tricks, etc.)

How to evaluate and compare different algorithms?

Clean framework for assessing the use of ressources:
● time,
● memory,
● #communications,
● etc.

Judge the generic algorithms not for a given instance.
Therefore, analyze:
● Worst-case complexity
● Average-time complexity
● Modern challenges (inplace, i/o bottlenecks & streaming, etc.)
● Etc.

Donald Knuth

17A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Programming algorithms in Java
● Conceived by Bill Joy (SUN co-founder) and James Gosling

● Started in 1990, for the ''next wave in computing''

● On-time for the Internet and WEB (applets are Java applications, Javascript, etc.)
Cross-platform= runs on various operating systems (Windows, UNIX, Leopard, etc.)

● Typed language (a=b, with a and b from different types will generate a compiler error)

● Object oriented (OO, ease the conception and modularity of applications)

● Rich set of Applications Programming Interface (API)
● Free Software Development Kit on many platforms (SDK)
● Verbose for catching bugs and debugging applications.

18A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Why programming languages?
Machines are “stupid”: they obey you 100%
-> Need to fully and precisely specify your intentions

(no room for ambiguity, the bug is yours!!!)

... Machines only “understand” 0/1 binary sequences
(eg., instruction codes of microprocessors)

Machine = Processing + Peripherals (I/O)
... controlled by an Operating System (OS)

But Human masters “natural language”
... and we need to unleash ease of programming
ASSEMBLER, FORTRAN, ALGOL, BASIC,JAVA

Key principle of CS: Bootstrapping!
use existing languages to create more powerful languages:
Python, Ruby, etc.

19A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

My first (java) program

Programmers and CScientists cherrish...
... their “Hello World” programs

class FirstProgram{
public static void main (String[] args){

System.out.println("Hello INF311 !");
}

}
First programs often looks magic!

Special function main: entry of the program

20A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

My first (java) program
● Type this program into a text editor (nedit, notepad)
 Save this “text” as FirstProgram.java
● Compile the program FirstProgram.java

 prompt% javac FirstProgram.java
● Execute the compiled program

 prompt% java FirstProgram

 prompt% Hello INF311 !

21A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

My first (java) program

FirstProgram.java

FirstProgram.class

1) EDIT and SAVE

3) EXECUTE

2) COMPILE

(Java Byte code in .class)

java FirstProgram (Java Virtual machine: JVM)
... low-level language
instructions for processors

High-level language
concepts/abstraction

22A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

My first algorithm in Java:
 A solver for quadratic equations

In Java

http://www.java.com/fr/

Input: a, b, c of the quadratic equations
Solution: the at most two real roots

Install the SDK
(you do not have

to do this in room machines)

23A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Programming: Solver for quadratic equations
class QuadraticEquationSolver
{
public static void main(String[] arg)

{
double a,b,c;
a=Math.sqrt(3.0);
b=2.0;
c=-3.0;
double delta=b*b-4.0*a*c;
double root1, root2;

root1= (-b-Math.sqrt(delta))/(2.0*a);
root2= (-b+Math.sqrt(delta))/(2.0*a);
System.out.println(root1);
System.out.println(root2);
System.out.println("Let us check the roots:");
System.out.println(a*root1*root1+b*root1+c);
System.out.println(a*root2*root2+b*root2+c);
}

}

QuadraticEquationSolver.java

24A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

class QuadraticEquationSolver
{
public static void main(String[] arg)

{
double a,b,c;
a=Math.sqrt(3.0);
b=2.0;
c=-3.0;
double delta=b*b-4.0*a*c;
double root1, root2;
root1= (-b-Math.sqrt(delta))/(2.0*a);
root2= (-b+Math.sqrt(delta))/(2.0*a);

System.out.println(root1);
System.out.println(root2);
System.out.println("Let us check the roots:");
System.out.println(a*root1*root1+b*root1+c);
System.out.println(a*root2*root2+b*root2+c);
}

}

Programming simple formula

Variable
(declare)

Assignments

Declare+Assign

25A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

class QuadraticEquationSolver
{
public static void main(String[] arg)

{
double a,b,c;
a=Math.sqrt(3.0);
b=2.0;
c=-3.0;
double delta=b*b-4.0*a*c;
double root1, root2;
root1= (-b-Math.sqrt(delta))/(2.0*a);
root2= (-b+Math.sqrt(delta))/(2.0*a);

System.out.println(root1);
System.out.println(root2);
System.out.println("Let us check the roots:");
System.out.println(a*root1*root1+b*root1+c);
System.out.println(a*root2*root2+b*root2+c);
}

}

Programming simple formula

Arithmetic expressions

Display

26A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Programming: Solver for quadratic equations
Use any text editor to program
(nedit in UNIX, notepad under windows)

Magic code for printing onto the
console

Indentation is up to you
-> helps read programs

27A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

CompilingCompiling and and executingexecuting a Java program a Java program

prompt>javac filename.java

prompt>java filename

If no compile error happens, it produces a file filename.class

Then excute the compiled code.

To store output to a file:
 prompt>java filename > result.txt

Redirect console to filename result.txt

28A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Fundamentals of Java: Variables
● A variable is uniquely named (not a reserved keyword)
● A variable stores a value in a memory slot
● The value of a variable is accessed by its name
● The value of a variable can be modified

A=32
B=16
C=A

Left hand side (reference) and right hand side (value) of = means different things

Memory bank

A

B

C

32

16

32

valuereference

29A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Fundamentals of Java: Expressions

● Formed by variables, operators (+,-,/, x, etc.) and constants (1, Math.PI, etc.)

● Expressions are evaluated and return a result (eventually stored in a variable)

● Operators follow priority rules: 5x3+2 ?
 ...avoid overuse of parenthesis 5x3+2 = (5x3)+2

Few examples of expressions in Java:

// Expressions
5+3*x/y
“Hello “+”INF311!”

// Assignment (expressions) terminate with a ;
x=cx + r*Math.cos(theta);
y=cy+ r*Math.sin(theta);

30A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Fundamentals of Java: Affectation (sign =)

Var = Expression ;

● Var is the name of a variable

● Expression is a well-formed expression

Assignment left hand side=right hand side is decomposed as :
● The Expression is evaluated yielding value v
● The reference (memory slot) of Var is determined
● Value v is stored in the memory slot of Var

lhs = rhs

Reference Value

lhs rhs

Memory bank

Atomic
instruction

31A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Basic typesBasic types
Type = Domain of values of variables

All variables must be typed in JavaAll variables must be typed in Java

Basic types (=basic data structures):
Integers:
byte 8 bits
short 16 bits
int 32 bits [-2**31,2**31-1]
long 64 bits [-2**63,2**63-1]
Reals:
float (single precision, 32 bits)
double (double precision, 64 bits)

char 16 bits (Unicode, world languages)
boolean true or false

32A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Why do we type variables?Why do we type variables?

To ensure homogeneous operations

2 +3 =5
3 +4 =7
5 +2 =???
3 +4 =7

33A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Basic types: Basic types: castingcasting expressions expressions
Euclidean (integer) division versus usual (real) division
int p=2;
int q=3;
int quotient=p/q;
int reminder=p%q; // modulo

double div=p/q;

double realdiv=(double)p/(double)q;

System.out.print(quotient);
System.out.print(“ “);
System.out.println(reminder);
System.out.println(div);
System.out.println(realdiv);

Cast (coercion)

34A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Typing:
Safeguards for basic bugs in programs
Allows one to perform static analysis of programs

CastingCasting expressions expressions
Implicit casting for assignment
x=Expression;

Should be of the same type. Casting: Var=(TypeOfVar)Expression;

double x=2; // implicit casting
double x=(double)2;// explicit
double x=2.0; // same type

35A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Implicit castingImplicit casting

Implicit casting rules

char c='X';
int code=c;
System.out.println(code);

Answers 88 (ASCII code of X)

36A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Fundamentals of Java: Types
● Everything is typed (variables, constants, etc.)
● Require to declare types of variables
● The result of an expression has a type
● Variable and expression should have the same type for assignment

(d=5.0f)

(different types)

ERROR

ERROR

Compiler warns you of implicit casting
(possible loss of precision!)

37A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Recap of simple (formula) programs
Declare variables of basic types: Type var;
double x;
int n,m; //separate with a comma variables
char c;

Assignment: var=Expression;
x=2.71;
n=2008;
c='X';

Arithmetic expression: Expression1 Operator Expression2
m=300%23;
delta=b*b-4*a*c;

Declare+Assign at once (shortcut):
int year2secs=365*24*60*60;

38A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Incrementing/Decrementing
x=x+1;
x=x+step;
// Instructions equivalent to
x+=1;
x+=step;
// Decrement now
x-=3;

i=2;
i++; // equivalent to i=i+1;
++i; // similar, equivalent to i=i+1;

Incrementing is useful for loops

39A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Pre- and post-incremention

i=5;
j=i++; // post-incrementation

ii=5;
jj=++ii; // pre-incrementation

compare...

Var++ returns the value of var and then increment it
++Var first increment var and then return its value

Thus j=5 but jj=6

40A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Chopping Programs (Language)
Syntax of programs

Word

Sentence

Paragraph

Chapter

Book

Library

Reserved keywords
Variables

Instruction I;

Block (of instructions) {I;}

Function

Program

Library (API)

41A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Commenting programs
● Adopt conventions
 Eg., class ClassName stored in file ClassName.java

● Name variables explicitly (so that you can remember them easily)

● Comment programs (single line // or multiple lines /* */)
// Written for INF311
class CommentProgram
{

/* This is a simple Java program that
 illustrates how to comment source code */

 // Entry of the program

 public static void main(String[] args)
 {// it does nothing
 }

}

42A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

A basic skeleton program in Java

Name of your program: Prog.java

Magic formula 2

Magic formula 1

> javac Prog.java
(builds a Prog.class file)

> java Prog
(execute the program)
2008

// Basic skeleton program for INF311

class Prog
{

public static void main(String[] arg)
{
int x=2008;
System.out.println(x);
}

}

43A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Integrated Development Environment (IDE)
An IDE allows one to create, edit, compile and debug seamlessly
applications at the tip of mouse clicks.

(Eg., Jcreator, www.jcreator.com/)
Eclipse

44A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

A Glimpse at Chapter 2:
Block of instructions

45A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Euclid's Greatest Common Divisor (GCD)
Input: Two numbers a,b
Output: Find the greatest common divisors c of a and b
Euclid's original algorithm

History, proof, etc http://en.wikipedia.org/wiki/Euclidean_algorithm

For example, GCD of (30,105):

Mathematical proof:
GCD(30,105)
=GCD(30,75)
=GCD(30,45)
=GCD(30,15)
=GCD(15,15)
=GCD(15,0)

=> GCD(30,105)=15

30=2*5*3
105=7*5*3

46A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Euclid's Greatest Common Divisor (GCD)
Input: Two numbers a,b
Output: Find the greatest common divisors c of a and b
Euclid's original algorithm

History, proof, etc http://en.wikipedia.org/wiki/Euclidean_algorithm

class GCD {
public static void main(String[] arg)
{

// Parse arguments into integer parameters
int a= Integer.parseInt(arg[0]);
int b= Integer.parseInt(arg[1]);
while (a!=b)

{
if (a>b) a=a-b;

else b=b-a;
}

// Display to console
System.out.println(a);

}
}

47A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Euclid's greatest common divisor (GCD)

> javac gcd.java
 (compile in a gcd.class)

> java gcd 234652 3456222 > gcd.txt
 (execute and store result in gcd.txt)

arg[0] arg[1]

48A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Geometric interpretation of Euclid's GCD
Visualize a (65) and b (25) on two axes

a=b=5, Stopping criterion + GCD

49A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Programming is helpful for simulation
Simulation by Monte Carlo methods:

 Eg., approaching PI=3.41592... using simulation

Draw a random point uniformly in a square:
Probability of falling inside a centered unit disk?

Monte-Carlo sampling extremely used
 in graphics and financial economy !!!

How do we get (pseudo-)random numbers in Java?
Call function random() of class Math

Math.random();

50A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Monte-Carlo estimation of PI in Java

Monte-Carlo simulation techniques proved useful in computational sciences

import java.util.*;
class MonteCarloPI
{

public static void main(String [] args)
{

int iter = 10000000; // # iterations
int hits = 0;
for (int i = 0; i < iter; i++)
{

double rX = 2*Math.random() - 1.0;
double rY = 2*Math.random() - 1.0;
double dist = rX*rX + rY*rY;
if (dist <= 1.0) // falls inside the disk

hits++;
}
double ratio = (double)hits/iter; // Ratio of areas
double area = ratio * 4.0;
System.out.println("Estimation of PI: " + area+ " versus

machine PI "+Math.PI);
}

}

51A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Human versus Machine #transistors x2 every 18 months

http://www.kurzweilai.net/articles/art0134.html?printable=1

The Law of Accelerating Returns of Ray Kurzweil

● Machines are dull but extremely fast

● Designing software is difficult
 (as difficult as building an Airbus)

● Artifical intelligence (AI) is a
 key topic in Computer Science

Bug:

● Abnormality of the system

● Not by the faulty machine but by the programmer!

● Small bugs, big consequences!!!
(Ariane 501, Intel's Pentium division bug, etc.)

● Cost 100 billion$/ years (Dept. of Commerce)

52A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Small bugs, big consequences: Numerical errors

If (a<b)
then

Block 1

else

Block 2

Predicate

Expressions
lhs=expression(rhs)

Branching
instruction

Finite precision, roundings of arithmetic operations may cause devastating effects

Wrong evaluation of a predicate
yields a different path of instructions: Bug!

Small numerical errors may not be so
capital here.

53A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

CAPTCHA versus SPAM (Human vs Machine)

Completely Automated Public Turing test to tell Computers and Humans Apart

Image-recognition CAPTCHAs:
Difficult task (OCR, segmentation, etc.)

To fight undesirable bulk spam, we need
to differentiate whether it is the action of
a human or an automated jam program.

(visual) CAPTCHA

54A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Turing test...

Alan Turing, 1912-1954
(41 years old)

Pioneer of modern computer science

Proposed the “universal” Turing machine:
A ribbon, a head, a state and an action table
(automaton)

Turing test: proposal for a test of machine's capability to demonstrate
intelligence. Originally, for natural language conversation (and processing).
Initially, by text-only channel such a teletype machine

DNA, ribosome

Association for computing machinery (ACM)'s Turing Award (250000$)
[Nobel prize in computer science]

55A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

Versatility of Turing tests

The Continuator of F. Pachet (Sony CSL)

www.csl.sony.fr

56A Concise and Practical Introduction to Programming Algorithms in Java © 2009 Frank Nielsen

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56

