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 Contents

● Learn to program with/in Java

● Computing as a science
(some basic principles)

● Popular (computer) science

HCI BMI
MANET
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          Jobs & Jobs & Computer ScienceComputer Science

● Industry
● CS Industry
● Others (information systems)

● Administration

● Research & Development

Not feeling fluent with CS today, is like not being able to drive a car !
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    Digital worldDigital world
 Benefits of the analog-to-digital paradigm shift?

• DissociateDissociate  contentscontents from  from supportsupport : digitize/“binarize”

Contents become mere
 binary 0/1 strings
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    Digital worldDigital world
• Universal player (machine) and dedicated devices

“Multiple 0/1 readers”
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    Digital worldDigital world
• Generic algorithms:
  copying, compressing, transmitting, archiving, etc.

Raise the question: What is the (digital) information?

•Text
•Music
•Image
•Video
•Data
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    Digital world: Why 0/1 bits?Digital world: Why 0/1 bits?

Binary numeral systems: 
Information, first needs of counting...

8

Unary numeral systems:

Logarithmic number of bits for countingLinear number of bits for counting vs

4 bits
for counting

0 to 15
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      Nature of computing?Nature of computing?
•Generic algorithms: 

copying, transmitting... ...genetics...

DNA (double-helix structure of DNA)

1953, James Watson and Francis Crick (Nobel prize)

Genetics
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      Nature of computing?Nature of computing?

First envisioned by Erwin Schroedinger  (What is life?, 1944)

Transmit crystals?

Nobel, Physics 1933

LIFE???
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    Digital world/computingDigital world/computing
Ubiquitous computing= computing everywhere

New features

Digital = Binary + Calculations

Example:
Computational 
photography
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Computer science is not programming PCs

Computers
=

computing machineries

Difference engine of Charles Babbage 
(conceived in 1822 on paper, built much later on)

Computing is a principle of reality (and science)
Watson and Crick 1951 (DNA double helix heredity)

  

Computing is 21st Century's Science of integration
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INFORMATIQUE=INFORmation + autoMATIQUE
Information= Data sets, input (discrete binary sequences of 0/1)
Automatic= General recipe that works on any input 

 = ALGORITHM

Al-Khwarizmi
 (790 - 840) 

Al-Khwarizmi: Scholar of 
       scientifically flourishing Bagdad:

● Algorithmi (latinization) -> Algorithm
● Al jabr -> Algebra
Provide readers a generic pipelinepipeline solution
to solve a quadratic equation:

http://www.akiti.ca/Quad2Deg.html



13A Concise and Practical Introduction to Programming Algorithms in Java  © 2009 Frank Nielsen

2121stst century computer science century computer science
● Computers (and computing) are omnipresent

-> Ubiquitous computing (Mark Weiser)

Computers are abundant and versatile:
1952-1999

Xerox parc chief scientist

● Computing impacted all Sciences: 
      Computational sciences

Eg., Biology -> Systems biology 
(simulation-prediction-experience in wet lab)

● The Science of computing is Computer Science (CS): 
    Deep theoretical questions and important technologies 

 (eg., medical imaging such as DT-MRI, economy)
DW-MRI

(Many more devices than PCs)

Science of
Integration

(complex systems)
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Flavor of my research in computer science
Visual computing:
● Computational geometry,
● Computer vision,
● Computer graphics,
● Machine learning

For example, tackling computational photography
Reinventing the photography: taking, sharing and experiencing photos... Reinventing the photography: taking, sharing and experiencing photos... 

Smile shutterDigital camera
Analog camera

Everything has yet Everything has yet 
to beto be

invented!!!invented!!!
Beyond 2D pixels

Beyond single flash
etc...
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Computer science is  (also) for creative minds
Not only the hardcore mathematical problems to solve, 
but also innovation by unleashing the  power of 
digital calculus for soft problems:

Human Computer Interactions (HCI), design

Example: computational photography project (2004)
Non-photorealistic camera (NPR) 

NPR Camera
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Algorithms and their performances 
(resource/complexities) 
There is usually not a single recipe for solving the task:

Eg., compute 5422x2319
(human decimal, machine binary, indian base 60, many tricks, etc.)

How to evaluate and compare different algorithms?

Clean framework for assessing the use of ressources:
● time, 
● memory, 
● #communications, 
● etc.

Judge the generic algorithms not for a given instance. 
Therefore, analyze:
● Worst-case complexity
● Average-time complexity 
● Modern challenges (inplace, i/o bottlenecks & streaming, etc.)
● Etc.

Donald Knuth
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Programming algorithms in Java
● Conceived  by Bill Joy (SUN co-founder) and James Gosling

● Started in 1990, for the ''next wave in computing''

● On-time for the Internet and WEB (applets are Java applications, Javascript, etc.)
Cross-platform= runs on various operating systems (Windows, UNIX, Leopard, etc.)

● Typed language (a=b, with a and b from different types will generate a compiler error)

● Object oriented (OO, ease the conception and modularity of applications)

● Rich set of Applications Programming Interface (API) 
● Free Software Development Kit on many platforms (SDK)
● Verbose for catching bugs and debugging applications. 
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Why programming languages?
Machines are “stupid”: they obey you 100%
-> Need to fully and precisely specify your intentions

(no room for ambiguity, the bug is yours!!!)

... Machines only “understand” 0/1 binary sequences
(eg., instruction codes of microprocessors)

Machine = Processing + Peripherals (I/O) 
... controlled by an Operating System (OS)

But Human masters  “natural language”
... and we need to unleash ease of programming
ASSEMBLER, FORTRAN, ALGOL, BASIC, .......JAVA

Key principle of CS: Bootstrapping!
use existing languages to create more powerful languages:
Python, Ruby, etc.
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My first (java) program

Programmers and CScientists cherrish...
... their “Hello World” programs

class FirstProgram{
public static void main (String[ ] args){

System.out.println("Hello INF311 !");
}

}
First programs often looks magic! 

Special function main: entry  of the program
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My first (java) program
● Type this program into a text editor (nedit, notepad)
   Save this “text” as FirstProgram.java
● Compile the program FirstProgram.java

  prompt% javac FirstProgram.java
● Execute the compiled program

 prompt% java FirstProgram

 prompt% Hello INF311 !
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My first (java) program

FirstProgram.java

FirstProgram.class

1) EDIT and SAVE

3) EXECUTE

2) COMPILE

(Java Byte code in .class)

java FirstProgram (Java Virtual machine: JVM)
... low-level language
instructions for processors

High-level language
concepts/abstraction
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My first algorithm in Java: 
 A solver for quadratic equations

In Java

http://www.java.com/fr/

Input: a, b, c of the quadratic equations
Solution: the at most two real roots  

Install the SDK
(you do not have

to do this in  room machines)
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Programming: Solver for quadratic equations
class QuadraticEquationSolver
{
public static void main(String[] arg)

{
double a,b,c;
a=Math.sqrt(3.0);
b=2.0;
c=-3.0;
double delta=b*b-4.0*a*c;
double root1, root2;

root1= (-b-Math.sqrt(delta))/(2.0*a);
root2= (-b+Math.sqrt(delta))/(2.0*a);
System.out.println(root1);
System.out.println(root2);
System.out.println("Let us check the roots:");
System.out.println(a*root1*root1+b*root1+c);
System.out.println(a*root2*root2+b*root2+c);
}

}

QuadraticEquationSolver.java
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class QuadraticEquationSolver
{
public static void main(String[] arg)

{
double a,b,c;
a=Math.sqrt(3.0);
b=2.0;
c=-3.0;
double delta=b*b-4.0*a*c;   
double root1, root2;
root1= (-b-Math.sqrt(delta))/(2.0*a);
root2= (-b+Math.sqrt(delta))/(2.0*a);

System.out.println(root1);
System.out.println(root2);
System.out.println("Let us check the roots:");
System.out.println(a*root1*root1+b*root1+c);
System.out.println(a*root2*root2+b*root2+c);
}

}

Programming simple formula

Variable 
(declare)

Assignments

Declare+Assign
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class QuadraticEquationSolver
{
public static void main(String[] arg)

{
double a,b,c;
a=Math.sqrt(3.0);
b=2.0;
c=-3.0;
double delta=b*b-4.0*a*c;   
double root1, root2;
root1= (-b-Math.sqrt(delta))/(2.0*a);
root2= (-b+Math.sqrt(delta))/(2.0*a);

System.out.println(root1);
System.out.println(root2);
System.out.println("Let us check the roots:");
System.out.println(a*root1*root1+b*root1+c);
System.out.println(a*root2*root2+b*root2+c);
}

}

Programming simple formula

Arithmetic expressions

Display
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Programming: Solver for quadratic equations
Use any text editor to program
(nedit in UNIX, notepad under windows)  

Magic code for printing onto the 
console

Indentation is up to you 
-> helps read programs
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CompilingCompiling and  and executingexecuting a Java program a Java program

prompt>javac filename.java

prompt>java filename

If no compile error happens, it produces a file filename.class

Then excute the compiled code.

To store output  to a file: 
 prompt>java filename  > result.txt 

Redirect console to filename result.txt
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Fundamentals of Java: Variables
● A variable is uniquely named (not a reserved keyword) 
● A variable stores a value  in a memory slot 
● The value of a variable is accessed by its name
● The value of a variable can be modified

A=32
B=16
C=A

Left hand side (reference) and right hand side (value) of = means different things

Memory bank

A

B

C

32

16

32

valuereference
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Fundamentals of Java: Expressions

● Formed by variables, operators (+,-,/, x, etc.) and constants (1, Math.PI, etc.)

● Expressions are evaluated and return a result (eventually stored in a variable)

● Operators follow priority rules:  5x3+2 ?
  ...avoid overuse of parenthesis  5x3+2 =  (5x3)+2 

Few examples of expressions in Java:

// Expressions
5+3*x/y 
“Hello “+”INF311!” 

// Assignment (expressions) terminate with a ;
x=cx + r*Math.cos(theta);
y=cy+ r*Math.sin(theta);
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Fundamentals of Java: Affectation (sign =)

Var = Expression ;

● Var is the name of a variable

● Expression is a well-formed expression

Assignment left hand side=right hand side is decomposed as :
● The Expression is evaluated yielding value v
● The reference (memory slot) of Var is determined
● Value v is stored in the memory slot of Var

lhs = rhs

Reference Value

lhs rhs

Memory bank

Atomic
instruction
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Basic typesBasic types
Type = Domain of values of variables

All variables must be typed in JavaAll variables must be typed in Java

Basic types (=basic data structures):
Integers:
byte      8 bits
short   16 bits
int       32 bits        [-2**31,2**31-1]
long    64 bits           [-2**63,2**63-1]
Reals:
float  (single precision, 32 bits)
double (double precision, 64 bits)

char 16 bits (Unicode, world languages)
boolean true or false 
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Why do we type variables?Why do we type variables?

To ensure homogeneous operations

2     +3    =5 
3     +4    =7  
5     +2    =???  
3     +4    =7  
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Basic types: Basic types: castingcasting expressions expressions
Euclidean (integer) division versus usual (real) division
int p=2;
int q=3;
int quotient=p/q;
int reminder=p%q; // modulo 

double div=p/q;

double realdiv=(double)p/(double)q;

System.out.print(quotient);
System.out.print(“ “);
System.out.println(reminder);
System.out.println(div);
System.out.println(realdiv);

Cast (coercion)
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Typing:
Safeguards for basic bugs in programs
Allows one to perform static analysis of programs

CastingCasting expressions expressions
Implicit casting for assignment
x=Expression; 

Should be of the same type. Casting: Var=(TypeOfVar)Expression;

double x=2; // implicit casting
double x=(double)2;// explicit
double x=2.0; // same type
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Implicit castingImplicit casting

Implicit casting rules

char c='X';
int code=c;
System.out.println(code);

Answers 88 (ASCII code of X)
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Fundamentals of Java: Types
● Everything is typed (variables, constants, etc.)
● Require to declare types  of variables
● The result of an expression has a type
● Variable and expression should have the same type for assignment 

(d=5.0f)

(different types)

ERROR

ERROR

Compiler warns you of implicit casting
(possible loss of precision!)
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Recap of simple (formula) programs
Declare variables of basic types: Type var;
double x;
int n,m; //separate with a comma variables
char c;

Assignment: var=Expression;
x=2.71;
n=2008;
c='X';

Arithmetic expression: Expression1 Operator Expression2 
m=300%23;
delta=b*b-4*a*c;

Declare+Assign at once (shortcut):
int year2secs=365*24*60*60;
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Incrementing/Decrementing
x=x+1;
x=x+step;
// Instructions equivalent to
x+=1;
x+=step;
// Decrement now
x-=3;

i=2;
i++; // equivalent to i=i+1;
++i; // similar, equivalent to i=i+1;

Incrementing is useful for loops



39A Concise and Practical Introduction to Programming Algorithms in Java  © 2009 Frank Nielsen

Pre- and post-incremention

i=5;
j=i++; // post-incrementation

ii=5;
jj=++ii; // pre-incrementation

compare...

Var++ returns the value of var and then increment it
++Var first increment var and then return its value

Thus j=5 but jj=6
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Chopping Programs (Language)
Syntax of programs 

Word

Sentence

Paragraph

Chapter

Book

Library

Reserved keywords 
Variables

Instruction I;

Block (of instructions) {I;}

Function 

Program

Library (API)
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Commenting programs
● Adopt conventions 
 Eg., class ClassName  .... stored in file ClassName.java

● Name variables explicitly (so that you can remember them easily)

● Comment programs (single line // or multiple lines /* */)
// Written for INF311
class CommentProgram
{

/* This is a simple Java program that
 illustrates how to comment source code */
 
 
 // Entry of the program
 
 public static void main(String[ ] args)
 {// it does nothing
 }  

}
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A  basic skeleton program in Java

Name of your program: Prog.java

Magic formula 2

Magic formula 1

> javac Prog.java
(builds a Prog.class file)

> java Prog
(execute the program)
2008

// Basic skeleton program for INF311

class Prog
{

public static void main(String[] arg)
{
int x=2008;
System.out.println(x);
}

}
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Integrated Development Environment (IDE)
An IDE allows one to create, edit, compile and debug seamlessly 
applications at the tip of mouse clicks.

(Eg., Jcreator, www.jcreator.com/  )
Eclipse 
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A Glimpse at Chapter 2:
Block of instructions
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Euclid's Greatest Common Divisor (GCD)
Input: Two numbers a,b
Output: Find the greatest common divisors c of a and b
Euclid's original algorithm

History, proof, etc http://en.wikipedia.org/wiki/Euclidean_algorithm

For example, GCD of (30,105):

Mathematical proof:
GCD(30,105)
=GCD(30,75)
=GCD(30,45)
=GCD(30,15)
=GCD(15,15)
=GCD(15,0)

=> GCD(30,105)=15

30=2*5*3
105=7*5*3
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Euclid's Greatest Common Divisor (GCD)
Input: Two numbers a,b
Output: Find the greatest common divisors c of a and b
Euclid's original algorithm

History, proof, etc http://en.wikipedia.org/wiki/Euclidean_algorithm

class GCD {
public static void main(String[] arg)
{

// Parse arguments into integer parameters
int a= Integer.parseInt(arg[0]);
int b= Integer.parseInt(arg[1]);
while (a!=b)

{
if (a>b) a=a-b; 

else b=b-a;
}

// Display to console
System.out.println(a);

}
}
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Euclid's greatest common divisor (GCD)

> javac  gcd.java                    
   (compile in a gcd.class)

> java gcd 234652 3456222   > gcd.txt             
 (execute and store result in gcd.txt)

arg[0] arg[1]
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Geometric interpretation of Euclid's GCD 
Visualize a (65) and b (25) on two axes

a=b=5, Stopping criterion + GCD
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Programming is helpful for simulation
Simulation by Monte Carlo methods:

 Eg., approaching PI=3.41592... using simulation

Draw a random point uniformly in a  square:
Probability of falling inside a centered unit disk?

Monte-Carlo sampling extremely used
 in graphics and financial economy !!!

How do we get (pseudo-)random numbers in Java?
Call function random() of class Math

Math.random();
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Monte-Carlo estimation of PI in Java

Monte-Carlo simulation techniques proved useful in computational sciences

import java.util.*;
class MonteCarloPI
{

public static void main(String [] args)
{

int iter = 10000000; // # iterations
int hits = 0;
for (int i = 0; i < iter; i++)
{

double rX = 2*Math.random() - 1.0; 
double rY = 2*Math.random() - 1.0; 
double dist = rX*rX + rY*rY;  
if (dist <= 1.0) //  falls inside the disk

hits++;
}
double ratio = (double)hits/iter; // Ratio of areas
double area = ratio * 4.0; 
System.out.println("Estimation of PI: " + area+ " versus 

machine PI "+Math.PI);
}

}
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Human versus Machine #transistors x2 every 18 months

http://www.kurzweilai.net/articles/art0134.html?printable=1

The Law of Accelerating Returns of Ray Kurzweil 

● Machines are dull but extremely fast

● Designing software is difficult
   (as difficult as building an Airbus)

● Artifical intelligence (AI) is a 
     key topic in  Computer Science

Bug:

● Abnormality of the system

● Not by the faulty machine but by the programmer!

● Small bugs, big consequences!!!
(Ariane 501, Intel's Pentium division bug, etc.)

● Cost 100 billion$/ years (Dept. of Commerce)
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Small bugs, big consequences:  Numerical errors

If (a<b)
then

Block 1

else

Block 2

Predicate

Expressions
lhs=expression(rhs)

Branching
instruction

Finite precision, roundings of arithmetic operations may cause devastating effects

Wrong evaluation of a predicate
yields a different path of instructions: Bug!

Small numerical errors may not be so
capital here.
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CAPTCHA versus SPAM  (Human vs Machine)

Completely Automated Public Turing test to tell Computers and Humans Apart

Image-recognition CAPTCHAs:
Difficult task (OCR, segmentation, etc.)

To fight undesirable bulk spam, we need
to differentiate whether it is the action of
a human or an automated jam program.

(visual) CAPTCHA
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Turing test...

Alan Turing, 1912-1954 
(41 years old) 

Pioneer of modern computer science

Proposed the “universal” Turing machine:
A ribbon, a head, a state and an action table
(automaton)

Turing test: proposal for a test of machine's capability to demonstrate 
intelligence. Originally, for natural language conversation (and processing).
Initially, by text-only channel such a teletype machine

DNA, ribosome

Association for computing machinery (ACM)'s Turing Award  (250000$)
[Nobel prize in computer science]
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Versatility of Turing tests

The Continuator of F. Pachet (Sony CSL)

www.csl.sony.fr
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