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Abstract—We present a generic dynamic programming method
to compute the optimal clustering of n scalar elements into
k pairwise disjoint intervals. This case includes 1D Euclidean
k-means, k-medoids, k-medians, k-centers, etc. We extend the
method to incorporate cluster size constraints and show how to
choose the appropriate k by model selection. Finally, we illustrate
and refine the method on two case studies: Bregman clustering
and statistical mixture learning maximizing the complete likeli-
hood.

Index Terms—Clustering, dynamic programming, k-means,
Bregman divergences, statistical mixtures, exponential families.

I. INTRODUCTION

Clustering is a fundamental and key primitive to discover
structural groups of homogeneous data, called clusters, in data
sets. The most famous clustering technique is the celebrated
k-means [1] that seeks to minimize the sum of intra-cluster
variances by prescribing beforehand the number of clusters,
k. On one hand, solving the k-means problem is NP-hard [2]
when the dimension d > 1 and k > 1 and various heuristics
locally optimizing the k-means objective function like Lloyd’s
batched k-means [1] have been proposed. When d > 1
and k > 1, NP-hardness also holds for other clustering
problems like k-medoids, k-medians and k-centers [3]. On the
other hand, it is well-known that those center-based clustering
problems are fully characterized when k = 1: For example,
the centroid [1] is the solution of the 1-mean, the Fermat-
Weber point [3] the solution of the geometric 1-median, the
circumcenter [3] the solution of the 1-center, etc. Surprisingly,
it is less known that k-means can be solved exactly in 1D by
using dynamic programming [4], [5] (DP).

In this letter, we first revisit and extend the seminal dynamic
programming (DP) paradigm [4] for optimally clustering n
1D elements into k pairwise disjoint intervals, the clusters.
We term clustering with this property: The 1D contiguous
or interval clustering problem. We further show how to
incorporate constraints on the minimum and the maximum
cluster sizes, and perform model selection (i.e., choosing the
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Guyane - CEREGMIA, Campus de Schoelcher, 97233 Schoelcher, France.

appropriate k) from the DP table. The generic DP solver
requires either O(n2kT1(n)) time using O(nk) memory or
O(n2T1(n)) time using O(n2) memory, where T1(n) is the
time requires for solving the corresponding 1-cluster problem.
Second, we consider two applications that refine the generic
DP method: In the first application, we report a O(n2k)-
time optimal Bregman k-means relying on 1D Summed Area
Tables [6] (SATs) and also consider the Bregman `r-clustering
problems [8]. In the second application, we consider learning
statistical mixture models from independently and identically
(iid.) univariate observations by maximizing the complete
likelihood: Using the one-to-one mapping between Bregman
divergences and exponential families [1], we transform this
problem into a series of equivalent 1D Bregman k-means
clustering that can be solved optimally by DP for statistical
mixtures of singly-parametric exponential families (like zero-
centered Gaussians, Rayleigh or Poisson families). In the
general case, we require that the density graphs intersect
pairwise in at most a single point like the Cauchy or Laplacian
location families (not belonging to the exponential families)
to guarantee optimality.

II. 1D CONTIGUOUS CLUSTERING: INTERVAL CLUSTERING

Let X be a one-dimensional space totally ordered with
respect to < (usually, X = R), and X = {x1, ..., xn} ⊂ X a set
of n distinct elements. A clustering of X into k ∈ N clusters
partitions X into pairwise disjoint subsets C1 ⊂ X , ..., Ck ⊂ X
so that X =

⊎k
i=1 Ci. Let us preliminary sort X in O(n log n)

time, so that we assume x1 < ... < xn in the remainder.
The output of a 1D contiguous clustering is a collection of

k intervals Ii = [xli , xri ] (such that Ci = Ii ∩ X ) that can
be encoded using k − 1 delimiters li (i ∈ {2, ..., k}) since
ri = li+1 − 1 (i < k and rk = n) and l1 = 1:

[x1...xl2−1]︸ ︷︷ ︸
C1

[xl2 ...xl3−1]︸ ︷︷ ︸
C2

... [xlk ...xn]︸ ︷︷ ︸
Ck

(1)

To define an optimal clustering among the potential
(
n−1
k−1
)

contiguous partitions, we ask to minimize a clustering objec-
tive function or energy function:
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Fig. 1. The optimal 1D contiguous clustering is found by dynamic program-
ming by observing that an optimal clustering with k clusters is necessarily
found from an optimal clustering with (k − 1) clusters (see text and Eq. 3).

min
l1=1<l2<...<lk

ek(X ) =

k⊕
i=1

e1(Ci), (2)

where e1 denotes the intra-cluster cost and ⊕ is a commutative
and associative operator for calculating the inter-cluster cost.
This framework includes the k-means and the k-medians
(
⊕

=
∑

), and the k-center [3] (
⊕

= max) criteria (and
their discrete counterparts: k-medoids, etc.) among others.

A. Solving 1D contiguous clustering using DP

Recall that after sorting, we have x1 < ... < xn. Let
Xj,i = {xj , ..., xi} (j ≤ i) and Xi = X1,i = {x1, ..., xi}.
We define a n× k cost matrix E = [ei,j ] that stores at entry
(i,m) the optimal clustering cost ei,m = em(Xi), where em is
defined using Eq. 2. Similarly, we define a matrix S = [si,j ]
of dimension n × k that stores at position (i,m) the index j
of the leftmost point in the m-th cluster in Xi. Therefore the
global clustering solution shall be found at entry (n, k) with
cost en,k = ek(X ).

To define the optimality equation of dynamic programming,
we observe that the optimal solution for a 1D contiguous
clustering with m clusters can be defined from the solution of
an optimal clustering with (m− 1) clusters: Indeed, consider
the last cluster interval with left position index lm, say lm = j,
as depicted in Figure 1. Then the clustering of the (m − 1)
first clusters should be an optimal clustering too: namely, the
optimal 1D contiguous clustering with (m − 1) clusters on
subset Xj−1. It follows the following recurrence equation:

ei,m = min
m≤j≤i

{ej−1,m−1 ⊕ e1(Xj,i)} , (3)

with ei,1 = e1(Xi) (note that em,m =
⊕m

l=1 e1({xl}) for 1 ≤
m ≤ k). We store the argmin of Eq. 3 in matrix S at position
(i,m) (entry si,m). We compute the energy matrix E from left
to right columns, and from bottom to top lines. This yields
a O(n2kT1(n))-time DP algorithm using O(n × k) memory,
where T1(n) denotes the time required for computing e1(X ):
Indeed, each of the n × k entries of E requires O(nT1(n))
time to evaluate Eq. 3.

To recover the optimal clustering, we backtrack the solution
in O(k) time from the S matrix storing the left indexes of the
last cluster of the best solutions: That is, the left index lk of
the k-th cluster is stored at sn,k: lk = sn,k. The cardinality of
Ck is nk = |Ck| = n− lk + 1. Then we iteratively retrieve the
previous left interval indexes at entries lj−1 = slj−1,j−1 for
j = k − 1, ..., j = 1 with nj = |Cj | = rj − lj + 1 = lj+1 − lj
since rj = lj+1 − 1. Note that lj − 1 = n−∑k

l=j nl denotes

the remaining number of elements to cluster using (j − 1)
clusters (thus we also have lj − 1 =

∑j−1
l=1 nl).

Note that when the clustering does not satisfy the 1D
contiguous partition property, DP yields anyway a solution that
may not be optimal. Furthermore, we may consider adding a
weight wi > 0 to each element xi ∈ X (and thus assume the
xi’s are all distinct).

B. Time versus memory optimization

By precomputing all the potential intra-cluster costs e1(Xj,i)
in O(n2T1(n)) time using an auxiliary matrix E1 of size n×n,
we evaluate Eq. 3 as ei,m = minm≤j≤i{ej−1,m−1⊕E1[j, i]},
i.e. in O(i − m) = O(n) time. Matrix E1 plays the role of
a Look Up Table (LUT), and the time complexity for the DP
solver reduces to O(n2k) once the LUT matrix E1 has been
computed.

Lemma 1: The generic 1D contiguous clustering can
be solved optimally using dynamic programming in time
O(n2kT1(n)) using O(n×k) memory, or in time O(n2T1(n))
time using O(n2) memory.
Note that T1 = Ω(n) (in fact, usually, T1(n) = Θ(n)).
In Section III, we will further improve the running time to
O(n2k) using O(nk) memory when considering Bregman k-
means.

C. Adding cluster size constraints

Let us add constraints on the sizes of clusters. Let n−i and
n+i denote lower and upper bound constraints on the size of
the i-th cluster ni = |Ci|, with

∑k
l=1 = n−i ≤ n and

∑k
l=1 =

n+i ≥ n. When no constraints are required, we simply add the
dummy constraints n−i = 1 and n+i = n− k + 1 (all clusters
non-empty). In Eq. 3, j range from m to i. The m-th cluster
size nm = |Cm| = i − j + 1 has to satisfy n−m ≤ nm ≤ n+m.
That is, j ≤ i + 1 − n−m and j ≥ i + 1 − n+m. Clearly, j has
also to be greater than 1 +

∑m−1
l=1 n−l (an optimal solution for

the constrained optimal (m − 1)-clustering). It follows, that
the optimality equation writes as:

ei,m = min
max{1+

∑m−1
l=1 n−l ,i+1−n+

m}≤j
j≤i+1−n−m

{ej−1,m−1 ⊕ e1(Xj,i)} ,

(4)
For example, a balanced clustering may be obtained by

setting n−i = b nλk c and n+i = dλnk e for some λ ∈ N.

D. Choosing the appropriate k: Model selection

The task of clustering data set X asks also to find the
appropriate number of clusters [7]: k. Clearly, the more
clusters we allow and the less costly the objective function
ek(X ) is, but the more complex the clustering model to
encode. Observe that function m(k) = ek(X )

e1(X ) is monotonically
decreasing with k and reaches a minimum when k = n
(e.g., 0 for the Euclidean k-means) as depicted in Figure 2
(see IV for an explanation of the data-set). Thus we have to
perform some kind of model selection [7] by choosing the best
model among all potential models (with number of clusters
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Fig. 2. Plot of function m(k) = ek(X )/e1(X ) for the optimal k-means for
k ∈ [1, 15].

ranging from 1 to n). The canonical regularized objective
clustering cost [7] is e′k(X ) = ek(X ) + f(k) where f(k)
is the cost function of choosing a model with k clusters. We
can compute the best model minimizing e′k(X ) by computing
for the DP table entries for the last matrix row of E (indexed
by n, with columns k ranging from 1 to n) the regularized
cost. To compute the last row, we iteratively solve DP for
k = n, n − 1, ..., 1 and avoid redundant computations by
checking whether entry E[i, j] has already been computed or
not. We then choose k = argming∈{1,...,k}e

′
g(X ) by scanning

the last row with column ranging from k = 1 to k = n.

E. A Voronoi condition for optimal center-based clustering

Center-based clustering methods like k-means, k-medians or
k-centers store for each cluster Cj a prototype pj , the cluster
center. For discrete center-based clustering, the prototypes pj’s
are required to belong to the respective Cj’s. The `r center-
based clustering objective function asks to minimize:

n∑
i=1

wi
k

min
j=1

dr(xi, pj) =

k∑
j=1

∑
xl∈Cj

wld
r(xl, pj), (5)

where d(·, ·) is a dissimilarity measure function (not nec-
essarily a distance). We do not take the 1

r power of the
sum since it changes the value of e1 but not the argmin
(prototype). Note that in 1D, `s-norm distance is always
ds(p, q) = |p − q|, independent of s ≥ 1. Thus the
intra-cluster cost e1(Cj) of a `r center-based clustering has
to solve the following minimization problem: e1(Cj) =
minpj

∑
xl∈Cj wld

r(xl, pj) and retrieve the j-th cluster pro-
totype by pj = argminpj

∑
xl∈Cj wld

r(xl, pj).
In order for DP to return the optimal clustering, we need to

assume that we have the 1D contiguous clustering property.
For Euclidean k-means, this was proved in [9]. In general,
consider the Voronoi cell of prototype pj of Cj :
V (pj) = {x ∈ X : dr(x, pj) ≤ dr(x, pl) ∀l ∈ {1, ..., k}}.

(6)
Since xr is a monotonically increasing function on R+, it is
equivalent to V ′(pj) = {x ∈ X : d(x : pj) < d(x : pl)}.
A sufficient condition is to prove that for all potential choices
of the k cluster prototypes P = {p1, ..., pk} the induced 1D
dissimilarity Voronoi diagram is made of connected Voronoi
cells. A 2-clustering displays the Voronoi bisector. We now

consider two case studies to illustrate and refine the DP
method.

III. OPTIMAL 1D BREGMAN CLUSTERING

The `r-norm Bregman center [8] is defined for d(p, q) =
BF (p : q), where BF (p : q) is a univariate Bregman
divergence [1]:

BF (p : q) = F (p)− F (q) + (p− q)F ′(q), (7)

induced by a strictly convex and differentiable function F .
When F (x) = x2, we recover the squared Euclidean distance.
Bregman divergences are not metric [10], since they violate the
triangular inequality and are asymmetric except when F (x) =
λx2 for λ > 0.

For Bregman k-means, the Bregman information [1] of a
cluster generalizes the notion of cluster variance. It is the intra-
cluster sum of Bregman divergences (Bregman k-means, for
r = 1):

e1(Cj) = min
pj

∑
xl∈Cj

wlBF (xl : pj). (8)

The cluster prototype [1] is pj = 1∑
xl∈Cj

wl

∑
xl∈Cj wlxl

and the Bregman information is [11]: e1(Cj) =(∑
xl∈Cj wl

)
(pjF

′(pj) − F (pj)) +
(∑

xl∈Cj wlF (xl)
)
−

F ′(pj)
(∑

x∈Cj wlx
)

. Observe that the Bregman information
relies on three sums

∑
xl∈Cj wl,

∑
x∈Cj wlx and∑

xl∈Cj wlF (xl) that can be preprocessed using Summed
Area Tables [6] (SATs) since Cj is a contiguous cluster. That
is, by computing all the cumulative sums S1(j) =

∑j
l=1 wl,

S2(j) =
∑j
l=1 wlxl, and S3(j) =

∑j
l=1 wlF (xl) in O(n)

time at preprocessing stage, we can evaluate the Bregman
information e1(Xj,i) in constant time O(1). For example,∑i
l=j wlF (xl) = S3(i) − S3(j − 1) with the convention that

S3(0) = 0.
The Voronoi cells of prototypes are defined by V ′(pj) =

{x ∈ X : BF (x : pj) < BF (x : pl)}. Since Bregman
Voronoi diagrams have connected cells [10], it follows that
the 1D hard `r Bregman clustering satisfies the contiguous
interval property, and therefore DP yields the optimal solution.
A similar argument directly hold for the Bregman k-center that
is also the limit case of `r Bregman clustering when p→∞.

Lemma 2: The 1D `r Bregman clustering and Bregman
k-center can be solved exactly using dynamic programming
in O(n2kT1(n)) time using O(n × k) memory, where T1(n)
denotes the time to solve the case k = 1 for n elements. The
optimal Bregman k-means can be solved in O(n2k) time.

IV. MIXTURE LEARNING BY HARD CLUSTERING

Statistical mixtures are semi-parametric probability models
often met in practice. Consider a finite statistical mixture M
with k ∈ N components. The probability measure m of M
with respect to a dominating measure ν (usually the Lebesgue
or counting measure) can be written as:

m(x; Ω) =

k∑
i=1

αip(x; Θi), x ∈ X, (9)
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with α = (α1, ..., αk) ∈ ∆k−1 a normalized positive weight
vector belonging to the (k − 1)-dimensional probability sim-
plex, Θ = (Θ1, ...,Θk), Ω = (α,Θ) and X the support of
the distribution. Let D = dim(Θi) ∈ N denote the number
of scalar parameters indexing the probability family F =
{p(x; Θ) : Θ ∈ Θ}, called the order. Mixture m is defined by
a vector Ω ∈ Ω ⊆ Rg with g = k(D+1)−1, and Θ is called
the parameter space. Mixtures are inferred from data usually
using the Expectation-Maximization algorithm [1]. Since EM
locally maximizes the incomplete likelihood [1] and is often
trapped into a local maximum, we need some proper mixture
parameter initialization or several guided restarts to hopefully
reach the optimal solution. On the other hand, maximizing
the complete log-likelihood lc for a iid. observation data-set
X amounts to maximize [12]:

lc(X ;L,Ω) =

n∑
i=1

log(αlip(xi; θli)), (10)

where L = {li}i denotes the hidden labels of the xi’s.
Thus maximizing the complete likelihood is equivalent to
minimizing the following objective function:

max lc ≡ min
θ1,...,θk

n∑
i=1

k
min
j=1

(− log p(xi; θj)− logαj). (11)

This is a hard clustering problem for the dissimilarity function
d(x, (α, θ)) = − log p(x; θ)−logα (given fixed α). As proved
in [12], the cluster weights αj’s are then updated as the cluster
proportion of observations, and the algorithm reiterates by
solving Eq. 11. Initially, we choose α = 1

k (1, ..., 1).
Let the additively-weighted minus log-likelihood Voronoi

cell be defined by V (pj) = {x ∈ X : −log p(x; θj)−logαj ≤
− log p(x; θl)− logαl}. In order for DP to return the optimal
solution, we need to assert the contiguity property. Using the
one-to-one mapping between exponential families [13], [14]
and Bregman divergences [1], it turns out that the optimization
problem of Eq. 11 yields an equivalent additively-weighted
Bregman k-means problem (and additively-weighted Bregman
Voronoi cells are connected [10]). Thus when the order of the
exponential family is D = 1, we have the contiguity property
and DP returns the optimal solution. This works also for
curved exponential families with one free parameter like the
family of Gaussian distributions F = {N(µ, µ2) : µ ∈ R}.
In general, the contiguity property holds when density graphs
in F are pairwise intersecting at exactly one point of the
support X. For example, some (unimodal) location families
with density F = {f(x;µ) = 1

σf0(x−µσ ), µ ∈ R} for a
prescribed value of σ > 0 and a standard density f0(x) (e.g.,
isotropic gaussian densities N(µ1, σ) and N(µ2, σ) intersect
at x = µ1+µ2

2 ). This includes location Cauchy distributions
and location Laplacian distributions (both not belonging to the
exponential families [13]) among others. Note that 1-order ex-
ponential families may have pairwise densities intersecting in
more than one point (like the family F = {N(0, σ), σ ∈ R+})
but after reparameterization by their sufficient statistic [13]
yi = t(xi), data-set Y = {yi}i satisfies the contiguous
property.

Consider fitting a Gaussian Mixture Model (GMM) on the
intensity histogram of the renown lena color image. For each
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Fig. 3. 1D GMMs with k = 10 components maximizing the complete data
likelihood of the intensity histogram of lena image: gmm1 retrieved from an
optimal Euclidean k-means, and gmm2 allowing different standard deviations.
The average complete data log-likelihood of gmm1 is −3.075 and that of
gmm2 is −3.039 (better than the one for gmm1).

pixel, we compute its grey value and add a small perturbation
noise to ensure that we get distinct xi’s (alternatively, without
adding noise, we set the weight wi of xi as the proportion
of pixels having grey value xi). We then compute the optimal
Euclidean 1D k-means for k = 10 (it corresponds to fitting
a 1D GMM gmm1 with Gaussian components having identi-
cal1 standard deviation), and calculate the 1D GMM gmm2

allowing different standard deviations. In that case, we do
not have the contiguous clustering property (densities pairwise
intersect in two points) and DP may not yield the optimal
clustering (give prescribed weights). However, in this case, we
experimentally obtained a better GMM. The results are illus-
trated in Figure 3. For model selection in mixtures, to choose
the optimal k, we use the Akaike Information Criterion [15]
(AIC): AIC(x1, ..., xn) = −2l(x1, ..., xn) + 2k + 2k(k+1)

n−k−1 .
Other criteria like the Bayesian Information Criterion (BIC),
Minimum Description Length (MDL), etc can also be used.

V. CONCLUSION

We first described a clustering algorithm based on dynamic
programming (whose seminal idea was briefly outlined in
Bellman’s 2-page paper [4] in 1973) that computes the generic
optimal 1D contiguous clustering either in O(n2kT1(n))-time
using O(nk) memory, or in O(n2T1(n)) time using O(n2)
memory, where T1(n) denotes the time required for solving
the case k = 1 on n scalar elements. We then extended the
method to incorporate cluster size constraints and show how
to perform model selection from the DP table. This algorithm
solves optimally and generically 1D k-means, k-median and k-
center among others. Second, we reported two tailored center-
based clustering applications of the optimal 1D contiguous
clustering: (1) Bregman k-means and k-centers clustering,
and (2) learning statistical mixtures maximizing the complete
likelihood provided that (a) their densities belong to a 1-
order exponential family or (b) their density graphs pairwise
intersect in one point. For Bregman k-means, we showed how
to use Summed Area Tables (SATs) to further speed the DP
solver in O(n2k)-time using O(nk) memory.

1Once we get the optimal Euclidean cluster decomposition, we fit in each
cluster its maximum likelihood estimator (MLE) mean and standard deviation
from the cluster data, and set α as the relative proportion of points.



5

REFERENCES

[1] A. Banerjee, S. Merugu, I. S. Dhillon, and J. Ghosh, “Clustering with
Bregman divergences,” Journal of Machine Learning Research, vol. 6,
pp. 1705–1749, 2005.

[2] S. Dasgupta, “The hardness of k-means clustering,” technical report CS-
2008-0916, University of California, San Diego, USA.

[3] N. Megiddo and K. J. Supowit, “On the complexity of some common
geometric location problems,” SIAM Journal on Computing, vol. 13,
no. 1, pp. 182–196, 1984.

[4] R. Bellman, “A note on cluster analysis and dynamic programming,”
Mathematical Biosciences, vol. 18, no. 3-4, pp. 311 – 312, 1973.

[5] H. Wang and M. Song, “Ckmeans.1d.dp: Optimal k-means clustering
in one dimension by dynamic programming,” R Journal, vol. 3, no. 2,
2011.

[6] F. C. Crow, “Summed-area tables for texture mapping,” in Proc. Confer-
ence on Computer Graphics and Interactive Techniques (SIGGRAPH),
New York, NY, USA: ACM, 1984, pp. 207–212.

[7] D. Pelleg and A. Moore, “X-means: Extending K-means with efficient
estimation of the number of clusters,” in Proc. International Conf. on
Machine Learning. Morgan Kaufmann, 2000, pp. 727–734.

[8] M. Liu, B. C. Vemuri, S. i. Amari, and F. Nielsen, “Shape retrieval using
hierarchical total Bregman soft clustering,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 12, pp. 2407–2419, 2012.

[9] W. D. Fisher, “On grouping for maximum homogeneity,” Journal of the
American Statistical Association, vol. 53, no. 284, pp. 789–798, 1958.

[10] J.-D. Boissonnat, F. Nielsen, and R. Nock, “Bregman Voronoi dia-
grams,” Discrete Computational Geometry, vol. 44, no. 2, pp. 281–307,
Sep. 2010.

[11] F. Nielsen and R. Nock, “Sided and symmetrized Bregman centroids,”
IEEE Transactions on Information Theory, vol. 55, no. 6, pp. 2882–
2904, 2009.

[12] F. Nielsen, “k-MLE: A fast algorithm for learning statistical mixture
models,” CoRR, vol. abs/1203.5181, 2012.

[13] L. D. Brown, Fundamentals of statistical exponential families: with
applications in statistical decision theory. Hayworth, CA, USA:
Institute of Mathematical Statistics, 1986.

[14] F. Nielsen and V. Garcia, “Statistical exponential families: A digest with
flash cards,” 2009, arXiv.org:0911.4863.

[15] J. Cavanaugh, “Unifying the derivations for the Akaike and corrected
Akaike information criteria,” Statistics & Probability Letters, vol. 33,
no. 2, pp. 201–208, Apr. 1997.


