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ABSTRACT

We study the classification with respect to the class of curved
Mahalanobis metrics that extend the celebrated flat Maha-
lanobis distances to constant curvature spaces. We prove that
these curved Mahalanobis k-NN classifiers define piecewise
linear decision boundaries, and report the performance of
learning those metrics within the framework of the Large
Margin Nearest Neighbor (LMNN). Finally, we show experi-
mentally that a mixture of curved Mahalanobis metrics define
a composite metric distance that improves the classification
performance.

Index Terms— Classification, Mahalanobis distance,
metric learning, Large Margin Nearest Neighbor (LMNN),
Cayley-Klein geometry

1. INTRODUCTION AND CONTRIBUTION

1.1. Introduction

In supervised classification [1, 2] , one of the simplest clas-
sifiersM is the k-NN classifier that classes an unlabeled ob-
servation x by taking the majority of the labels of the k near-
est neighbors (NN) of x in T = {(xi, yi) : i ∈ [n]} with
xi ∈ Rd, yi ∈ {−1, 1} (with [n] = {1, ..., n}). To avoid ties
in binary classification, k is chosen odd. The notion of “near-
est” neighbor depends on the chosen distance functionD(·, ·).
This distance is often chosen to be the Euclidean distance:
D(p, q) =

√∑d
i=1(p(i) − q(i))2 = ‖p− q‖ where ‖ · ‖ is the

L2 norm induced by the Euclidean inner product 〈p, q〉 = p>q
(commonly called scalar or dot product in Euclidean geome-
try): ‖x‖ =

√
〈x, x〉. Learning an appropriate distance from

the training set allows one to improve the performance of the
k-NN classifier over the ordinary Euclidean distance. A well-
known generalization of the Euclidean distance is the Ma-
halanobis distance DΣ(p, q) =

√
(p− q)>Σ(p− q), where

Σ � 0 is a symmetric d × d positive definite matrix. The
Euclidean distance is a Mahalanobis distance obtained for the
identity matrix I . The Mahalanobis distance is a metric dis-
tance that satisfies the three axioms of metrics: (i) reflexiv-
ity: DΣ(p, q) = 0 ⇔ p = q, (ii) symmetry: DΣ(p, q) =
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DΣ(q, p), and (iii) triangle inequality: DΣ(p, q)+DΣ(q, r) ≥
DΣ(p, r). To learn an appropriate Mahalanobis distance (i.e.,
Σ � 0), various algorithms relying on side information have
been proposed: For example, the Mahalanobis Metric Clus-
tering [3] (MMC) for clustering and the Large Margin Near-
est neighbor [4] (LMNN) for classification. In image retrieval
systems by image query, the Mahalanobis k-NN classifier on
image features allows one to return a ranked list of similar im-
ages to the query [5]. Notice that since the k nearest neighbors
of a query point do not change by considering any monotoni-
cally increasing function of the selected distance (like a squar-
ing operation), we may consider equivalently the squared Ma-
halanobis distance D2

Σ(p, q) (but doing so we loose the trian-
gle inequality property, and it is not anymore a metric).

By generalizing the Mahalanobis distance one may fur-
ther hope to improve the performance of the Mahalanobis
k-NN classifier. It turns out that the squared Mahalanobis
distance is a particular case of a larger family of distor-
tion measures, called Bregman divergence [6] BF (p, q) de-
fined for a strictly convex and differentiable generator F by
BF (p, q) = F (p)− F (q)− 〈p− q,∇F (q)〉. For the genera-
tor FΣ(x) = x>Σx, we get BF (p, q) = D2

Σ(p, q). However
the cone space of such convex and differentiable functions is
infinite-dimensional, and it is challenging to design methods
for learning appropriate Bregman generators.

In [5] (2015), a neat generalization of Mahalanobis dis-
tances has been proposed, called generalized hyperbolic and
generalized elliptical Mahalanobis distances, and the classifi-
cation using the generalized elliptical Mahalanobis distances
have been proven superior compared to “Euclidean” Maha-
lanobis distances.

1.2. Contributions and outline

In this work, we refine and extend the framework of [5]. We
summarize our contributions as follows: (i) We prove that
curved Mahalanobis k-NN classifiers are always piecewise
linear. (ii) We describe how to perform negatively-curved
Mahalanobis metric learning using LMNN [4], extending the
approach in [5] that considered only positively-curved Maha-
lanobis setting. (iii) We consider learning a mixture of curved
Mahalanobis distances that induces a Riemmanian geometry
that is not anymore of constant curvature, and show experi-
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Fig. 1. Measuring length distances in Cayley-Klein geome-
tries: L(p, q) ∝ log(p, q;P,Q), where (p, q;P,Q) denotes
the cross-ratio of 4 collinear points.

mentally that this mixed distance improves over the curved
Mahalanobis distances for the classification task. Besides, we
also show that curved Mahalanobis balls are equivalent to Eu-
clidean Mahalanobis balls with shifted centers (and ellipsoid
shapes) and report corresponding radii values.

The paper is organized as follows: Section 2 introduces
the basic notions of Cayley-Klein geometries and explains
the two hyperbolic/elliptical metric Cayley-Klein geome-
tries that induce the negatively-curved and positively-curved
Mahalanobis distances. Section 3 proves that the decision
boundaries of k-NN for the curved Mahalanobis metric
distances are piecewise-linear. Section 4 reports the basic
mapping transformations to transform any curved/flat Maha-
lanobis space into an equivalent canonical space of curvature
κ ∈ −1, 0,+1. Section 5 presents the curved Mahalanobis
Large Margin Nearest Neighbor algorithm, further considers
a mixture of curved with flat Mahalanobis distances, and
report experimentally on the performances.

2. CURVED MAHALANOBIS GEOMETRIES

To define the curved Mahalanobis metric distances, we
introduce their underlying Cayley-Klein geometries [7].
In brief, Cayley-Klein geometries unify the metric Eu-
clidean/elliptical/hyperbolic geometries with other space-
time geometries (Minkowskian, Galilean, de Sitter, etc.)
from the viewpoint of projective geometry [7]. In a Cayley-
Klein geometry [7], the signed length L(p, q) between two
points is defined according to a fundamental conic [7] C and
a prescribed constant c ∈ C as L(p, q) = c log(p, q;P,Q) =
c log pP×qQ

qP×pQ , where P and Q are the two intersection points
of the line l passing through p and q with C (Figure 1).
The length measurements are signed: L(q, p) = −L(p, q)
(checked from the property of the cross ratio (p, q;P,Q) =
1/(q, p;P,Q)), and furthermoreL(p, p) = 0 since (p, p, P,Q) =
0 (reflexivity). For three collinear points p, q and r we have
L(p, q) + L(q, r) = L(p, r). The proof follows easily from
the properties of the cross-ratio: (p, q;x, y)(q, r;x, y) =
(p, r;x, y) (taking the logarithm yields the additive property).
Let D(p, q) = |L(p, q)|, then the distance D(·, ·) satisfies the
reflexivity/symmetry/triangle inequality axioms of a metric.

To define the Cayley-Klein distance without the intersect-
ing points P and Q on the conic C, let S be an invertible sym-
metric real-valued matrix of dimension (d+ 1)× (d+ 1), and

Fig. 2. Riemannian metric tensors induced by the flat Eu-
clidean Mahalanobis distance (blue, constant), the negatively-
curved hyperbolic Mahalanobis distance (green), and the
positively-curved elliptical Mahalanobis distance (red).

consider the symmetric bilinear map (not necessarily an in-
ner product since it may also yield negative values) on p, q ∈
Rd defined by: S(p, q) = p̃Sq̃ =

[
p> 1

]>
S

[
q
1

]
=

S(q, p). Here, we shall distinguish between two particular
cases for an invertible matrix S (with |S| = det(S) 6= 0):
Case 1: S � 0 (S is positive definite): All eigenvalues1 are
positive, and the induced Cayley-Klein geometry is said el-
liptical (with the fundamental conic C = {x : x̃>Sx̃ = 0}
purely complex, and the intersection points P and Q are con-
jugates) defined over the full domain DS = Rd. The elliptical
geometry [7] is not to be confused with the Riemannian spher-
ical geometry since we identify antipodal points in the projec-
tive setting. Case 2: The last eigenvalue of S λd+1 is negative
and all the others are positive, we get the Cayley-Klein hyper-
bolic geometry (with real fundamental conic C) defined over
the partial conic domain DS = {x : x̃>Sx̃ < 0} ⊂ Rd.

To incorporate these two cases, let us write S =

[
Σ a
a> b

]
.

Then the bilinear form becomes S(p, q) = SΣ,a,b(p, q) =
Sp,q = p̃>Sq̃ = p>Σq+ p>a+ a>q+ b. For notational con-
venience, further define µ ∈ Rd and κ ∈ R so that a = −Σµ
(that is, µ = −Σ−1a) and b = µ>Σµ + sign(κ) 1

κ2 (that is,

κ =

{
(b− µ>µ)−

1
2 b > µ>µ

−(µ>µ− b)− 1
2 b < µ>µ

), then S(p, q) can be

written as S(p, q) = SΣ,µ,κ(p, q) = (p − µ)>Σ(q − µ) +
sign(κ) 1

κ2 . Finally, by choosing the arbitrary but appropriate
constants to get real (and not complex) distances [7], we get
the curved Mahalanobis distances DS(p, q) = DΣ,µ,κ(p, q)
between two points p, q ∈ DS as:

DS(p, q) =
1

2|κ|arccos(h)

(
|S(p, q)|√

S(p, p)S(q, q)

)
(1)

where κ ∈ R\{0} denotes the curvature, and arccosh(x) =
log(x +

√
x2 − 1) for x ≥ 1 is a monotonically increas-

ing function. For positive curvatures of elliptical geome-

1Eigenvalues of symmetric real matrices are guaranteed reals and not
complex values.



Fig. 3. Left: Bisector for the negatively-curved Mahalanobis
distance. The hyperbolic spheres are converted to equivalent
flat Mahalanobis spheres for rasterization. The spheres be-
come tangent to the fundamental conic as the radius tend to
infinity. Right: a hyperbolic Cayley-Klein Voronoi diagram.

tries, we select arccos in Eq. 1 while for negative curva-
tures of hyperbolic geometries, we choose arccosh. We
have [5]: limκ→0+ DΣ,µ,κ(p, q) = limκ→0− DΣ,µ,κ(p, q).
That is, the curved Mahalanobis distances generalize the
Mahalanobis distance and DΣ(p, q) = DΣ,0,0(p, q) (for

SΣ,0,ε =

[
Σ 0
0> ε

]
). Notice that by choosing S =

diag(1, 1, ..., 1,−1), we recover the usual hyperbolic geome-

try with distance [8]Dh(p, q) = arccosh

(
1−〈p,q〉√

1−〈p,p〉
√

1−〈q,q〉

)
defined inside the interior of a unit ball, since we have

S(p, q) =

[
p
1

]> [
I 0
0 −1

] [
q
1

]
= p>Iq − 1 =

p>q − 1.
The Euclidean, hyperbolic and elliptical Cayley-Klein

metric geometries can be interpreted as Riemannian geome-
tries [9] with a corresponding metric tensor. Figure 2 displays
some Euclidean, hyperbolic and elliptical Cayley-Klein unit
balls: We observe that the (flat) Mahalanobis balls have
shapes independent of their center, but not the curved Ma-
halanobis balls with shapes varying according to their center
position. In fact, it can be proven that curved Mahalanobis
balls are equivalent to flat Mahalanobis balls with shifted
centers (and corresponding radius values). We report the con-
version formula (without proof for sake of conciseness): A
Mahalanobis ball of center µ and covariance matrix ΣM (and
radius rM ) is defined by (x − µM )>ΣM (x − µ)M = r2

M .
That is, x>ΣMx−2x>ΣMµM +µ>MΣMµM = r2

M By iden-
tifying the curved Mahalanobis ball of radius r and center c
with bilinear form X , we find that: ΣM = r′2Σ − a′a′

>,
µM = Σ−1

M (b′a′ − r′2a), r2
M = b′2 − r′2b + c′>ΣMc

′, with
a′ = Σc+ a, b′ = a>c+ b and r′ =

√
−S(c, c)cosh(r).

3. CURVED MAHALANOBIS K-NN CLASSIFIERS

The k-NN classifier associates for any point x ∈ DS a label
in {−1, 1} as the majority class of labels among the k-nearest
neighbors (no ties for odd k). The bisector of two sites p
and q is given by Bi(p, q) = {x : DS(p, x) = DS(q, x)}.
This yields the following bisector equation in the hyper-
bolic/elliptical case:

〈
x,
√
|S(p, p)|Σq −

√
|S(q, q)|Σp

〉

+
√
|S(p, p)|(a>(q+x)+b)−

√
|S(q, q)|(a>(p+x)+b) = 0.

Thus the bisector for the curved Mahalanobis distances are
always hyperplanes. Figure 3 illustrates such a bisector for a
hyperbolic Cayley-Klein geometry.

It follows that the k-order Voronoi diagram [10, 11, 12]
that partitions the space into elementary cells having the same
k-nearest neighbors is piecewise linear, as illustrated in Fig-
ure . Note that k-order Voronoi cells may be empty of genera-
tors when k > 1, see [10]. Since the decision boundary of the
k-NN classifier is obtained from the boundaries of the union
of those elementary k-order Voronoi cells after merging them
by corresponding classes, we conclude that the curved Maha-
lanobis k-NN classifier is always piecewise linear. It follows
that the VC dimension of those classifiers is d+ 1, see [1, 2].

4. SPECTRAL DECOMPOSITION

It is well-known that one can apply the Cholesky decom-
position Σ = LL> (with L a lower triangular matrix) and
transform the coordinate system x to x′ = L>x so that
DΣ(p : q) = (p − q)>Σ(p − q) = (p − q)>LL>(p − q) =
‖L>p − L>q‖ = DE(L>p, L>q). That is, the Mahalanobis
distance amounts to computing an ordinary Euclidean dis-
tance on the affinely transformed space. Since the Euclidean
geometry is flat and that an affine transformation yields an
anisotropic stretching of space that is position independent,
this motivates us again to use the term “flat Mahalanobis”
distance. Now, consider the spectral decomposition of ma-
trix S = OΛO> obtained by eigenvalue decomposition,

and let us write canonically: S = OD
1
2

[
I 0
0 λ

]
D

1
2O>,

where λ =∈ {−1, 1} and O is an orthogonal matrix with
O−1 = O>. The diagonal matrix D has all positive val-
ues, with Di,i = Λi,i and Dd+1,d+1 = |Λd+1,d+1| so that
D

1
2 is defined as the diagonal matrix obtained by taking

element-wise the square root values of the matrix. We
rewrite the bilinear form into a canonical form by map-

ping the points x to x̃′ = D
1
2O>

[
x
1

]
=

[
x′′

w

]
. Since

x̃′ =

[
x′

1

]
, we can then find x′ = x′′

w . When λ > 0 (el-

liptical with Dd+1,d+1 > 0), we have SS(p, q) = SI(p
′, q′).

When λ < 0 (hyperbolic with Dd+1,d+1 < 0), we have
SS(p, q) = SH(p′, q′), with H = diag(1, ..., 1,−1) the
canonical matrix form for hyperbolic Cayley-Klein spaces.
Notice that in the ordinary Mahalanobis case, instead of us-
ing the Cholesky decomposition, we may use the L1DL

>
1

matrix decomposition where L1 is a unit lower triangu-
lar matrix (with diagonal elements all 1), and D is a di-
agonal matrix of positive elements. The mapping is then
x′ = D

1
2L>1 or x′ = (L1D

1
2 )> since D = D>. Thus

by transforming the input space into one of the canonical
Euclidean/elliptical/hyperbolic spaces, we avoid performing
costly matrix multiplications in the bilinear form, and once



Dataset d n k Mahalanobis Elliptical (κ > 0) Hyperbolic (κ < 0) Mixed α β
balance 4 625 3 0.846 0.910 (0.66) 0.904 (-0.15) 0.920 0.440 0.560
pima 8 768 2 0.709 0.712 (0.59) 0.699 (-0.04) 0.720 0.584 0.416
vowel 10 528 11 0.827 0.825 (1.16) 0.816 (-0.05) 0.841 0.407 0.593

Table 1. LMNN classification accuracy: We observe experimentally on UCI datasets that positively-curved Mahalanobis
distance (elliptical geometry) have better performance than negatively-curved Mahalanobis distance (hyperbolic geometry) that
improves over the flat Mahalanobis distance (Euclidean geometry). Furthermore, a mixture of curved Mahalanobis distances
(inducing a non-constant curvature space) improves the performance over a constant curvature space.

the structure (say, a k-NN decision boundary) has been re-
covered, we can map back to the original space (say, for
classifying new observations using the original coordinate
system).

5. CURVED METRIC LEARNING WITH LMNN

There are important differences between hyperbolic and ellip-
tical spaces: While in the elliptical case, the domain is fully
Rd, the maximum distance is bounded by κπ. In the hyper-
bolic case, the distance is not bounded, and we need to en-
sure that the real conic matrix inducing the domain contains
all points to classify. LMNN [4] aims to minimize the dis-
tances between points and their designated “target neighbors”
(i.e., points with the same label and likely to be close to each
other) while keeping a distance margin with so-called “im-
postors” (i.e., points with a different label but closer than a
target neighbor). LMNN use labeled triplet-wise constraints
(xi, xj , xl) as side information. We denote by i → j the
fact that xj is a neighbor of xi. For a distance function DS ,
LMNN minimizes the non-convex loss function l where γ
is a trade-off between the two terms of the objective func-
tion: l =

∑
i,i→j(DS(xi, xj) + γ

∑
l(1 − yi,l)ζi,j,l), with

yi,j ∈ {0, 1}, ζi,j,l = [1 + DS(xi, xj) −DS(xi, xl)]+ is the
hinge loss corresponding to impostors. This generic LMNN
energy is minimized using gradient descent optimization.

We first review the adaptation to the elliptical case (S � 0,
reported in [5]) before proposing an extension to hyperbolic
metrics. For the elliptical case, we write S = L>L, and com-
pute the gradients for minimizing l(L) as follows: ∂l(L)

∂L =∑
i,i→j(

∂ρE(xi,xj)
∂L + γ

∑
l(1 − yi,l)

∂ζi,j,l
∂L ), ∂DS(xi,xj)

∂L =

κ√
Si,iSj,j−S2

i,j

L
(
Si,j

Si,i
Ci,i +

Si,j

Sj,j
Cj,j − (Ci,j + Cj,i)

)
, ∂ζi,j,l∂L =

∂DS(xi,xj)
∂L − ∂DS(xi,xl)

∂L when ζi,j,l ≥ 0, else 0, where
Ci,j = (xi, 1)>(xj , 1).2

Compared to the elliptical case, two difficulties arise in
the hyperbolic case: Firstly, we must ensure that matrix S has
signature (d, 1, 0), and secondly, we must make sure that the
input points remain at all time within the definition domain
of DS which is DS = {x : Sxx < 0}. To address the first

2There is a slight error in the expression of ∂DS(xi,xj)

∂L
in the original

paper, as Ci,j + Cj,i was replaced by 2Ci,j , which is not the distance gra-
dient since it must be symmetric with respect to both xi and xj .

difficulty, we impose S to be of the form L>DL where D
is a symmetric matrix of signature (d, 1, 0) and L is positive
semi-definite. As in the elliptical case, L will be our learning
parameter, whereas D will remain fixed. The gradient of the
distance wrt. L is expressed as follows: ∂DH(xi,xj)

∂L =
κ√

S2
i,j−Si,iSj,j

DL
(
Si,j

Si,i
Ci,i +

Si,j

Sj,j
Cj,j − (Ci,j + Cj,i)

)
.

Substituting this new expression in the former gradient, we
obtain the gradient for the loss function in the hyperbolic
case. Assuming that we have found a proper initialization
(that is, two matrices L,D for which the data lie in the
definition domain), we can now perform our gradient de-
scent. Intuitively, since when a point comes closer to the
boundary of the definition domain its distance to the others
becomes infinite, with a good initialization our data should
remain within the definition domain all throughout the al-
gorithm. However in practice it may happen (because of
numerical precision and choice of the gradient step) that
some point gets out of the definition domain. To circum-
vent this, we allow the algorithm to backtrack when this
happens, and reduce the gradient step for the next iteration
(in practice, we divide it by two). Another difficulty raised
by the definition domain is the initialization. We pick any
PSD matrix for L � 0 which yields a good initialization,
and then compute D as D = diag(1, ..., 1,minx{‖Lx‖2}).
It can be checked that with such an initialization, all points
lie in the hyperbolic domain defined by S = L>DL. In
practice, we have tried L = Id+1 or L = diag(L′, 1)
where Σ = L′>L′ is the precision matrix (inverse covari-
ance) of the data. Finally, we considered learning a mixture
of elliptical and hyperbolic curved Mahalanobis distances:
M(p, q) = αDE(p, q) + βDH(p, q) (with β = 1−α). Since
a scaled metric distance and the sum of two metric distances
is a metric distance, the mixture distance is a metric. How-
ever, the Riemannian metric tensor is not a composite metric
tensors since the geodesics need to be solved by a non-trivial
partial differential equation [9]. Table 1 displays our exper-
imental results. In all cases, and without surprise, the mixed
elliptical/hyperbolic combination yields better result The var-
ious matrices defining the bilinear form S learnt from the
data-sets under the Euclidean, hyperbolic, elliptical and com-
posite settings are available online at https://www.lix.
polytechnique.fr/˜nielsen/CayleyKlein/ for
reproducible research [13].
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