
FAST ALGORITHMS FOR COMPUTING ISOGENIES BETWEEN

ELLIPTIC CURVES

A. BOSTAN AND F. MORAIN AND B. SALVY AND É. SCHOST

Abstract. We survey algorithms for computing isogenies between elliptic curves defined
over a field of characteristic either 0 or a large prime. We introduce a new algorithm that
computes an isogeny of odd degree ` (` different from the characteristic) in time quasi-linear
with respect to `. This is based in particular on fast algorithms for power series expansion
of the Weierstrass ℘-function and related functions.

1. Introduction

In the Schoof-Elkies-Atkin algorithm (SEA) that computes the cardinality of an elliptic
curve over a finite field, isogenies between elliptic curves are used in a crucial way (see
for instance [4] and the references we give later on). Isogenies have also been used to
compute the ring of endomorphisms of a curve [27] and isogenies of small degrees play a
role in [21, 15]. More generally, in various contexts, their computation becomes a basic
primitive in cryptology (see [24, 44, 34]).

Thus, in this paper, we discuss the complexity of computing isogenies of odd degree `
between elliptic curves (for the special case ` = 2, formulas exist [42]; see also [14]). Remark
that we can restrict to the case ` prime, since isogenies can be written as compositions of
isogenies of prime degree, the case of prime powers using isogeny cycles [16, 14, 20].

We demand that the characteristic p of the base field K be 0 or p � `. This restriction
is satisfied in the case of interest in the application to the SEA algorithm, since otherwise
p-adic methods are much faster and easier to use [35, 26]. Several approaches to isogeny
computation are available in small characteristic: we refer to [11, 31] for an approach via
formal groups, [29] for the special case p = 2, and [12, 13, 30] for the general case of p small.
The case of p = ` deserves a special treatment, see [12, 31].

Our assumption on p implies that the equations of our curves can be written in the
Weierstrass form

(1) y2 = x3 + Ax + B.

In characteristic zero, the curve (1) can be parameterized by (x, y) = (℘(z), ℘′(z)/2) in view
of the classical differential equation

(2) ℘′(z)2 = 4(℘3(z) + A℘(z) + B)

satisfied by the Weierstrass ℘-function. This is the basis for our computation of isogenies.
We thus prove two results, first on the computation of the Weierstrass ℘-function, and then
on the computation of the isogeny itself.

Our main contribution is to exploit classical fast algorithms for power series computations
and show how they apply to the computation of isogenies. We denote by M : N → N a

Date: Preliminary version 4.22 – May 5, 2006.
1

function such that polynomials of degree less than n can be multiplied in M(n) base field
operations. Using the algorithms of [37, 8], one can take M(n) ∈ O(n log n log log n); over
fields supporting Fast Fourier Transform, one can take M(n) ∈ O(n logn). We make the
standard super-linearity assumptions on the function M, see the following section.

Theorem 1. Let K be a field of characteristic zero. Given A and B in K, the first n
coefficients of the Laurent expansion at the origin of the function ℘ defined by (2) can be

computed in O(M(n)) operations in K.

Section 3 gives a more precise version of this statement, that handles the case of fields of
positive, but large enough, characteristic.

Theorem 2. Let K be a field of characteristic p, and let E and Ẽ be two elliptic curves

defined over K and given in the form (1).

Let ` be an odd integer, and suppose that an isogeny I of degree ` exists between E and Ẽ.

Let finally p1 be such that the sum of the abscissas of the nonzero points in the kernel of I
equals 2p1. Then the isogeny I can be computed

(1) in O(M(`)) operations in K, if p = 0 or p > `, if p1 is known;

(2) in O(M(`) log `) operations in K, if p = 0 or p > 4`, without prior knowledge of p1.

Taking M(n) ∈ O(n log n log log n) shows that the complexity results in Theorems 1 and 2
are nearly optimal, up to polylogarithmic factors, as claimed in the abstract. Notice that the
algorithms using modular equations to detect isogenies yield the value of p1 as a by-product.
However, in a cryptographic context, this may not be the case anymore; this is why we
distinguish the two cases in Theorem 2.

This article is organized as follows. In §2, we recall known results on the fast computation
of truncated power series, using notably Newton’s iteration. In §3, we show how these
algorithms apply to the computation of ℘. Then in §4, we recall the definition of isogenies
and the properties we need and give our quasi-linear algorithm. In the next section, we
survey previous algorithms for the computation of isogenies. Their complexity has not been
discussed before; we analyze them when combined with fast power series expansions so that
a comparison can be made. Finally, in §6, we report on our implementation.

2. A review of fast algorithms for power series

The algorithms presented in this section are well-known; they reduce several problems for
power series (reciprocal, exponentiation, . . .) to polynomial multiplication.

Our main tool to devise fast algorithms is Newton’s iteration; it underlies the O(M(`))
result reported in Theorem 1, and in (the practically important) point (1) of Theorem 2.
Hence, this question receives most of our attention below, with detailed pseudo-code. We
will be more sketchy on some other algorithms, such as rational function reconstruction,
referring to the relevant literature.

We suppose that the multiplication time function M satisfies the following classical super-
linearity inequalities (see e.g., [22]) for all n and n′:

(3)
M(n)

n
≤ M(n′)

n′ if n ≤ n′ and M(nn′) ≤ n2M(n′).

In particular, Equations (3) imply the inequality

M(1) + M(2) + M(4) + · · · + M(2i) ≤ 2M(2i).
2

This is the key to show that all algorithms based on Newton’s iteration below have complexity
in O(M(n)). Cantor and Kaltofen [8] have shown that one can take M(n) in O(n log n log log n);
as a result, most questions addressed below admit similar quasi-linear estimates.

2.1. Reciprocal. Let f =
∑

i≥0 fiz
i be in K[[z]], with f0 6= 0, and let g = 1/f =

∑

i≥0 giz
i

in K[[z]]. The coefficients gi can be computed iteratively by the formula

g0 =
1

f0
and gi = − 1

f0

i
∑

j=1

fjgi−j for i ≥ 1.

For a general f , the cost of computing g mod zn with this method is in O(n2); observe
nevertheless that if f is a polynomial of degree d, the cost reduces to O(nd).

To speed up the computation in the general case, we use Newton’s iteration. For reciprocal
computation, it amounts to computing a sequence of truncated power series hi as follows:

h0 =
1

f0
and hi+1 = hi(2 − fhi) mod z2i+1

for i ≥ 0.

Then, hi = 1/f mod z2i

. As a consequence, 1/f mod zn can be computed in O(M(n)) oper-
ations. This result is due to Cook for an analogous problem of integer inversion [10], and to
Sieveking [41] and Kung [28] in the power series case.

2.2. Exponentiation. Let f be in K[[z]], with f(0) = 0. Given n in N, such that 2, . . . , n−1
are units in K, the truncated exponential expn(f) is defined as

expn(f) =
n−1
∑

i=0

1

i!
f i mod zn.

Conversely, if g is in 1 + zK[[z]], its truncated logarithm is defined as

logn(g) = −
n−1
∑

i=1

1

i
(1 − g)i mod zn.

The truncated logarithm is obtained by computing the Taylor expansion of g ′/g modulo zn−1

using the algorithm of the previous subsection, and taking its antiderivative; hence, it can
be computed in O(M(n)) operations.

Building on this, Brent [5] introduced the Newton iteration

g0 = 1, gi+1 = gi(1 + f − log2i+1(gi)) mod z2i+1

to compute the sequence gi = exp2i(f). As a consequence, expn(f) can be computed in
O(M(n)) operations as well, whereas the naive algorithm has cost O(n2).

As an application, Schönhage [36] gave a fast algorithm to recover a polynomial f of degree
n from its first n power sums p1, . . . , pn. Schönhage’s algorithm is based on the fact that the
logarithmic derivative of f at infinity is the generating series of its power sums, that is,

znf

(

1

z

)

= expn+1

(

−
n
∑

i=1

pi

i
zi

)

.

Hence, given p1, . . . , pn, the coefficients of f can be recovered in time O(M(n)). This algo-
rithm requires that 2, . . . , n be units in K.

3

2.3. First-order linear differential equations. Let a, b, c be in K[[z]], with a(0) 6= 0,
and let α be in K. We want to compute the first n terms of f ∈ K[[z]] such that

af ′ + bf = c and f(0) = α

Let B = b/a mod zn−1 and C = c/a mod zn−1. Then, defining J = expn(
∫

B), f satisfies
the relation

f =
1

J

(

α +

∫

CJ

)

mod zn.

Using the previous reciprocal and exponentiation algorithms, f mod zn can thus be computed
in time O(M(n)). This algorithm is due to Brent and Kung [7]; it requires that 2, . . . , n − 1
be units in K.

2.4. First-order nonlinear differential equations. We only treat this question in a spe-
cial case, following again Brent and Kung’s article [7, Theorem 5.1]. Let G be in K[[z]][t],
let α, β be in K, and let f ∈ K[[z]] be a solution of the equation

f ′2 = G(z, f), f(0) = α, f ′(0) = β,

with furthermore β2 = G(0, α) 6= 0. Supposing that, for s ≥ 2, the initial segment f1 =
f mod zs is known, we show how to deduce f mod z2s−1. Write f = f1+f2 mod z2s−1, where
zs divides f2. One checks that f2 is a solution of the linearized equation

(4) 2f ′
1f

′
2 − Gt(z, f1)f2 = G(z, f1) − f ′2

1 mod z2s−2,

with the initial condition f2(0) = 0, where Gt denotes the derivative of G with respect to
t. The condition f ′(0) 6= 0 implies that f ′

1 is a unit in K[[z]]; then, the cost of computing
f2 mod z2s−1 is in O(M(s)) (remark that we do not take the degree of G into account).
Finally, the computation of f at precision n is as follows:

(1) Let f = α + βz mod z2 and s = 2;
(2) while s < n do

(a) Compute f mod z2s−1 from f mod zs;
(b) Let s = 2s − 1.

Due to the super-linearity of M, f mod zn can thus be computed using O(M(n)) operations.
Again, we have to assume that 2, . . . , n − 1 are units in K.

2.5. Other algorithms. We conclude this section by pointing out other algorithms that
are used below:

Power series composition. Over a general field K, there is no known algorithm of quasi-
linear complexity for computing f(g) mod zn, for f, g in K[[z]]. The best results known today
are due to Brent and Kung [7]. Two algorithms are proposed in that article, of respective

complexities O(M(n)
√

n + n
ω+1

2) and O(M(n)
√

n log n), where 2 ≤ ω < 3 is the exponent of
matrix multiplication (see, e.g., [22, Chapter 12]). Over fields of positive characteristic p,
Bernstein’s algorithm for composition [3] has complexity O(M(n)), but the O() estimate
hides a linear dependence in p, making it uninteresting in our setting (p � n).

4

Rational function reconstruction. Our last subroutine consists in reconstructing a ra-
tional function from its Taylor expansion at the origin. Suppose that f(z) is a rational
function in K(z) with numerator and denominator of degree bounded respectively by n and
n′, and with denominator non-vanishing at the origin; then, knowing the first n + n′ + 1
terms of the expansion of f(z) at the origin, the rational function f(z) can be reconstructed
in O(M(n + n′) log(n + n′)) operations, see [6].

3. Computing the Weierstrass ℘-function

3.1. The Weierstrass ℘-function. We now study the complexity of computing the Laurent
series expansion of the Weierstrass ℘-function at the origin, thus proving Theorem 1. We
suppose for a start that the base field K equals C; the positive characteristic case is discussed
below. Let thus A, B be in K = C. The Weierstrass function ℘ associated to A and B is a
solution of the non-linear differential equation (2); its Laurent expansion at the origin has
the form

(5) ℘(z) =
1

z2
+
∑

i≥1

ciz
2i.

The goal of this section is to study the complexity of computing the first terms c1, . . . , cn.
We first present a “classical” algorithm, and then show how to apply the fast algorithms for
power series of the previous section.

3.2. Quadratic algorithm. First, we recall the direct algorithm. Substituting the expan-
sion (5) into Equation (2) and identifying coefficients of z−2 and z0 gives

c1 = −A

5
and c2 = −B

7
.

Next, differentiating Equation (2) yields the second order equation

(6) ℘′′ = 6℘2 + 2A.

This equation implies that for k ≥ 3, ck is given by

(7) ck =
3

(k − 2)(2k + 3)

k−2
∑

i=1

cick−1−i.

Hence, the coefficients c1, . . . , cn can be computed using O(n2) operations in K.
If the characteristic p of K is positive, the definition of ℘ as a Laurent series fails, due to

divisions by zero. However, assuming p > 2n + 3, it is still possible to define the coefficients
c1, . . . , cn through the previous recurrence relation. Then, again, c1, . . . , cn can be computed
using O(n2) operations in K.

3.3. Fast algorithm. One possibility to devise a fast algorithm is to consider the function
z2℘(z) ∈ K[[z]], find a differential equation it satisfies, and deduce the expansion of ℘(z).
This leads to tedious computations, so we follow a slightly different path. We first introduce
new quantities, that are used again in the next section. Define

Q(z) =
1

℘(z)
∈ z2 + z6K[[z2]] and R(z) =

√

Q(z) ∈ z + z5K[[z2]].

5

The differential equation satisfied by R is

(8) R′2 = BR6 + AR4 + 1,

from which we can deduce the first terms of R:

R(z) = z +
A

10
z5 +

B

14
z7 + O(z8) = z

(

1 +
A

10
z4 +

B

14
z6 + O(z7)

)

.

Squaring R yields

Q(z) = z2 +
A

5
z6 +

B

7
z8 + O(z9) = z2

(

1 +
A

5
z4 +

B

7
z6 + O(z7)

)

.

Taking the reciprocal of the right-hand series finally yields

℘(z) =
1

z2

(

1 − A

5
z4 − B

7
z6 + O(z7)

)

=
1

z2
− A

5
z2 − B

7
z4 + O(z5),

as requested. Thus, our fast algorithm to compute the coefficients c1, . . . , cn is as follows:

(1) Compute R(z) mod z2n+4 using the algorithm of §2.4 with G = Bt6 + At4 + 1;
(2) Compute Q(z) = R2(z) mod z2n+5;
(3) Compute ℘(z) = 1/Q(z) mod z2n+1.

In the first step, we remark that our assumption R′(0) 6= 0 is indeed satisfied, hence R(z) mod
z2n+4 can be computed in O(M(n)) operations, assuming 2, . . . , 2n+3 are units in K. Using
the algorithm of §2.1, the squaring and reciprocal necessary to recover ℘(z) mod z2n+1 admit
the same complexity bound. This proves Theorem 1.

4. Fast computation of isogenies

In this section, we recall the basic properties of isogenies and an algorithm due to Elkies [19]
that computes an isogeny of degree ` in quadratic complexity O(`2). Then, we design two
fast variants of Elkies’ algorithm, by exploiting the differential equations satisfied by some
functions related to the Weierstrass function, proving Theorem 2.

4.1. Isogenies. The following properties are classical and can be found for instance in [42].

Let E and Ẽ be two elliptic curves defined over K. An isogeny between E and Ẽ is a
rational map that is also a group morphism; here, our isogenies are all non-zero. Pairs of
curves related via a non-zero isogeny are built using modular equations; we refer to [4] for
details.

The most elementary example of an isogeny is the “multiplication by m” map which sends
P ∈ E to [m]P ∈ E, where, as usual, the group law on E is written additively. If E is
given through a Weierstrass model, the group law yields formulas for [m]P in terms of the
so-called division polynomials:

[m](x, y) =

(

φm(x, y)

y2fm(x)2
,
ωm(x, y)

y4fm(x)3

)

where the polynomial fm(x) has degree Θ(m2).

Given an isogeny I : E → Ẽ, there exist a unique isogeny (the dual isogeny) Î : Ẽ → E

and a unique integer ` such that Î ◦ I = [`]; ` is called the degree of I. For instance, the
degree of the isogeny [m] is m2 and this is reflected by the degree of the division polynomials.

6

For simplicity, we suppose in the rest of the article that ` is an odd integer. The kernel
F of an isogeny I of degree ` is a subgroup of order ` of E(K). It consists of the point at
infinity on E, which is the zero for the group law, and of d = `−1

2
pairs of non-zero points

with same abscissas xQ, Q ∈ F ∗. We then let

g(x) = xd − p1x
d−1 + · · ·

be the unique monic polynomial of degree d vanishing at those abscissas xQ. Remark for
further use that p1 is the first power sum of g, so that 2p1 is the sum of the abscissas of the
nonzero points in the kernel of I, matching the notation used in Theorem 2.

A point P of coordinates (xP , yP) is sent by the isogeny I to a point of coordinates
xI(P) = xP +

∑

Q∈F ∗(xP+Q − xQ) and yI(P) = yP +
∑

Q∈F ∗(yP+Q − yQ). Using the rational

form of the group law of E, this results in the following explicit form for I, due to Vélu [45]

I(x, y) =
(

x +
∑

Q∈F ∗

(

3x2
Q

+A

x−xQ
+ 2

x3
Q

+AxQ+B

(x−xQ)2

)

, y − y
∑

Q∈F ∗

(

3x2
Q

+A

(x−xQ)2
+ 4

x3
Q

+AxQ+B

(x−xQ)3

))

.

As a corollary of these formulas, Dewaghe [17] has shown that I can be written as

(9) I(x, y) =

(

N(x)

D(x)
, y

(

N(x)

D(x)

)′)

,

where D(x) = g(x)2, and N(x) is related to g(x) through the formula

(10)
N(x)

D(x)
= `x − 2p1 − 2(3x2 + A)

g′(x)

g(x)
− 4(x3 + Ax + B)

(

g′(x)

g(x)

)′

.

From now on, we are given two isogeneous curves E and Ẽ through their Weierstrass equa-
tions. From this input, and possibly that of p1, we want to determine the isogeny I. We first
describe an algorithm due to Elkies [19] (called Elkies1998 in the sequel), whose complexity
is quadratic in the degree `. Then, we give two fast variants of algorithm Elkies1998, called
fastElkies and fastElkies′, of respective complexities O(M(`)) and O(M(`) log `).

4.2. Elkies’ quadratic algorithm. The idea of algorithm Elkies1998 in [19] is to compute
the expansion of N/D at infinity, and recover the power sums of the roots of g from it. Our
starting remark to present these ideas is that the Weierstrass functions ℘ and ℘̃ are related
through

(11)
N(x)

D(x)
= ℘̃ ◦ ℘−1(x),

where ℘−1 is the functional inverse of ℘. Applying the chain rule, we see that N/D satisfies
the non-linear differential equation

(12) (x3 + Ax + B)

(

N(x)

D(x)

)′ 2

=

(

N(x)

D(x)

)3

+ Ã

(

N(x)

D(x)

)

+ B̃.

A second differentiation leads to the following second-order equation:

(13) (3x2 + A)

(

N(x)

D(x)

)′

+ 2(x3 + Ax + B)

(

N(x)

D(x)

)′′

= 3

(

N(x)

D(x)

)2

+ Ã.

7

Writing
N(x)

D(x)
= x +

∑

i≥1

hi

xi

and identifying coefficients of x−i, i ≥ 1, from both sides of Equation (13), one deduces the
recurrence relation

(14) hk =
3

(k − 2)(2k + 3)

k−2
∑

i=1

hihk−1−i −
2k − 3

2k + 3
Ahk−2 −

2(k − 3)

2k + 3
Bhk−3, for all k ≥ 3,

with initial conditions

h1 =
A − Ã

5
and h2 =

B − B̃

7
.

The recurrence (14) is the basis of algorithm Elkies1998; using it, one can compute h3, . . . , hd−1

using O(`2) operations in K.
Next, expanding at infinity the right-hand side of Vélu’s formulas, Elkies obtains the

following recurrence relation connecting the power sums p1, p2, . . . of g to the coefficients hi

(this relation can also be deduced directly from Dewaghe’s Equation (10)):

(15) hi = (4i + 2)pi+1 + (4i − 2)Api−1 + (4i − 4)Bpi−2, for all 1 ≤ i ≤ d − 1.

Elkies’ algorithm Elkies1998 assumes that p1 is given. Since h1, . . . , hd−1 are known, p2, . . . , pd

can be deduced from the previous recurrence using O(`) operations. The polynomial g is
then recovered, either by a quadratic algorithm or the faster algorithm of §2.2, and N and
D are deduced using formula (10), in O(M(`)) operations.

The complexity of this algorithm is thus in O(`2), the bottleneck being the computation
of the coefficients h1, . . . , hd−1; this algorithm requires that 2, . . . , 2d + 1 = ` be units in K.
Observe also the parallel with the computations presented in the previous section, where
differentiating Weierstrass’ equation yields the recurrence (7), which appears as a particular
case of the recurrence (14) (the former is obtained by taking A = B = 0 in the latter).

4.3. Fast algorithms. We improve on the computation of the coefficients hi in algorithm
Elkies1998, the remaining part being unchanged.

Unfortunately, we cannot directly apply the algorithm of §2.4 to compute the expansion
of N/D at infinity using the differential equation (12), since the equation obtained by the
change of variables x 7→ 1/x is singular at the origin. To avoid this technical complication,
we rather consider the power series

S(x) = x +
Ã − A

10
x5 +

B̃ − B

14
x7 + O(x9) ∈ x + x3K[[x2]]

such that R̃ = S ◦ R, with the notation R = 1/
√

℘ and R̃ = 1/
√

℘̃ introduced in §3.3.
Knowing the expansion of S at the origin, the expansion of N/D at infinity is easily recovered
using

N(x)

D(x)
=

1

S
(

1√
x

)2 .

Applying the chain rule gives the following first order differential equation satisfied by S(x):

(Bx6 + Ax4 + 1)S ′(x)
2

= 1 + ÃS(x)4 + B̃S(x)6.
8

Using this differential equation, we propose two algorithms to compute N/D, depending
on whether the coefficient p1 is known or not. In the algorithms, we write

S = xT (x2) and U(x) =
1

T (x)2
∈ 1 + x2K[[x]] so that

N(x)

D(x)
= x U

(

1

x

)

.

The first algorithm, called fastElkies, assumes that p1 is known and goes as follows.

(1) Compute C(x) = (Bx6 + Ax4 + 1)−1 mod x2d+2 ∈ K[[x]];

(2) Compute S(x) mod x2d+3 using the algorithm of §2.4 with G(x, t) = C(x)(1 + Ãt4 +
B̃t6), and deduce T (x) mod xd+1;

(3) Compute U(x) = 1/T 2(x) mod xd+1 using the algorithm in §2.1;
(4) Compute the coefficients h1, . . . , hd−1 of N/D, using N(x)/D(x) = xU(1/x);
(5) Compute the coefficients p2, . . . , pd of g′/g, using the linear recurrence (15);
(6) Recover g from its first d power sums p1, . . . , pd, as described in §2.2;
(7) Compute D = g2 and deduce N using Equation (10).

Steps (1) and (5) have cost O(`). Steps (2), (3), (6) and (7) can be performed in O(M(`))
operations, and Step (4) requires no operation. This proves the first part of Theorem 2.

For our second algorithm (that we call fastElkies′), we do not assume prior knowledge of p1.
Its steps (1’)–(3’) are just a slight variation of Steps (1)–(3), of the same complexity O(M(`))
(up to constant factors).

(1’) Compute C(x) = (Bx6 + Ax4 + 1)−1 mod x8d+4 ∈ K[[x]];
(2’) Compute S(x) mod x8d+5 using the algorithm of §2.4 with G(x, t) = C(x)(1 + Ãt4 +

B̃t6), and deduce T (x) mod x4d+2;
(3’) Compute U(x) = 1/T 2(x) mod x4d+2, using the algorithm in §2.1;
(4’) Reconstruct the rational function U(x);
(5’) Return N(x)/D(x) = xU(1/x).

Using fast rational reconstruction, Step (4’) can be performed in O(M(`) log `) operations
in K. Finally, it is easy to check that our algorithm fastElkies requires that 2, . . . , 2d+ 1 = `
be units in K, while algorithm fastElkies′ requires that 2, . . . , 8d+4 = 4` be units in K. This
completes the proof of Theorem 2.

4.4. Worked example. Let

E : y2 = x3 + x + 1 and Ẽ : ỹ2 = x̃3 + 75x̃ + 16

be defined over F101, with ` = 11 and p1 = 25. First, from the differential equation

(x6 + x4 + 1)S ′(x)2 = 1 + 75S(x)4 + 16S(x)6, S(0) = 0, S ′(0) = 1

we infer the equalities

C = 1 + 100 x4 + 100 x6 + x8 + 2 x10 + O(x12),

S = x + 68 x5 + 66 x7 + 60 x9 + 84 x11 + O(x13),

so that T = 1 + 68 x2 + 66 x3 + 60 x4 + 84 x5 + O(x6),

and T 2 = 1 + 35x 2 + 31x 3 + 98x 4 + 54x 5 + O(x 6),

whence U = 1 + 66x 2 + 70x 3 + 16x 4 + 96x 5 + O(x 6).
9

We deduce

N(x)

D(x)
= x +

66

x
+

70

x2
+

16

x3
+

96

x4
+ O

(

1

x5

)

.

At this stage, we know h1 = 66, h2 = 70, h3 = 16, h4 = 96. Equation (15) then writes

pi+1 =
hi − (4i − 2)pi−1 − (4i − 4)pi−2

4i + 2
, for all 1 ≤ i ≤ 4

and gives p2 = 43, p3 = 91, p4 = 86, p5 = 63. The main equation in §2.2 writes

x5g11

(

1

x

)

= exp6

(

−
(

25 x +
43

2
x2 +

91

3
x3 +

86

4
x4 +

63

5
x5

))

= exp6

(

76 x + 29 x2 + 37 x2 + 29 x4 + 48 x5
)

,

yielding g11(x) = x5 + 76x4 + 89x3 + 24x2 + 97x + 5. For the sake of completeness, we have:

N(x) = x11 + 51x10 + 61x9 + 44x8 + 71x7 + 39x6 + 81x5 + 43x4 + 15x3 + 5x2 + 24x + 15.

Had we computed the solution S(x) at precision O(x45), the expansion at infinity of N/D
would have been known at precision O(1/x21), and this would have sufficed to recover both
N(x) and D(x) by rational function reconstruction, without the prior knowledge of p1.

5. A survey of previous algorithms for isogenies

In this section, we recall and give complexity results for other known algorithms for com-
puting isogenies. In what follows, we write the Weierstrass functions ℘ and ℘̃ of our two
curves E and Ẽ as

℘(z) =
1

z2
+
∑

i≥1

ciz
2i and ℘̃(z) =

1

z2
+
∑

i≥1

c̃iz
2i.

All algorithms below require the knowledge of the expansion of these functions at least to
precision `, so they only work under a hypothesis of the type p � ` or p = 0.

We can freely assume that these expansions are known. Indeed, by Theorem 1, given A, B
and Ã, B̃, we can precompute the coefficients ci and c̃i up to (typically) i = ` − 1 using
O(M(`)) operations in K, provided that the characteristic p of K is either 0 or > `. This
turns out to be negligible compared to the other costs involved in the following algorithms.

5.1. First algorithms. A brute force approach to compute N/D is to use Equation (11)
and the method of undetermined coefficients. This reduces to computing of ℘(z)i mod z4`−2

for 1 ≤ i ≤ ` and solving a linear system with 2`− 1 unknowns. This direct method requires
that 2, . . . , 4` be units in K and its complexity is O(`ω) operations in K, where 2 ≤ ω < 3
is the exponent of matrix multiplication.

Another possible idea would be to consider the rational functions N/D and N̂/D̂ respec-

tively associated to I and its dual Î, noticing that by definition,

N

D
◦ N̂

D̂
=

φ`

f 2
`

.

However, algorithms for directly decomposing φ`/f
2
` [46, 23, 1] lead to too expensive a

solution in our case, since they require factoring the degree Θ(`2) polynomial f`. Indeed, over
finite fields, even using the best (sub-quadratic) algorithms for polynomial factorization [25],

10

of exponent 1.815, this would yield an algorithm for computing isogenies of degree ` in
complexity more than cubic with respect to `, which is unacceptable.

5.2. Stark’s method. To the best of our knowledge, the first subcubic method for finding
N and D is due to Stark [43] and amounts to expanding ℘̃ as a continued fraction in ℘,
using Equation (11). The fraction N/D is approximated by pn/qn and the algorithm stops
when the degree of qn is ` − 1, yielding D = g2. Since ℘ and ℘̃ are in 1/z2 + K[[z2]], it is
sufficient to work with series in Z = z2.

(1) T := ℘̃(Z) + O(Z`);
(2) n := 1;
(3) q0 := 1;
(4) q1 := 0;
(5) while deg(qn) < ` − 1 do

{at this point, T (Z) = t−rZ
−r + · · ·+ t0 + t1Z + · · ·+ O(Z(`−deg qn−r)−1)}

(a) n := n + 1;
(b) an := 0;
(c) while r ≥ 1 do

an := an + t−rz
r;

T := T − t−r℘
r = t−sZ

−s + · · · ;
r := s

(d) qn := anqn−1 + qn−2;
(e) T := 1/T ;

(6) Return D := qn.

This algorithm (that we call Stark1972) requires O(`) passes through Step (5); this bound
is reached in general, with r = 1 at each step. The step that dominates the complexity is the
computation of reciprocals in Step (5.e), with precision 2` − 1 − 2 deg qn − 2r. The sum of
these operations thus costs O(`M(`)). The multiplications in Step (5.d) can be done in time
O(`M(`)) as well (these multiplications could be done faster if needed). Since the largest
degree of the polynomials an is bounded by ` − 1, computing all powers of ℘ at Step (5.c)
also fits within the O(`M(`)) bound. Finally, knowing D = g2, one can recover the power
sum p1 of g, and the logarithmic derivative g′/g = D′/2D. Then the numerator N can be
recovered in cost O(M(`)) using Equation (10).

To summarize, the total cost of algorithm Stark1972 is in O(`M(`)). Remark that compared
to the methods presented below, algorithm Stark1972 does not require the knowledge of
the first power sum p1 of g. Remark also that, even though r will be 1 in general, the
computation of the powers ℘r in Step (5.c) could be amortized in the context of the SEA
algorithm. Besides, if we need g, as in the course of SEA, we can compute it in O(M(`))
operations by computing exp((log D)/2).

5.3. Elkies’ 1992 method. We reproduce the method given in [18], that we call Elkies1992

(see also e.g., [9, 32]). Differentiating twice Equation (6) yields

d4℘(z)

dz4
= 120℘3 + 72A℘ + 48B.

11

More generally, we obtain equalities of the form

d2k℘(z)

dz2k
= µk,k+1℘

k+1 + · · · + µk,0,

for some constants µk,j that satisfy the recurrence relation

µk+1,j = (2j − 2)(2j − 1)µk,j−1 + (2j + 1)(2j + 2)Aµk,j+1 + (2j + 2)(2j + 4)Bµk,j+2,

with µk,k+1 = (2k + 1)!. Using this recurrence relation, the coefficients µk,j, for k ≤ d − 1
and j ≤ k + 1, can be computed in O(`2) operations in K.

Elkies then showed how to use these coefficients to recover the power sums p2, . . . , pd of g,
through the following equalities, holding for k ≥ 1:

(2k)!(c̃k − ck) = 2(µk,0p0 + · · · + µk,k+1pk+1).

Using these equalities, assuming that p1 and the coefficients ck, c̃k and µk,j are known, we
can recover p2, . . . , pd by solving a triangular system, in complexity O(`2). We can then
recover g using either a quadratic algorithm, or the faster algorithm of §2.2.

There remains here the question whether the triangular system giving p2, . . . , pd can be
solved in quasi-linear time. To do so, one should exploit the structure of the triangular
system, and avoid computing the Θ(`2) constants µk,j explicitly.

5.4. Atkin’s method. In [2], Atkin gave the following formula enabling the computation
of g (see also [33, Formula 6.13] and [38]):

(16) g(℘(z)) = z1−` exp(F (z)),

where

F (z) = −p1z
2 +

(

∞
∑

k=1

(`ck − c̃k)
z2k+2

(2k + 1)(2k + 2)

)

.

Since ` and ck, c̃k, for k ≤ d − 1, are all assumed to be known, one can deduce the series
F mod z2d+2 provided that p1 is given. A direct method to determine g is then to compute
the exponential of F , and to recover the coefficients of g one at a time, as shown in the
following algorithm, called Atkin1992. As before, we use series in Z = z2.

(1) Compute the series Pi(Z) = ℘(Z)i at order d, for 1 ≤ i ≤ d;
(2) Compute G(Z) = expd+1(F (Z));
(3) T := G;
(4) g := 0;
(5) for i := d downto 0 do

{at this point, T = tZ−i + · · · }
(a) g := g + tzi;
(b) T := T − tPi.

Step (1) uses O(`M(`)) operations; the cost of Step (2) is negligible, using either classical
or fast exponentiation. Then, each pass through Step (5) costs O(`) more operations, for a
total of O(`2). Thus, the total cost of this algorithm is in O(`M(`)). If this algorithm is used
in the context of SEA, Step (1) can be amortized, since it depends on E only. Therefore,
all the powers of ℘ should be computed for the maximal value of ` to be used, and stored.
Hence, the cost of this algorithm would be dominated by that of Step (5), yielding a method
of complexity O(`2).

12

A better algorithm for computing g, avoiding the computation of all the d powers of ℘, is
based on the remark that Equation (16) rewrites

(17) g

(

1

x

)

= I1−` ((exp ◦F) ◦ I) ,

with I(x) = ℘−1(1/x), where ℘−1 is the functional inverse of ℘. The expansion of I at order
Θ(`) can be computed in O(`) operations using the differential equation

(18) I ′2 =
1

4x(1 + Ax2 + Bx3)
or I ′ =

1

2
√

x

1√
1 + Ax2 + Bx3

.

Now, J (x) = 1√
1+Ax2+Bx3

satisfies the linear differential equation

(19)
J ′

J = −1

2

2Ax + 3Bx2

1 + Ax2 + Bx3
;

extracting coefficients in this equation shows that I(x) = x
1

2

∑

i≥0
ai

2i+1
xi, with

(20) a0 = 1, a1 = 0, a2 = −A

2
, ai+1 =

Bai−2 − 2Biai−2 − 2Aiai−1

2i + 2
for i ≥ 2.

This yields the following algorithm, called AtkinModComp:

(1) Compute G(Z) = expd+1(F (Z));
(2) Compute I(x) using Equation (20);
(3) Compute G(I) by modular composition (which is possible since G is in K[[Z]] =

K[[x2]]);
(4) Deduce g using Equation (17).

The cost of the algorithm is dominated by the composition of the series G = exp ◦F and I.
From §2.5, this can be done in O(M(`)

√
` + `

ω+1

2) or O(M(`)
√

` log `) operations in K.

To do even better, it is fruitful to reconsider the series G(I) = (exp ◦F) ◦ I used above,
but rewriting it as exp ◦ (F ◦I) instead; this change of point of view reveals close connections
with our fastElkies algorithm. More precisely, Atkin’s Equation (16) can be rewritten as

g(℘(x)) = exp

(

−p1x
2 +

∫∫

`℘(x) − ℘̃(x)

)

.

We can then obtain g(1/x) as the following exponential:

g

(

1

x

)

= exp

(

−p1I2 +

∫

I ′
∫

I ′
(

`

x
− (℘̃ ◦ I)(x)

))

(21)

= exp

(

−p1I2 +

∫

I ′
∫

I ′
(

`

x
− N(1/x)

D(1/x)

))

(22)

= exp

(

−p1I2 +

∫

I ′
∫

I ′
(

`

x
− 1

S(
√

x)2

))

.(23)

Then, working out the details, the sequence of operations necessary to evaluate this expo-
nential turns out to be the same as the one used in our algorithm fastElkies of §4.3. This

13

does not come as a surprise: the relation (15) used in our algorithm follows from Dewaghe’s
formula (10), which can be rewritten as

N(x)

D(x)
= `x − 2p1 − 4

√
x3 + Ax + B

(√
x3 + Ax + B

g′(x)

g(x)

)′

.

Then, Equation (22) is nothing but an integral reformulation of this last equation, taking
into account the fact that I satisfies the differential equation (18).

5.5. Summary. In Table 1 we gather the various algorithms discussed in this article, and
compare these algorithms from three points of view: their complexity (expressed in number
of operations in the base field K), their need for p1 as input and the hypotheses on the
characteristic of K ensuring their validity.

algorithm complexity need of p1 char restriction
linear algebra O(`ω) no p > 4`

Stark1972 O(`M(`)) no p > `
Atkin1992 O(`M(`)) yes p > `

AtkinModComp O(M(`)
√

` + `
ω+1

2) or O(M(`)
√

` log `) yes p > `
Elkies1992 O(`2) yes p > `
Elkies1998 O(`2) yes p > `
fastElkies O(M(`)) yes p > `
fastElkies′ O(M(`) log `) no p > 4`

Table 1. Comparison of the algorithms

6. Implementation and benchmarks

We implemented our algorithms using the NTL C++ library [39, 40] and ran the program
on an AMD 64 Processor 3400+ (2.4GHz).

We begin with timings for computing the expansion of ℘, obtained over the finite field
F102004+4683; they are given in Figure 1.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 500 1000 1500 2000 2500 3000

"benchP.plain"
"benchP.fast"

Figure 1. Timings for computing ℘ on E : y2 = x3 + 4589x + 91128 over F102004+4683

14

The shape of both curves in Figure 1 indicates that the theoretical complexities – quadratic
vs. nearly linear – are well respected in our implementation (note that the abrupt jumps at
powers of 2 reflect the performance of NTL’s FFT implementation of polynomial arithmetic).
Moreover, the threshold beyond which our algorithm becomes useful over the quadratic one
is reasonably small, making it interesting in practice very early.

We now turn our attention to the pure isogeny part. The first series of timings concerns
the computation of isogenies over a small field, K = F1019+51, for the curve E : y2 =
x3 + 4589x + 91128.

We compare in Figure 2 the performances of the algorithms Elkies1992 from §5.3 and
Elkies1998 from §4.2 for isogenies of moderate degree ` ≤ 400. Figure 3 compares the
timings obtained with the algorithm Elkies1998 and our fast version fastElkies from §4.3, for
isogenies of degree up to 6000.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0 50 100 150 200 250 300 350 400

"isog.elkies92"
"isog.elkies98"

Figure 2. Elkies1992 vs.
Elkies1998.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0 1000 2000 3000 4000 5000 6000

"isog.elkies98"
"isog.fastelkies"

Figure 3. Elkies1998 vs.
fastElkies.

Next, we compare in Figure 4 the timings obtained by the O(M(`)) algorithm fastElkies,
that requires the knowledge of p1, to those obtained by its O(M(`) log `) counterpart fastElkies′,
that does not require this information.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2000 4000 6000 8000 10000 12000

"isog.fastelkies"
"pade.data"

Figure 4. FastElkies vs. FastElkies’

15

In all figures, the degrees ` of the isogenies are represented on the horizontal axis and
the timings are given (in seconds) on the vertical axis. Again, the shape of both curves in
Figure 3 shows that the theoretical complexities are well respected in our implementation.
The curves in Figure 4 show that the theoretical ratio of log ` between algorithms fastElkies

and fastElkies′ has a consequent practical impact.

Next, in Tables 2 to 8, we give detailed timings (in seconds) on computing `-isogenies for
the curve

E : y2 = x3 + Ax + B

where
A = b101990πc = 31415926 . . .58133904,

B = b101990ec = 27182818 . . .94787610,

for a few values of `, over the larger finite field F102004+4683, and using various methods:
algorithms Elkies1992, Elkies1998 and our fast variant fastElkies, Stark’s algorithm Stark1972

and the two versions Atkin1992 and AtkinModComp of Atkin’s algorithm.
Tables 2 and 3 give timings for basic subroutines shared by some or all of the algorithms

discussed. Table 2 gives the timings necessary to compute the expansions of ℘ and ℘̃, using
either the classical algorithm or our faster variant: this is used in all algorithms, except our
fastElkies algorithm. Table 3 gives timings for recovering g from its power sums, first using
the classical quadratic algorithm, and then using fast exponentiation as described in §2.2.
This is used in algorithms Elkies1992, and Elkies1998 and its variants.

Computing ℘ and ℘̃
` order quadratic fast

1013 511 8.6 7.0
2039 1024 34.6 29.9
3019 1514 75.7 30.3
4001 2005 132.7 31
5021 2515 209.3 64.4

Table 2. Computing ℘ and ℘̃

Recovering g
` quadratic fast

1013 4.2 1.1
2039 17.4 2.5
3019 38.2 5.1
4001 66.9 5.5
5021 106.2 11.2

Table 3. Recovering g from
its power sums

Tables 4 and 5 give the timings for algorithms Elkies1992 on the one hand and Elkies1998

and our variation fastElkies on the other hand. In Table 4, the columns µ and pi give the
time used to compute the coefficients µi,j and the power sums pi. In Table 5, the column
hi indicates the time used to compute the coefficients hi of the rational function N/D, first
using the original quadratic algorithm Elkies1998, then using our faster variant fastElkies.
The next column gives the time used to compute the power sums pi from the hi using the
recurrence (15).

Tables 6 and 7 give timings for our implementation of Atkin’s original algorithm Atkin1992,
as well as the faster version AtkinModComp using modular composition mentioned in §5.4.
In Table 6, the column “exponential” compares the computation of exp(F) using the naive
exponentiation algorithm to the computation using the faster algorithm presented in §2.2;
the column ℘k gives the time for computing all the series ℘(z)k and the column g that for
recovering the coefficients of g. Table 7 gives timings obtained using the two modular com-
position algorithms mentioned in §2.5, called here ModComp1 and ModComp2; the previous

16

Elkies1992

` ℘, ℘̃ µ pi g
1013 10.4 4.4
2039 See 49.1 17.9 See
3019 Table 2 130.6 38.9 Table 3
4001 263 68.4
5021 496.5 106.6

Table 4. Algorithm Elkies1992

Elkies1998 and fastElkies

` hi pi g
quadratic fast

1013 4.4 4.5 0.05
2039 17.3 9.6 0.1 See
3019 38.0 19.5 0.16 Table 3
4001 67.2 20.0 0.21
5021 105.0 40.7 0.27

Table 5. Algorithms Elkies1998

and fastElkies

columns give the time for computing exp(F) and that for computing the requested power of
I; the last column gives the time to perform the final multiplication.

Asymptotically, algorithm ModComp2 is faster than algorithm ModComp1, so that the
timings in Table 7 might come as a surprise. The explanation is that, for the problem sizes
we are interested in, the predominant step of algorithm ModComp1 is the one based on
polynomial operations, while the step based on linear algebra operations takes only about
10% of the whole computing time. Thus, the practical complexity of this algorithm in the
considered range (1000 < ` < 6000) is proportional to M(`)

√
`, while that of algorithm Mod-

Comp2 is proportional to M(`)
√

` log `. Moreover, the proportionality constant is smaller in
the built-in NTL function performing ModComp1 than in our implementation of ModComp2.

Algorithm Aktin1992

` ℘, ℘̃ exponential ℘k g
naive fast

1013 88.4 1.2 72.3 4.4
2039 See 370.1 4.9 304.9 17.7
3019 Table 2 955.9 5.1 755.8 38.9
4001 1503 5.2 1218.9 67.6
5021 3180 10.8 2506.4 108.7

Table 6. Atkin’s original algorithm, variations for exp(F)

Algorithm AtkinModComp

` ℘, ℘̃ exp(F) I1−` modular composition g
ModComp1 ModComp2

1013 1.2 2.7 14.3 35.6 0.2
2039 See 2.5 6.6 45.8 111.9 0.4
3019 Table 2 5.1 10.4 95.3 241 0.7
4001 5.2 11.6 143.2 338 0.9
5021 10.9 20.9 240 642 1.4

Table 7. Atkin’s algorithm with modular composition

17

Notice that in all the columns labelled “fast” in Tables 2–7, the timings reflect the already
mentioned (piecewisely almost constant) behaviour of the FFT: polynomial multiplication
in the degree range 1024–2047 is roughly twice as fast as in the range 2047–4095 and roughly
four times as fast as in the range 4096–8191.

Finally, Table 8 gives timings for Stark’s algorithm Stark1972; apart from the common
computation of ℘ and ℘̃, we distinguish the time necessary to compute all inverses (the qua-
dratic algorithm when available, followed by that using fast inversion) and that for deducing
the polynomials qn.

` ℘, ℘̃ Inverses qn

quadratic fast
1013 23542 1222.7 28.0
2039 See ?? 5113.4 116.9
3019 Table 2 ?? 12182 258
4001 ?? 20388 418.6
5021 ?? 38910 663.1

Table 8. Stark’s algorithm Stark1972

Acknowledgments. We thank Pierrick Gaudry for his remarks during the elaboration of
the ideas contained in this work.

References

[1] C. Alonso, J. Gutierrez, and T. Recio. A rational function decomposition algorithm by near-separated
polynomials. Journal of Symbolic Computation, 19(6):527–544, 1995.

[2] A. O. L. Atkin. The number of points on an elliptic curve modulo a prime (II). Draft. Available at
http://listserv.nodak.edu/archives/nmbrthry.html, July 1992.

[3] D. J. Bernstein. Composing power series over a finite ring in essentially linear time. Journal of Symbolic
Computation, 26(3):339–341, 1998.

[4] I. Blake, G. Seroussi, and N. Smart. Elliptic curves in cryptography, volume 265 of London Mathematical
Society Lecture Notes Series. Cambridge University Press, 1999.

[5] R. P. Brent. Multiple-precision zero-finding methods and the complexity of elementary function evalua-
tion. In Analytic computational complexity, pages 151–176. Academic Press, New York, 1976. Proceed-
ings of a Symposium held at Carnegie-Mellon University, Pittsburgh, Pa., 1975.

[6] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun. Fast solution of Toeplitz systems of equations and
computation of Padé approximants. Journal of Algorithms, 1(3):259–295, 1980.

[7] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. Journal of the ACM,
25(4):581–595, 1978.

[8] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary algebras. Acta
Informatica, 28(7):693–701, 1991.

[9] L. S. Charlap, R. Coley, and D. P. Robbins. Enumeration of rational points on elliptic curves over finite
fields. Draft, 1991.

[10] S. Cook. On the minimum computation time of functions. PhD thesis, Harvard University, 1966.
[11] J.-M. Couveignes. Quelques calculs en théorie des nombres. Thèse, Université de Bordeaux I, July 1994.
[12] J.-M. Couveignes. Computing l-isogenies using the p-torsion. In H. Cohen, editor, Algorithmic Num-

ber Theory, volume 1122 of Lecture Notes in Computer Science, pages 59–65. Springer-Verlag, 1996.
Proceedings of the Second International Symposium, ANTS-II, Talence, France, May 1996.

[13] J.-M. Couveignes. Isomorphisms between Artin-Schreier towers. Mathematics of Computation,
69(232):1625–1631, 2000.

18

[14] J.-M. Couveignes, L. Dewaghe, and F. Morain. Isogeny cycles and the Schoof-Elkies-Atkin algorithm.
Research Report LIX/RR/96/03, LIX, April 1996. Available at http://www.lix.polytechnique.fr/
Labo/Francois.Morain/.

[15] J.-M. Couveignes and T. Henocq. Action of modular correspondences around CM points. In C. Fieker
and D. R. Kohel, editors, Algorithmic Number Theory, volume 2369 of Lecture Notes in Computer
Science, pages 234–243. Springer-Verlag, 2002. Proceedings of the 5th International Symposium, ANTS-
V, Sydney, Australia, July 2002.

[16] J.-M. Couveignes and F. Morain. Schoof’s algorithm and isogeny cycles. In L. Adleman and M.-D.
Huang, editors, Algorithmic Number Theory, volume 877 of Lecture Notes in Computer Science, pages
43–58. Springer-Verlag, 1994. 1st Algorithmic Number Theory Symposium - Cornell University, May
6-9, 1994.

[17] L. Dewaghe. Isogénie entre courbes elliptiques. Utilitas Mathematica, 55:123–127, 1999.
[18] N. D. Elkies. Explicit isogenies. Draft, 1992.
[19] N. D. Elkies. Elliptic and modular curves over finite fields and related computational issues. In D. A.

Buell and J. T. Teitelbaum, editors, Computational Perspectives on Number Theory: Proceedings of a
Conference in Honor of A. O. L. Atkin, volume 7 of AMS/IP Studies in Advanced Mathematics, pages
21–76. American Mathematical Society, International Press, 1998.

[20] M. Fouquet and F. Morain. Isogeny volcanoes and the SEA algorithm. In C. Fieker and D. R. Kohel,
editors, Algorithmic Number Theory, volume 2369 of Lecture Notes in Computer Science, pages 276–291.
Springer-Verlag, 2002. Proceedings of the 5th International Symposium, ANTS-V, Sydney, Australia,
July 2002.

[21] S. Galbraith. Constructing isogenies between elliptic curves over finite fields. Journal of Computational
Mathematics, 2:118–138, 1999.

[22] J. von zur Gathen and J. Gerhard. Modern computer algebra. Cambridge University Press, 1999.
[23] J. Gutierrez and T. Recio. A practical implementation of two rational function decomposition algo-

rithms. In Proceedings ISSAC’92, pages 152–157. ACM, 1992.
[24] D. Jao, S. D. Miller, and R. Venkatesan. Do all elliptic curves of the same order have the same difficulty

of discrete log? In Bimal Roy, editor, Advances in Cryptology – ASIACRYPT 2005, volume 3788 of
Lecture Notes in Computer Science, pages 21–40, 2005. 11th International Conference on the Theory
and Application of Cryptology and Information Security, Chennai, India, December 4-8, 2005.

[25] E. Kaltofen and V. Shoup. Subquadratic-time factoring of polynomials over finite fields. Mathematics
of Computation, 67(223):1179–1197, 1998.

[26] K. S. Kedlaya. Counting points on hyperelliptic curves using Monsky-Washnitzer cohomology. Journal
of the Ramanujan Mathematical Society, 16(4):323–338, 2001.

[27] D. Kohel. Endomorphism rings of elliptic curves over finite fields. PhD thesis, University of California
at Berkeley, 1996.

[28] H. T. Kung. On computing reciprocals of power series. Numerische Mathematik, 22:341–348, 1974.
[29] R. Lercier. Computing isogenies in F2n . In H. Cohen, editor, Algorithmic Number Theory, volume 1122

of Lecture Notes in Computer Science, pages 197–212. Springer Verlag, 1996. Proceedings of the Second
International Symposium, ANTS-II, Talence, France, May 1996.

[30] R. Lercier. Algorithmique des courbes elliptiques dans les corps finis. Thèse, École polytechnique, June
1997.

[31] R. Lercier and F. Morain. Computing isogenies between elliptic curves over Fpn using Couveignes’s
algorithm. Mathematics of Computation, 69(229):351–370, January 2000.

[32] F. Morain. Calcul du nombre de points sur une courbe elliptique dans un corps fini : aspects algorith-
miques. Journal de Théorie des Nombres de Bordeaux, 7(1):255–282, 1995.

[33] V. Müller. Ein Algorithmus zur Bestimmung der Punktanzahl elliptischer Kurven über endlichen
Körpern der Charakteristik größer drei. PhD thesis, Technischen Fakultät der Universität des Saar-
landes, 1995.

[34] Alexander R. and Anton S. Public-key cryptosystem based on isogenies. Cryptology ePrint Archive,
Report 2006/145, 2006. http://eprint.iacr.org/.

[35] T. Satoh. The canonical lift of an ordinary elliptic curve over a finite field and its point counting. Journal
of the Ramanujan Mathematical Society, 15:247–270, 2000.

19

[36] A. Schönhage. The fundamental theorem of algebra in terms of computational complexity. Technical
report, Mathematisches Institut der Universität Tübingen, 1982. Preliminary report.

[37] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing, 7:281–292, 1971.
[38] R. Schoof. Counting points on elliptic curves over finite fields. Journal de Théorie des Nombres de

Bordeaux, 7(1):219–254, 1995.
[39] V. Shoup. A new polynomial factorization algorithm and its implementation. Journal of Symbolic Com-

putation, 20(4):363–397, 1995.
[40] V. Shoup. The Number Theory Library. 1996–2005. http://www.shoup.net/ntl.
[41] M. Sieveking. An algorithm for division of powerseries. Computing, 10:153–156, 1972.
[42] J. H. Silverman. The arithmetic of elliptic curves, volume 106 of Graduate Texts in Mathematics.

Springer, 1986.
[43] H. M. Stark. Class-numbers of complex quadratic fields. In W. Kuyk, editor, Modular functions of

one variable I, volume 320 of Lecture Notes in Mathematics, pages 155–174. Springer Verlag, 1973.
Proceedings International Summer School University of Antwerp, RUCA, July 17-Agust 3, 1972.

[44] E. Teske. An elliptic trapdoor system. Journal of Cryptology, 19(1):115–133, 2006.
[45] J. Vélu. Isogénies entre courbes elliptiques. Comptes-Rendus de l’Académie des Sciences, Série I,

273:238–241, juillet 1971.
[46] R. Zippel. Rational function decomposition. In Stephen M. Watt, editor, Symbolic and algebraic com-

putation, pages 1–6, New York, 1991. ACM Press. Proceedings of ISSAC’91, Bonn, Germany.

20

