MPRI: 2.12.2

F. MORAIN

Exercise sheet #1; September 30, 2019

Exercises

Exercise 1. Consider Fibonacci's sequence defined by the formulas: $F_0 = 0$, $F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$. Give an algorithm for computing F_n in $O(\log n)$ operations. Program this algorithm. What is the value of F_{100} ?

Exercise 2. Let *a* and *b* be two integers such that $0 \le a, b < M_n = 2^n - 1$. Explain how to speed up the computation of *ab* modulo M_n . Same question with $0 \le a, b < P_n = 2^n + 1$ and the computation of *ab* mod P_n .

Exercise 3. Let N > 0 be an integer and R an integer > N and prime to N. Define ϕ which associates to $x \in \mathbb{Z}/N\mathbb{Z}$ the quantity

$$\phi(x) = (xR \bmod N).$$

(a) Let u and v be two integers satisfying uR - vN = 1. Let T be an integer such that 0 < T < RN. Now consider the function given in Figure 1.

\mathbf{Al}	gorithm	1:	The	REDC	function.
---------------	---------	----	-----	------	-----------

Function $REDC(N, R, T)$				
Input : N, \dot{R}, T three integers				
Output: $(TR^{-1}) \mod N$				
$m \leftarrow ((T \mod R) * v) \mod R;$				
$t \leftarrow (T + m * N) \div R;$				
if $t \ge N$ then				
return $t - N;$				
else				
return t ;				

Show that REDC (N, R, T) returns the integer $x = (TR^{-1}) \mod N, 0 \le x < N$.

(b) Let f be an arithmetical operation (addition, division, etc.). Define $\phi[f]$ as

$$\phi[f](\phi(x),\phi(y)) = \phi(f(x,y)).$$

Compute $\phi[+], \phi[-]$.

(c) Prove that

$$\phi[\times](\phi(x),\phi(y)) = REDC(N,R,\phi(x) \times \phi(y)).$$

(d) Write a modular exponentiation algorithm using ϕ and implement it.

(e) Suppose that N is odd and written in base $B = 2^{32}$ (or $B = 2^{64}$). Explain how to choose R with care so that computations with REDC be the fastest possible. What is the interest of this method?

Exercise 4. Let $n \ge 1$, a and e two integers $< 2^n$. Consider the algorithm of Figure 2.

```
Function P(a, e)
Input : a, e two integers < 2^n
 Output: ?
 g \leftarrow \gcd(a, e);
if g = 1 then
 return (1, a);
G \leftarrow g^{2^k} \mod a \text{ avec } k = \lceil \log n / \log 2 \rceil;
u \leftarrow \operatorname{pgcd}(G, a); v \leftarrow a/u;
return (u, v).
```

- (a) Execute the algorithm on (a, e) = (16, 210), (a, e) = (5040, 231).
- (b) What does this algorithm compute?
- (c) Justify your claim.

Exercise 5. (The p+1 method) For n a positive integer, the n-th Cheyshev polynomial (in $\mathbb{Z}[X]$ is defined as the unique monic polynomial of degree n such that $V_n(x+1/x) = x^n + 1/x^n$.

- (a) Compute $V_n(X)$ for $n \in \{0, 1, 2\}$.
- (b) Prove that for all m, n, one has $V_{nm}(X) = V_m(V_n(X))$.
- (c) Show that for all $m \ge n$:

$$V_m(X)V_n(X) = V_{m+n}(X) + V_{m-n}(X).$$

(d) Compute $V_{2n}(X)$ as a function of $V_n(X)$.

(e) Give an algorithm in $O(\log M)$ for computing $V_M(a) \mod N$, where *a* is given and $M \ge 0$. (f) Suppose that *p* is a prime and *a* chosen such that $\left(\frac{a^2-4}{p}\right) = -1$. Show that $V_{p+1}(a) = 2 \mod p$. (g) Design an algorithm for factoring the integer *N*, assuming the one of the prime divisors *p* of N is such that p+1 is smooth.