MPRI – cours 2.12.2 F. Morain

- Lab, 2018/90/25
- 1. Describe all composite numbers N for which all elements $a \in (\mathbb{Z}/N\mathbb{Z})^* \{1\}$ have even order.
- 2. Let G be a finite Abelian group, and $x \in G$. Prove that the order of x is ω if and only if i) $a^{\omega} = 1_G$;
 - ii) for all prime $p \mid \omega, a^{\omega/p} \neq 1_G$.
- 3. Assume the following result: $(\mathbb{Z}/N\mathbb{Z})^*$ is cyclic iff $N = 2, 4, p^{\alpha}, 2p^{\alpha}$ for odd p.
- a) Prove that N is prime if and only if $(\mathbb{Z}/N\mathbb{Z})^*$ is cyclic of ordre N-1, or in other words iff there exists a s.t.

$$\left. \begin{array}{l} a^{N-1} \equiv 1 \bmod N \\ \forall \ p \mid N-1, \ a^{\frac{N-1}{p}} \not\equiv 1 \bmod N \end{array} \right\}$$

b) What is the complexity of the algorithm that you can deduce from a)? What is the complexity of checking the data?

- 4. For N an integer, put $P(N) = \#\{a \in (\mathbb{Z}/N\mathbb{Z})^*, a^{N-1} \equiv 1 \mod N\}$.
- a) Compute P(N) for $N = \prod_i p_i^{\alpha_i}$.
- b) Prove that there are numbers for which $P(N) = \varphi(N)$.

Consider the following function: **function** isComposite(N)

- 1. Choose a at random in $\mathbb{Z}/N\mathbb{Z} \{0\}$.
- 2. Compute g = gcd(a, N); if g > 1, then return (yes, $g \mid N$).
- 3. if $a^{N-1} \not\equiv 1 \mod N$, then return (yes, a) otherwise return I don't know.
- i) What happens when N is prime?
- ii) What is the probability that the test answers I don't know?
- 5. a) Let N be a composite number and suppose $p \mid N$ and $p-1 \mid B!$. How can we factor N?
- b) Suppose $p \mid N$, but p 1 = Qs with $Q \mid B!$ and s prime in]B, B']. Show how one can factor N.
- c) Compute the complexity of the preceding algorithm for finding s. Can you do better?
- 6. DLP: Given $h \in G = \langle g \rangle$ of order N, find an integer $n, 0 \leq n < N$ such that $h = g^n$.
- a) Show that finding n is equivalent to finding n mod p^{α} for each $p^{\alpha} \parallel N$.
- b) Give a simple algorithm to solve the problem.
- c) Give a faster algorithm. What is its complexity?