Algorithmes arithmétiques pour la cryptologie — 9 Octobre 2018, Paris

Attacks on pairings (NFS)

Razvan Barbulescu CNRS et IMJ-PRG

R. Barbulescu — Attacks on pairings (NFS)

Three-party Diffie-Hellman

Problem

Alice, Bob and Carol use a public elliptic curve E and a pairing e with respect to a point P. Each of the participants broadcast simultaneously an information in a public channel. How can they agree on a common key ?

Joux's protocol

- 1. Simultaneously, each participant generates a random integer in [0, r 1] and broadcasts a multiple of P:
 - Alice generates *a* and computes [*a*]*P*;
 - Bob generates *b* and computes [*b*]*P*;
 - Carol generates c and computes [c]P;
- 2. Simultaneously, each participant computes the pairing of the received information and computes the common key:
 - Alice computes $e([b]P, [c]P)^a$;
 - Bob computes $e([c]P, [a]P)^b$;
 - Carol computes $e([a]P, [b]P)^c$;

Common secret key: μ^{abc} .

Multi-linear maps

Applications

- Zero-knowledge proof;
- identity based encryption;
- short signature;
- etc.

Mathematical realization

- lattice-based maps
- elliptic curve pairings
 - in 2000 it was proposed by Sakai, Ohgishi and Kasahara and later by Joux, and key sizes were proposed based on a hypothesis;
 - in 2012 the NIST studied them for standardization and in 2013 Boneh, Franklin and Joux received the Gödel prize;
 - between 2013 and 2016 there were attacks which invalidated the key sizes;
 - currently, key sizes are being updated and new implementations are proposed.

Multi-linear maps

Applications

- Zero-knowledge proof;
- identity based encryption;
- short signature;
- etc.

Mathematical realization

- lattice-based maps (attacks in 2016-2017)
- elliptic curve pairings
 - in 2000 it was proposed by Sakai, Ohgishi and Kasahara and later by Joux, and key sizes were proposed based on a hypothesis;
 - in 2012 the NIST studied them for standardization and in 2013 Boneh, Franklin and Joux received the Gödel prize;
 - between 2013 and 2016 there were attacks which invalidated the key sizes;
 - currently, key sizes are being updated and new implementations are proposed.

Security

Pairings security

The security of pairings based cryptosystems relies on the difficulty of

- elliptic curves discrete logarithms;
- finite fields discrete logarithm.

Embedding degree

If a paring is such that

$$E_1/\mathbb{F}_Q[r] \times E_2/\mathbb{F}_Q[r] \to (\mathbb{F}_{Q^n})^*$$

then *n* is called the embedding degree. If *Q* is prime and n > 1 then it is a different problem than behind DSA;

Required: DLP(curve over \mathbb{F}_p) \approx DLP(finite field \mathbb{F}_{p^k})

Discrete logarithm

Definition

Given g and g^x , find x if possible (here G is a known group of known order).

Generic algorithm

A combination of Pohlig-Hellman reduction and Pollard's rho solves DLP in a generic group G after $O(\sqrt{r})$ operations, where r is the largest prime factor of #G.

Relation to pairings

A pairing $e: \langle P \rangle \times \langle P \rangle \rightarrow K(\mu)$ is safe only if

- 1. DLP in E[r] is hard; (DLP on elliptic curves) if $\log_2 \# G = n$, $cost=2^{\frac{n}{2}}$
- 2. DLP in $K(\mu)$ is hard. (DLP in finite fields) if $\log_2 \# K(\mu) = n$, $\operatorname{cost} \approx \exp(\sqrt[3]{n})$

Cryptographic sizes before 2018

Key sizes

security (bits)	key size RSA	key size ECDSA	quotient
80	1024	160	6
128	3072	256	12
256	15360	512	30

Pairings

- discrete log problem over elliptic curves (DSA) must be as hard as discrete log in \mathbb{F}_{p^n} (RSA under the assumption that it is as hard as factoring);
- most important cases: $2 \le n \le 30$;
- very fast construction (Barreto-Naehrig) at n = 12.

Chronology of DLP in finite fields

Index Calculus

- \mathbb{F}_p , 1977, Adleman
- \mathbb{F}_{2^n} , 1982, Hellman Reyneri, use polynomials instead of numbers
- \mathbb{F}_{p^n} , 1994, Hellman for n = 2 then Adleman DeMarrais, $\mathbb{F}_{p^n} = \mathbb{Z}[\iota]/p\mathbb{Z}[\iota]$.

NFS and FFS

- \mathbb{F}_p , 1990, Gordon / Schirokauer
- \mathbb{F}_{2^n} , 1994, Adleman, use polynomials instead of numbers
- \mathbb{F}_{p^n} ,
 - 2000, Schirokauer, 𝔽_{pⁿ} = ℤ[ι]/pℤ[ι] (rehabilitated in 2015 by B., Gaudry and Kleinjung).
 - 2006, Joux Lercier Smart Vercauteren, modify polynomial selection (JLSV)
 - 2016, Kim and B., combiner TNFS and JLSV: exTNFS

The number field sieve(NFS): diagram

NFS for DLP in \mathbb{F}_p

Let $f, g \in \mathbb{Z}[x]$ be two irreducible polynomials which have a common root *m* modulo *p*.

The number field sieve(NFS): diagram

NFS for DLP in \mathbb{F}_p

Let $f, g \in \mathbb{Z}[x]$ be two irreducible polynomials which have a common root *m* modulo *p*.

The NFS algorithm for \mathbb{F}_p

 $F(a,b) = \sum_{i=0}^{d} f_i a^i b^{d-i}$ where $d = \deg f$ and $G(a,b) = g_1 a + g_0 b$.

Input a finite field \mathbb{F}_p , two elements t (generator) and s**Output** $\log_t s$

- 1: (Polynomial selection) Choose two polynomials f and g in $\mathbb{Z}[x]$ which have a common root modulo p;
- 2: (Sieve) Collect relatively prime pairs (a, b) such that F(a, b) and G(a, b) are B-smooth (for a parameter B);
- 3: Write a linear equation for each pair (a, b) found in the Sieve stage.
- 4: (Linear algebra) Solve the linear system to find (virtual) logarithms of the prime ideals of norm less than *B*;
- 5: (Individual logarithm) Write $\log_t s$ in terms of the previously computed logs.

Why is the polynomial selection important?

Cost of algorithms of the Index Calculus family

where norms' size is

- p in Index Calculus;
- $B^3 p^{\frac{1}{2}}$ for Gaussian integers (complexity $L_p(\frac{1}{2})$);
- $B^{d+1}p^{\frac{1}{d}}$ for NFS in \mathbb{F}_p (complexity $L_p(\frac{1}{3})$);
- norms product for NFS in \mathbb{F}_{p^n} when n>1

Norms' product

If $f = f_d x^d + \cdots + f_1 x + f_0$ then

$$|\mathsf{N}_f(a+blpha_f)|=|f_da^d+\cdots+f_1ab^{d-1}+f_0b^d|\leq (d+1)B^d\|f\|$$
 .

The bit size of the norm's product is very well approximated by $(\deg f + \deg g) + \log_2 ||f|| + \log_2 ||g||$.

The polynomial selection task

Fix deg f and deg g as small as possible (or try all possibilities, in practice the optimal choices are ≤ 10 , then find f and g of small coefficients. **Intuitively in favor of the hypothesis of 2000** : when $k \geq 2$ we have the extra condition min(deg f, deg g) $\geq n$ which makes the task harder.

The idea of Joux Lercier Smart Vercauteren

Polynomial selection

Select f and g which have a common root factor φ of degree n modulo p.

The idea of Joux Lercier Smart Vercauteren

Polynomial selection

Select f and g which have a common root factor φ of degree n modulo p.

JLSV in practice

Modifications

The only modification is the polynomial selection (done in sage or magma) and the fact that in the sieve we have two non-linear polynomials.

- the implementation of Joux and Lercier was so even for \mathbb{F}_p ;
- CADO-NFS supports two non-linear polynomials since 2014).

Records

- 2006, Joux Lercier Smart Vercauteren, \mathbb{F}_{p^3} , 120dd.
- 2014, Barbulescu Gaudry Guillevic Morain, \mathbb{F}_{p^2} , 180dd.
- 2015, Barbulescu Gaudry Guillevic Morain, \mathbb{F}_{p^4} , 120dd.
- 2015, Barbulescu Gaudry Guillevic Morain, 𝔽_{p³} and again Guillevic, Thomé, Morain (2016) 156dd.
- 2017, Gremy, Guillevic Morain and Thomé, \mathbb{F}_{p^6} using 3*d* sieving (Gremy implemented it in the nfs-hd branch of CADO-NFS since 2016) 132dd

Important tool

Theorem (Lenstra, Lenstra, Lovasz)

Let $M \in \mathcal{M}_n(\mathbb{Z})$ define a lattice. Then one can compute in polynomial time a vector of euclidean norm less than $2^{\frac{n-1}{4}} |\det M|^{\frac{1}{n}}$.

Corollary (rational reconstruction (also called continued fractions)) For any integer a and prime p one can compute two integers u and v so that

$$a \equiv \frac{u}{v} \mod p$$

and $|u|, |v| \le 2^{\frac{1}{4}}\sqrt{p}$.

Important tool

Theorem (Lenstra, Lenstra, Lovasz)

Let $M \in \mathcal{M}_n(\mathbb{Z})$ define a lattice. Then one can compute in polynomial time a vector of euclidean norm less than $2^{\frac{n-1}{4}} |\det M|^{\frac{1}{n}}$.

Corollary (rational reconstruction (also called continued fractions)) For any integer a and prime p one can compute two integers u and v so that

$$a \equiv \frac{u}{v} \mod p$$

and $|u|, |v| \leq 2^{\frac{1}{4}}\sqrt{p}$. Proof: Apply LLL to

$$M = \begin{pmatrix} a & 1 \\ p & 0 \end{pmatrix}$$

Indeed, the generated lattice is included in $\{(u, v) \in \mathbb{Z}^2 \mid av - u \equiv 0[p]\}$.

Polynomial selection : JLSV₁

Raw variant

- 1. Select $f \in \mathbb{Z}[x]$ of degree *n* irreducible modulo *p*;
- 2. Set g = f + p.

information theory: f and g are optimal.

Practical variant

- 1. Take $f_0, f_1 \in \mathbb{Z}[x]$ so that deg $f_0 = n$ and deg $f_1 < n$.
- 2. Take $a \ge 2^{\frac{1}{4}}\sqrt{p}$ as small as possible so that $f := f_0 + af_1$ is irreducible modulo p.
- 3. Compute the rational reconstruction $a \equiv u/v \mod p$ and set $g := vf_0 + uf_1$.

justification: LLL cannot return a/1 as rational reconstruction.

Polynomial selection : Conjugation (part I)

Idea

• $\sqrt{3}$ in \mathbb{F}_p has a representative which is larger than $2^{\frac{1}{4}}p^{\frac{1}{2}}$ so the LLL theorem cannot return the rational reconstruction

$$\sqrt{3} \equiv \sqrt{3}/1 \mod p.$$

• A polynomial $f_0 + \sqrt{3}f_1$ is not allowed but we can **conjugate** it to obtain $(f_0 + \sqrt{3}f_1)(f_0 - \sqrt{3}f_1) = f_0^2 - 3f_1^2 \in \mathbb{Z}[x].$

Conjugation algorithm

- 1. Take $f_0, f_1 \in \mathbb{Z}[x]$ so that deg $f_0 = n$ and deg $f_1 < n$.
- 2. Take a < p non-square so that \sqrt{a} exists in \mathbb{F}_p and $\varphi := f_0 + \sqrt{a}f_1$ is irreducible modulo p.
- 3. Set $\varphi = f_0^2 a f_1^2$.
- 4. Compute the rational reconstruction $\sqrt{a} \equiv \frac{u}{v} \mod p$ and set $g := vf_0 + uf_1$.

justification: f and g share the factor φ modulo p.

Polynomial selection : Conjugation (part II)

Example

Discrete logarithm in \mathbb{F}_{p^2} of 180 decimal digits Consider DLP in \mathbb{F}_{p^2} where $p = |\pi \cdot 10^{89}| + 14905741$

• GJL : $f = x^4 + x - 1$ and

- $g = 559473469462407609487884994103807929466175004x^{3}$ +79866641850329856433972092304608878381464121 x^{2} +52391486839645529970296074400426159302999066x-140985078126918434544107335150321349526616620.
- Conjugation : $f = x^4 + 1$ and
 - $g = 448225077249286433565160965828828303618362474x^2$

-296061099084763680469275137306557962657824623x;

448225077249286433565160965828828303618362474.

 \mathbb{F}_{p^2} (Conjugation) was 160 times faster than \mathbb{F}_p (GJL)

Domain of application

- $N_f = E^{2n}$ and $N_g = E^n(p^n)^{\frac{1}{2n}}$ instead of $E^d N^{\frac{1}{d+1}}$ and $EN^{\frac{1}{d+1}}$ for the prime case;
- When $n = \frac{1}{12} \frac{-1}{3} (\frac{\log p^n}{\log \log p^n})^{\frac{1}{3}}$ the complexity is $L_{p^n}(1/3, \sqrt[3]{48/9})$ instead of $\geq L_{p^n}(1/3, \sqrt[3]{64/9}).$

R. Barbulescu — Attacks on pairings (NFS)

TNFS diagram

NFS for **DLP** in \mathbb{F}_p

Let $f, g \in \mathbb{Z}[x]$ be two irreducible polynomials which have a common root m modulo p.

TNFS diagram

NFS for DLP in \mathbb{F}_p

Let $f, g \in \mathbb{Z}[x]$ be two irreducible polynomials which have a common root m modulo p.

Let $h \in \mathbb{Z}[x]$ be a monic irreducible polynomial of degree k such that p is inert in its number field $\mathbb{Q}(\iota)$; we have $\mathbb{Z}[\iota]/p\mathbb{Z}[\iota] \simeq \mathbb{F}_{p^k}$.

TNFS diagram

NFS for DLP in \mathbb{F}_{p^k}

Let $f, g \in \mathbb{Z}[x]$ be two irreducible polynomials which have a common root m modulo p.

Let $h \in \mathbb{Z}[x]$ be a monic irreducible polynomial of degree k such that p is inert in its number field $\mathbb{Q}(\iota)$; we have $\mathbb{Z}[\iota]/p\mathbb{Z}[\iota] \simeq \mathbb{F}_{p^k}$.

Relation collection

Reminder of NFS

Enumerate pairs (a, b) in $\mathbb{Z} \times \mathbb{Z}$ without common divisors such that F(a, b) and G(a, b) are *B*-smooth for a parameter *B*.

TNFS

- Enumerate pairs (a, b) in Z[ι] × Z[ι] without common divisors such that N_{Q(ι)/Q}(F(a, b)) and N_{Q(ι)/Q}(G(a, b)) are B-smooth for the same parameter B as in NFS.
- In particular for the first example, we enumerate $(a, b) \in \mathbb{Z}[i] \times \mathbb{Z}[i]$ and search those where

 $(\operatorname{Re} F(a, b))^2 + (\operatorname{Im} F(a, b))^2$ and $(\operatorname{Re} G(a, b))^2 + (\operatorname{Im} G(a, b))^2$

are B-smooth.

Relation collection

Reminder of NFS

Enumerate pairs (a, b) in $\mathbb{Z} \times \mathbb{Z}$ without common divisors such that F(a, b) and G(a, b) are *B*-smooth for a parameter *B*.

TNFS

- Enumerate pairs (a, b) in Z[ι] × Z[ι] without common divisors such that N_{Q(ι)/Q}(F(a, b)) and N_{Q(ι)/Q}(G(a, b)) are B-smooth for the same parameter B as in NFS.
- In particular for the first example, we enumerate $(a, b) \in \mathbb{Z}[i] \times \mathbb{Z}[i]$ and search those where

$$(\operatorname{Re} F(a, b))^2 + (\operatorname{Im} F(a, b))^2$$
 and $(\operatorname{Re} G(a, b))^2 + (\operatorname{Im} G(a, b))^2$

are B-smooth.

We collect smooth values of polynomials with 2n-variables.

The extended TNFS (Kim B. 2016)

exTNFS algorithm

constraints: $n = \eta \kappa$ with $gcd(\eta, \kappa) = 1$

- 1. select *h* as in TNFS for $\mathbb{F}_{p^{\eta}}$;
- 2. select f and g as for $\mathbb{F}_{p^{\kappa}}$; put $k = \gcd(f \mod p, g \mod p)$;
- 3. continue the algorithm as for TNFS.

exTNFS diagram

Explication

k is irreducible over \mathbb{F}_p and, since $gcd(\eta, \kappa) = 1$, it is automatically irreducible over $\mathbb{F}_{p^{\eta}}$.

exTNFS diagram

Explication

k is irreducible over \mathbb{F}_p and, since $gcd(\eta, \kappa) = 1$, it is automatically irreducible over $\mathbb{F}_{p^{\eta}}$.

exTNFS with Conjugation

From Kim to Barbulescu small medium large TNFS exTNFS JLSV

exTNFS with Conjugation method

- idea: exTNFS can be used to extend to the left any case of NFS
- complexity: the best case of NFS is when $p = L_{p^n}(1/3, 12^{\frac{1}{3}})$ and one uses the Conjugation method

Theorem

If $n = \eta \kappa$, $gcd(\eta, \kappa) = 1$ and $\kappa = 12^{-\frac{1}{3}}$ then DLP can be solved in time $L_{p^n}(1/3, \sqrt[3]{48/9})$.

R. Barbulescu — Attacks on pairings (NFS)

The case of p of polynomial form and k composite : SexTNFS

Method when $p = \Pi(u)$

- 1. Enumerate polynomials S of degree $\leq n-1$ until $x^n + S(x) u$ is irreducible modulo p;
- 2. return $g = x^n + S(x) u$ and $f = \Pi(x^n + S(x))$

Correction: $f(x) - p = \Pi(x^n + S(x)) - \Pi(u) = (x^n + S(x) - u)(\cdots).$

Size of norms

The product of norms, which must be small, has size

 $E^{n(d+1)}Q^{\frac{1}{nd}},$

where E and Q are given.

 $\mathsf{exTNFS} + \mathsf{Joux}\text{-}\mathsf{Pierrot} = \mathsf{SexTNFS}$

Updated key sizes

Barbulescu-Duquesne 2018

100 bits of accurity

•	128 Dits of security:		
	family of pairings	old bit sizes	new bit sizes
	Barreto-Baehrig (BN)	3072	5534
	Barreto-Lynn-Scott k=12 (BLS12)	3072	5530
	Kachisa-Schaefer-Scott k=16 (KSS16)	3072	5281
	Kachisa-Schaefer-Scott k=18 (KSS18)	3072	6401
•	192 bits of security:		
	family of pairings	old bit sizes	new bit sizes
	Kachisa-Schaefer-Scott k=18 (KSS18)	8192	12200
	Barreto-Lynn-Scott k=24 (BLS24)	8192	13300
•	256 bits of security:		
	family of pairings	old bit sizes	new bit sizes
	Kachisa-Schaefer-Scott k=18 (KSS18)	15360	27000
	Barreto-Lynn-Scott k=24 (BLS24)	15360	27000

Depending on the feasability of quantum computer, pairings might be abandoned.