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Three-party Diffie-Hellman

Problem
Alice, Bob and Carol use a public elliptic curve E and a pairing e with respect to a
point P. Each of the participants broadcast simultaneously an information in a public
channel. How can they agree on a common key ?

Joux’s protocol

1. Simultaneously, each participant generates a random integer in [0, r − 1] and
broadcasts a multiple of P :
• Alice generates a and computes [a]P ;
• Bob generates b and computes [b]P ;
• Carol generates c and computes [c]P ;

2. Simultaneously, each participant computes the pairing of the received information
and computes the common key:
• Alice computes e([b]P , [c]P)a;
• Bob computes e([c]P , [a]P)b;
• Carol computes e([a]P , [b]P)c ;

Common secret key: µabc .
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Multi-linear maps

Applications

• Zero-knowledge proof;

• identity based encryption;

• short signature;

• etc.

Mathematical realization

• lattice-based maps

• elliptic curve pairings
• in 2000 it was proposed by Sakai, Ohgishi and Kasahara and later by Joux, and

key sizes were proposed based on a hypothesis;
• in 2012 the NIST studied them for standardization and in 2013 Boneh, Franklin

and Joux received the Gödel prize;
• between 2013 and 2016 there were attacks which invalidated the key sizes;
• currently, key sizes are being updated and new implementations are proposed.
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Security

Pairings security

The security of pairings based cryptosystems relies on the difficulty of

• elliptic curves discrete logarithms;

• finite fields discrete logarithm.

Embedding degree

If a paring is such that
E1/FQ [r ]× E2/FQ [r ]→ (FQn)∗

then n is called the embedding degree. If Q is prime and n > 1 then it is a different

problem than behind DSA;

Required: DLP(curve over Fp)≈ DLP(finite field Fpk)
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Discrete logarithm

Definition

Given g and g x , find x if possible (here G is a known group of known order).

Generic algorithm

A combination of Pohlig-Hellman reduction and Pollard’s rho solves DLP in a generic
group G after O(

√
r) operations, where r is the largest prime factor of #G .

Relation to pairings

A pairing e : 〈P〉 × 〈P〉 → K (µ) is safe only if

1. DLP in E [r ] is hard; (DLP on elliptic curves) if log2 #G = n, cost=2
n
2

2. DLP in K (µ) is hard. (DLP in finite fields) if log2 #K (µ) = n, cost≈ exp( 3
√
n)
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Cryptographic sizes before 2018

Key sizes

security (bits) key size RSA key size ECDSA quotient

80 1024 160 6

128 3072 256 12

256 15360 512 30

Pairings

• discrete log problem over elliptic curves (DSA) must be as hard as discrete log in
Fpn (RSA under the assumption that it is as hard as factoring);

• most important cases: 2 ≤ n ≤ 30;

• very fast construction (Barreto-Naehrig) at n = 12.
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Chronology of DLP in finite fields

Index Calculus

• Fp, 1977, Adleman

• F2n, 1982, Hellman Reyneri, use polynomials instead of numbers

• Fpn, 1994, Hellman for n = 2 then Adleman DeMarrais, Fpn = Z[ι]/pZ[ι].

NFS and FFS

• Fp, 1990, Gordon / Schirokauer

• F2n, 1994, Adleman, use polynomials instead of numbers

• Fpn,
• 2000, Schirokauer, Fpn = Z[ι]/pZ[ι] (rehabilitated in 2015 by B., Gaudry and

Kleinjung).
• 2006, Joux Lercier Smart Vercauteren, modify polynomial selection (JLSV)
• 2016, Kim and B., combiner TNFS and JLSV: exTNFS
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The number field sieve(NFS): diagram

NFS for DLP in Fp

Let f , g ∈ Z[x ] be two irreducible polynomials which have a common root m modulo p.

a − bx ∈ Z[x ]

Z/pZ

Z[x ]/〈f (x)〉 Z[x ]/〈g(x)〉
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The NFS algorithm for Fp

F (a, b) =
∑d

i=0 fia
ibd−i where d = deg f and G (a, b) = g1a + g0b.

Input a finite field Fp, two elements t (generator) and s
Output logt s

1: (Polynomial selection) Choose two polynomials f and g in Z[x ] which have a
common root modulo p;

2: (Sieve) Collect relatively prime pairs (a, b) such that F (a, b) and G (a, b) are
B-smooth (for a parameter B);

3: Write a linear equation for each pair (a, b) found in the Sieve stage.

4: (Linear algebra) Solve the linear system to find (virtual) logarithms of the prime
ideals of norm less than B ;

5: (Individual logarithm) Write logt s in terms of the previously computed logs.

R. Barbulescu — Attacks on pairings (NFS) 8 / 22



Why is the polynomial selection important?

Cost of algorithms of the Index Calculus family

where norms’ size is

• p in Index Calculus;

• B3p
1
2 for Gaussian integers (complexity Lp(12));

• Bd+1p
1
d for NFS in Fp (complexity Lp(13));

• norms product for NFS in Fpn when n > 1

Norms’ product

If f = fdx
d + · · ·+ f1x + f0 then

|Nf (a + bαf )| = |fdad + · · ·+ f1ab
d−1 + f0b

d | ≤ (d + 1)Bd‖f ‖ .

The bit size of the norm’s product is very well approximated by
(deg f + deg g) + log2‖f ‖+ log2‖g‖ .

The polynomial selection task

Fix deg f and deg g as small as possible (or try all possibilities, in practice the optimal
choices are ≤ 10, then find f and g of small coefficients.
Intuitively in favor of the hypothesis of 2000 : when k ≥ 2 we have the extra
condition min(deg f , deg g) ≥ n which makes the task harder.
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The idea of Joux Lercier Smart Vercauteren

Polynomial selection

Select f and g which have a common root factor ϕ of degree n modulo p.

a − bx ∈ Z[x ]

Fp[t]/〈ϕ〉 ' Fpn

Z[x ]/〈f (x)〉 Z[x ]/〈g(x)〉
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JLSV in practice

Modifications

The only modification is the polynomial selection (done in sage or magma) and the
fact that in the sieve we have two non-linear polynomials.

• the implementation of Joux and Lercier was so even for Fp;

• CADO-NFS supports two non-linear polynomials since 2014).

Records

• 2006, Joux Lercier Smart Vercauteren, Fp3, 120dd.

• 2014, Barbulescu Gaudry Guillevic Morain, Fp2, 180dd.

• 2015, Barbulescu Gaudry Guillevic Morain, Fp4, 120dd.

• 2015, Barbulescu Gaudry Guillevic Morain, Fp3 and again Guillevic, Thomé,
Morain (2016) 156dd.

• 2017, Gremy, Guillevic Morain and Thomé, Fp6 using 3d sieving (Gremy
implemented it in the nfs-hd branch of CADO-NFS since 2016) 132dd
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Important tool

Theorem (Lenstra, Lenstra, Lovasz)

Let M ∈Mn(Z) define a lattice. Then one can compute in polynomial time a vector

of euclidean norm less than 2
n−1
4 | detM | 1n .

Corollary (rational reconstruction (also called continued fractions))

For any integer a and prime p one can compute two integers u and v so that

a ≡ u

v
mod p

and |u|, |v | ≤ 2
1
4
√
p.

Proof: Apply LLL to

M =

(
a 1

p 0

)
.

Indeed, the generated lattice is included in {(u, v) ∈ Z2 | av − u ≡ 0[p]}.
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Polynomial selection : JLSV1

Raw variant

1. Select f ∈ Z[x ] of degree n irreducible modulo p;

2. Set g = f + p.

information theory: f and g are optimal.

Practical variant

1. Take f0, f1 ∈ Z[x ] so that deg f0 = n and deg f1 < n.

2. Take a ≥ 2
1
4
√
p as small as possible so that f := f0 + af1 is irreducible modulo p.

3. Compute the rational reconstruction a ≡ u/v mod p and set g := vf0 + uf1.

justification: LLL cannot return a/1 as rational reconstruction.
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Polynomial selection : Conjugation (part I)

Idea

•
√

3 in Fp has a representative which is larger than 2
1
4p

1
2 so the LLL theorem

cannot return the rational reconstruction

√
3 ≡
√

3/1 mod p.

• A polynomial f0 +
√

3f1 is not allowed but we can conjugate it to obtain
(f0 +

√
3f1)(f0 −

√
3f1) = f 20 − 3f 21 ∈ Z[x ].

Conjugation algorithm

1. Take f0, f1 ∈ Z[x ] so that deg f0 = n and deg f1 < n.

2. Take a < p non-square so that
√
a exists in Fp and ϕ := f0 +

√
af1 is irreducible

modulo p.

3. Set ϕ = f 20 − af 21 .

4. Compute the rational reconstruction
√
a ≡ u

v mod p and set g := vf0 + uf1.

justification: f and g share the factor ϕ modulo p.
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Polynomial selection : Conjugation (part II)
Example

Discrete logarithm in Fp2 of 180 decimal digits Consider DLP in Fp2 where
p = bπ · 1089c+ 14905741

• GJL : f = x4 + x − 1 and
g = 559473469462407609487884994103807929466175004x3

+79866641850329856433972092304608878381464121x2

+52391486839645529970296074400426159302999066x

−140985078126918434544107335150321349526616620.

• Conjugation : f = x4 + 1 and
g = 448225077249286433565160965828828303618362474x2

−296061099084763680469275137306557962657824623x

448225077249286433565160965828828303618362474.

;

Fp2 (Conjugation) was 160 times faster than Fp (GJL)

Domain of application

• Nf = E 2n and Ng = E n(pn)
1
2n instead of E dN

1
d+1 and EN

1
d+1 for the prime case;

• When n = 1
12

−1
3 ( log pn

log log pn )
1
3 the complexity is Lpn(1/3, 3

√
48/9) instead of

≥ Lpn(1/3, 3
√

64/9).
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TNFS diagram

NFS for DLP in Fp

Let f , g ∈ Z[x ] be two irreducible polynomials which have a common root m modulo p.

a − bx ∈ Z[x ]

Z/pZ ' Fp

Z[x ]/〈f (x)〉 = Z[αf ] Z[x ]/〈g(x)〉 = Z[αg ]
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TNFS diagram

NFS for DLP in Fp

Let f , g ∈ Z[x ] be two irreducible polynomials which have a common root m modulo p.

Let h ∈ Z[x ] be a monic irreducible polynomial of degree k such that p is inert in its
number field Q(ι); we have Z[ι]/pZ[ι] ' Fpk .

a − bx ∈ Z[x ]

Z/pZ' Fp

Z[x ]/〈f (x)〉 =Z[αf ] Z[x ]/〈g(x)〉 =Z[αg ]

x 7→ αf x 7→ αg

αf 7→ m αg 7→ m
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Relation collection

Reminder of NFS

Enumerate pairs (a, b) in Z× Z without common divisors such that F (a, b) and
G (a, b) are B-smooth for a parameter B .

TNFS

• Enumerate pairs (a, b) in Z[ι]× Z[ι] without common divisors such that
NQ(ι)/Q(F (a, b)) and NQ(ι)/Q(G (a, b)) are B-smooth for the same parameter B as
in NFS.

• In particular for the first example, we enumerate (a, b) ∈ Z[i ]× Z[i ] and search
those where

(ReF (a, b))2 + (ImF (a, b))2 and (ReG (a, b))2 + (ImG (a, b))2

are B-smooth.

We collect smooth values of polynomials with 2n-variables.
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The extended TNFS (Kim B. 2016)

Q

Q(ι)

Q(ι, αf ) Q(ι, αg)

h

gf

Fp

Fpη

F(pη)κ

h

k

exTNFS algorithm

constraints: n = ηκ with gcd(η, κ) = 1

1. select h as in TNFS for Fpη ;

2. select f and g as for Fpκ; put k = gcd(f mod p, g mod p);

3. continue the algorithm as for TNFS.
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exTNFS diagram

a − bx ∈ Z[ι][x ]

(Z[ι]/pZ[ι])[t]/〈k(t)〉 ' Fpηκ

Z[ι][x ]/〈f (x)〉 Z[ι][x ]/〈g(x)〉

Explication

k is irreducible over Fp and, since gcd(η, κ) = 1, it is automatically irreducible over Fpη .
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exTNFS with Conjugation
From Kim to Barbulescu

small medium large

TNFS

JLSVexTNFS

exTNFS

exTNFS with Conjugation method

• idea: exTNFS can be used to extend to the left any case of NFS

• complexity: the best case of NFS is when p = Lpn(1/3, 12
1
3 ) and one uses the

Conjugation method

Theorem

If n = ηκ, gcd(η, κ) = 1 and κ = 12−
1
3 then DLP can be solved in time

Lpn(1/3, 3
√

48/9).

R. Barbulescu — Attacks on pairings (NFS) 20 / 22



The case of p of polynomial form and k composite :
SexTNFS

Method when p = Π(u)

1. Enumerate polynomials S of degree ≤ n − 1 until xn + S(x)− u is irreducible
modulo p;

2. return g = xn + S(x)− u and f = Π(xn + S(x))

Correction: f (x)− p = Π(xn + S(x))− Π(u) = (xn + S(x)− u)(· · · ).

Size of norms
The product of norms, which must be small, has size

E n(d+1)Q
1
nd ,

where E and Q are given.

exTNFS + Joux-Pierrot = SexTNFS
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Updated key sizes

Barbulescu-Duquesne 2018

• 128 bits of security:
family of pairings old bit sizes new bit sizes

Barreto-Baehrig (BN) 3072 5534

Barreto-Lynn-Scott k=12 (BLS12) 3072 5530

Kachisa-Schaefer-Scott k=16 (KSS16) 3072 5281

Kachisa-Schaefer-Scott k=18 (KSS18) 3072 6401

• 192 bits of security:
family of pairings old bit sizes new bit sizes

Kachisa-Schaefer-Scott k=18 (KSS18) 8192 12200

Barreto-Lynn-Scott k=24 (BLS24) 8192 13300

• 256 bits of security:
family of pairings old bit sizes new bit sizes

Kachisa-Schaefer-Scott k=18 (KSS18) 15360 27000

Barreto-Lynn-Scott k=24 (BLS24) 15360 27000

Depending on the feasability of quantum computer, pairings might be abandoned.
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