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Notations

Elliptic curves

• equation (in Edwards form): x2 + y 2 = c2(1 + dx2y 2) where c , d ∈ K and
cd(1− c4d) 6= 0

• group law (when odd cardinality): (x1, y1) + (x2, y2) = ( x1y2+x2y1
c(1+dx1x2y1y2)

, y1y2−x1y2
c(1−dx1x2y1y2))

• cardinality (Hasse) :

|#{(x : y : z) ∈ P2(Fq) : x2z2 + y 2z2 = c2(z4 + dx2y 2)} − q − 1| ≤ 2
√
q

• scalar product : for any r and P , [r ]P = P + · · ·+ P (r times)
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Finding elliptic curves

Use in cryptography

• Elliptic curves are used in all group-based cryptography : ElGamal, Diffie-Hellman,
DSA. They are standardized since 1999.

• Curves are constructed as follows
• select the good size

• pick a random prime q of the good size

• pick random parameters c and d which define a curve E

• use the Schoof algorithm to compute the cardinality r

• test primality of r (if desired test primality of 2(q + 1)− r)
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Pairings

Definition

• E an elliptic curve over a field K

• r an integer

• P(x,y) a point on E so that [r ]P = (0, c) (neutral element).

• µ a unit of Φr in the algebraic closure of K

eE ,r ,P,µ : Z
rZP ×

Z
rZP → µZ/rZ

([a]P , [b]P) 7→ µab.

Properties of a pairing e

Non-degenerate bilinear map.

Computations of pairings

1. Theorem of Weil (1948): pairings can be defined in terms of divisors, without
computing a,b

2. Algorithm of Miller (1985): pairings evaluation is related to a ”fast
exponentiation” and has a polynomial complexity
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Three-party Diffie-Hellman

Problem
Alice, Bob and Carol use a public elliptic curve E and a pairing e with respect to a
point P . Each of the participants broadcast simultaneously an information in a public
channel. How can they agree on a common key ?

Joux’s protocol (2000)

1. Simultaneously, each participant generates a random integer in [0, r − 1] and
broadcasts a multiple of P :
• Alice generates a and computes [a]P ;
• Bob generates b and computes [b]P ;
• Carol generates c and computes [c]P ;

2. Simultaneously, each participant computes the pairing of the received information
and computes the common key:
• Alice computes e([b]P , [c]P)a;
• Bob computes e([c]P , [a]P)b;
• Carol computes e([a]P , [b]P)c ;

Common secret key: µabc .
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Embedding degree
Definition
Given E, K and r the embedding degree is the degree of the extension of K which
contains an r-th root of unity.

Pariring friendly elliptic curves

Let q be selected so that the discrete logarithm problem is just hard enough in the
elliptic curve. Then

• if k is too large, computations are slow (arithmetic in Fqk)

• if k is too small, the discrete logrithm in Fqk is too easy and the pairing is not safe.

Key sizes

security (bits) key size RSA key size ECDSA quotient

log2(qk) log2 r ≈ log2 q

80 1024 160 6

128 3072 256 12

256 15360 512 30

We need curves such that

• cardinality r = c × prime with c ≤ 10

• k donné
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CM method

Motivation

Theorem of Köblitz and Balusubramanian : a proportion of 1− o(1) of the curves
defined over Fq have k ≈ q.

We cannot take random curves, we must find families

Constructing pairings

Given an embedding degree k we construct a pairing-friendly curve E as follows:

1. find q, r and t subject to the CM equations in next slide; they are
• Fq is the field of coefficients
• E has q + 1− t points
• E has a subgroup of order r .

2. apply the complex method (Morain 1990) to construct a curve E corresponding to
q,r,t. The cost is O(h2+εD ) where hD is the class number of Q(

√
D) (for a random

D, hD '
√
D).
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CM equations

k given but some exceptions are allowed

Two primes q and r and a square-free integer D satisfy the CM conditions if

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2
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Super-singular curves

Idea
Take t = 0 and k = 2. Indeed,

1. Φk(t − 1) ≡ 0 (mod r) (true for all r because Φ2(−1) = 0)

2. q + 1− t ≡ 0 (mod r) (true for any divisor r of q + 1)

3. ∃y , 4q = Dy 2 + t2 (true for any q)

Limits

• if q = 2 or q = 3 we can have k ∈ {1, 2, 3, 4, 6} (but small characteristic and
hence subject to the quasi-polynomial time attack)

• if q ≥ 5 we have two possibilities
• k = 2 OK
• k = 1 but q = p2s and E or its twist are isomorphic to a pairing of embedding

degree 2 defined over ps (F(p2s)1=F(ps )2
).
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Cocks-Pinch

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2

Method

1. replace (2) by an equivalent equation

2. select r so that r ≡ 1 mod k and (−Dr ) = 1

3. solve (2) for y

4. solve (3) for q
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Cocks-Pinch

CM equations
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Dupont-Enge-Morain

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r) a + (t − 2)2 ≡ 0 (mod r) where a = Dy 2

3. ∃y , 4q = Dy 2 + t2

Method

1. replace (2) by an equivalent equation

2. compute R(a) = Rest(Φk(t − 1), a + (t − 2)2); enumerate a’s and take
• r a prime factor of R(a)
• compute gcd(Φk(t − 1) mod r , a + (t − 2)2 mod r) and obtain t if it is linear

3. solve (3) for q
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Sparse families (e.g. MNT)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r)

3. ∃y , 4q = Dy 2 + t2 generalized Pell equation (e.g. X 2 − 3Dy 2 = 24, where
X = 6x ± 3)

Method when ϕ(k) = 2 (example when k = 3)

1. put r = Φk(t − 1), which satisfies (1)

2. put q = r + t − 1, which satisfies (2)

3. put t = t(x), t linear, and note that this forces q = q(x), quadratic polynomial q
(e.g. t(x) = −1± 6x and q(x) = 12x2 − 1). This transforms (3) into a
generalized Pell equation

4. solve the generalized Pell equation to get y and x , and therefor q

Was generalized by Freeman to k = 10, where ϕ(k) = 4
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Complete families (e.g. BN)

CM equations

1. Φk(t − 1) ≡ 0 (mod r)

2. q + 1− t ≡ 0 (mod r) Dy 2 + (t − 2)2 ≡ 0 (mod r) Dy 2 + (t − 2)2 ≡ 0
(mod r)⇔ (

√
−Dy + (t − 2))(

√
−Dy − (t − 2) ≡ 0( mod r)

3. ∃y , 4q = Dy 2 + t2

1. replace (2) by an equivalent equation

2. • select r(x) ∈ Q[x ] so that Q[x ]/r(x) contains a root of x2 − D and a root of
Φk(x)

• take t = t(x) to be such that t − 1 is a kth root of unity mod r(x)

3. put y = t(x)/
√
−D which satisfies (2)

4. solve (3) for q

Note that we generate a large number of elliptic curves very quickly.
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Summary

Cocks-Pinch

MNT

fast pairings

small char.

BN,BLS,...

DEM

• Pinch-Cocks constructs all the fast pairings, but it is never in the fast case.

• Sparse families (e.g. MNT) construct many pairings but k = 2 and they are not
fast for the ≥ 80 bits of security.

• Dupond-Enge-Morain offers a very small number of pairings, which might be
target of subsequent attacks, impossible to tune them to be faster in practice.

We are left with small char and parametrized families (e.g. BN, BLS).
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Discrete logarithm problem (DLP)

DLP

Given P and [a]P find a.

Generic algorithm

A combination of Pohlig-Hellman reduction and Pollard’s rho solves DLP in a generic
group G after O(

√
r) operations, where r is the largest prime factor of #G .

Relation to pairings

A pairing e : 〈P〉 × 〈P〉 → K (µ) is safe only if

1. DLP in E [r ] is hard; (DLP on elliptic curves) if log2 #G = n, cost=2
n
2

2. DLP in K (µ) is hard. (DLP in finite fields) if log2 #K (µ) = n, cost≈ exp( 3
√
n)
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Small characteristic

Chronology

• December 2012: Joux creates “pinpointing” using Frobenius. The idea works for
any prime power q but he uses it for primes.

• February 2013: In the same time Joux and, in parallel, Göloğlu, Granger, McGuire,
Zumbrägel apply the idea to q = 2k and find logs of factor base in polynomial
time.

• In the same paper, Joux introduces techniques to reduce global time to L(1/4) and
for degree 2 polys he uses a factor base which has few instead of small elements.

• June 2013: Barbulescu, Gaudry, Joux, Thomé use this latter idea to create the
quasi-polynomial algorithm.

• October 2013: ECRYPT forbids pairings of small characteristic.

• 2014-2016 practical improvements and second quasi-poly algorithm (Joux, Pierrot,
Menezes, Adj, Kleinjung, Oliveira-H., Rodriguez-Henriquez, Granger, Zumbrägel).

• Two 128 bit pairings are broken in char 2 (Granger, Kleinjung, Zumbrägel 2014)
and 3 (Canales-Mart́ınez, Cortés, Menezes, Oliveira, Rivera-Zamarripa and
Rodŕıguez-Henŕıquez 2016).
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• Two 128 bit pairings are broken in char 2 (Granger, Kleinjung, Zumbrägel 2014)
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The case of Fk
p with non-small characteristic p

Chronology

• 2000: Schirokauer creates a variant of NFS where integers are replaced by
complex numbers of the form a + ib where a and b are integers. He asks if this
applies to parametrized primes (SNFS).

• 2013: Joux and Pierrot create a method of polynomial selection for classical NFS
which has a better asymptotic complexity.

• 2015: Barbulescu, Gaudry, Guillevic and Morain create a method of polynomial
selection for arbitrary form when k = 2 and k = 3.

• 2015: Barbulescu, Gaudry, Kleinjung rehabilitate Schirokauer’s TNFS.

• 2015-2016: Kim and later Barbulescu combine TNFS and the recent methods of
polynomial selection to obtain very good asymptotic complexities when k has a
factor 2 or 3 and, particularly good when additionally p has parametrized form.
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Change of keysizes by ignoring o(1)

key size

(in bits)

se
cu

ri
tt

y
(i

n
bi

ts
)

−

2930

−

3618

−

5004
−

7406

−

9241

−

12871

replace

3072

replace

8192

128−

192−

NFS
exTNFS

SexTNFS

This suggests that for BN one has to replace 3072 by 5004.
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Updating keysizes (joint work with S. Duquesne)
Unpreciseness of a previous work: Menezes, Sarkar, Singh 2016

−

740

−

740

−

0

−

175

−

244

−

853

−
417

−
472

−

0

New key sizes

Family log2(pk) κ A log2 B

obsolète sizes 3072

BN 5534 2 1145 74.00

BLS12 5530 2 1098 73.65

KSS16 ≈ 4400∗ 1 9 76.5

KSS18 ≈ 4300∗ 1 9 76

*: curve side is weaker, we need 5410 and resp. 6257 bits.
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Conclusion

I Only small char and parametrized pairings have been considered for industrial
application.

I New attacks in small char. lead ECRYPT to forbid small characteristic.

I New attacks in non-small char demand to update the key sizes.

I The practical improvements of NFS which have asted over 30 years transformed
o(1) from positive to negative and made the new attacks practical.

I Records are likely to come but they will take years, and delay the standardization
of pairings.

Post quantun alternatives might be introduced.
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