	Contents
MPRI – Cours 2.12.2	
<image/> <section-header><section-header><section-header><image/><section-header></section-header></section-header></section-header></section-header>	I. Introduction. II. The ring $(\mathbb{Z}/N\mathbb{Z})^*$. III. Finite fields. IV. Generic DLP.
F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016 1/43	F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016 2/43
 Why? finite groups are used everywhere in crypto (and elsewhere). Which tasks? representing elements; drawing elements at random; efficient group laws; computation of cardinality; structure (with generators); etc. 	 (Z/NZ)*; finite fields F_{qⁿ} and subfields; algebraic curves (elliptic, hyperelliptic, any genus) over finite fields; class groups; etc.

Case study: order in a <i>generic</i> group	Finding the order of an element	
$(G, \circ, 1_G)$, Abelian, finite, of order <i>N</i> ; computable \circ .	Pb. $G = \langle g \rangle$, $N = \operatorname{ord}(g)$; what is the order ω of a in G ?	
Def. $\operatorname{ord}_{G}(a) = \min\{k > 0, a^{k} = 1_{G}\}.$	Thm. (Lagrange) $\omega \mid N$.	
Thm. (Lagrange) $\operatorname{ord}_G(a) \mid N$.	Rem. If <i>N</i> is small, we can enumerate in $O(N)$ or its divisors.	
Coro. $a^{-1} = a^{N-1}$.	Prop. <i>a</i> is of order ω if and only if i) $a^{\omega} = 1_G$; ii) for all prime $n \mid \omega = r^{\omega/p} \neq 1$	
Def. $Exp(G) = min\{k > 0, \forall a \in G, a^k = 1_G\}.$	Proof:	
Prop. 1. $\operatorname{Exp}(G) \mid N$; 2. $\operatorname{Exp}(G) = \operatorname{lcm}(\operatorname{ord}_G(a), a \in G)$. It can happen that $\operatorname{Exp}(G) < N$, see later.	In practice, if <i>N and</i> its factorization are known, easy. What if we don't know <i>N</i> (completely)? E.g., (hyper)elliptic curves.	
F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016 5/43	F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016 6/43	
Baby-steps giant-steps	Function $BSGS(G, g, N, a)$ Input $: G \supset \langle g \rangle, g$ of order NOutput: $\omega = \operatorname{ord}(a)$	
Fundamental algorithm in ANT/crypto; due to Shanks.	$u \leftarrow \lceil \sqrt{N} \rceil$; // Step 1 (baby steps) initialize a table \mathcal{B} for storing u pairs (elt of G int $< N$):	
Write: $w = cu + d$ $0 \le d \le u$ $0 \le c \le N/u$	store(\mathcal{B} , (1 _G , 0)); $H \leftarrow g$; store(\mathcal{B} , (H, 1));	
$a^{\omega} = 1 \Leftrightarrow (a^{-u})^c = a^d.$	for $d := 2$ to $u - 1$ do $\downarrow H \leftarrow H \circ a$; store(\mathcal{B} , (H , d));	
Number of group operations: $C_o = u + N/u$ minimized for $u = \sqrt{N}$, hence $2\sqrt{N}$ group operations.	H \leftarrow H \circ a; f \leftarrow 1/H = a^{-u} ; H \leftarrow 1 _G ;	
Set operations: u insertions in \mathcal{B} and N/u membership tests in the worst case.	$for c := 0 \text{ to } N/u \text{ do}$ $// H = f^{c}$ $\text{if } \exists (H', d) \in \mathcal{B} \text{ such that } H = H' \text{ then}$	
$\Rightarrow \mathcal{B}$ must be a hash table, where both operations take $O(1)$.	$ \begin{array}{c c} & // & H = f^{c} = a^{u} & \text{hence } \omega = cu + d \\ \textbf{return } cu + d; \end{array} \end{array} $	
Complexity: $O(\sqrt{N})$ in time and space.	$H \leftarrow H \circ f;$	

Exercises

Exo1-1. Decrease the average time by remarking that $c \approx N/(2u)$ on average.

Exo1-2. What if computing 1/x is free?

Exo1-3. Design a variant which takes $O(\max(c, d))$ operations. What is its average running time?

More properties

F. Morain - École polytechnique - MPRI - cours 2.12.2 - 2015-2016

Thm. $\mathbb{Z}/N\mathbb{Z}$ is a field iff *N* is prime.

Thm. $\mathbb{Z}/N\mathbb{Z} \simeq \prod_{i=1}^{k} \mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}$.

Rem. Chinese Remaindering Theorem (CRT) Given $(x_i)_{1 \le i \le k}$ with $x_i \in \mathbb{Z}/p_i^{\alpha_i}\mathbb{Z}$, \exists unique $x \in \mathbb{Z}/N\mathbb{Z}$, $x \equiv x_i \mod p_i^{\alpha_i}$ for all *i*.

Thm. $(\mathbb{Z}/N\mathbb{Z})^*$ is cyclic iff $N = p^{\alpha}$ or $2p^{\alpha}$ for odd p, or N = 2, 4.

II. The ring $(\mathbb{Z}/N\mathbb{Z})^*$

Thm. \mathbb{Z} is an euclidean domain: $a = bq + r, 0 \le r < |b|$.

Def. $\mathbb{Z}/N\mathbb{Z} = \{0, 1, \dots, N-1\}$ set of equivalence classes of $x\mathcal{R}y \iff x - y \in N\mathbb{Z}$ or $x \equiv y \mod N$; can be equipped with ring operations.

Prop. $(\mathbb{Z}/N\mathbb{Z})^* = \{x \in \mathbb{Z}/N\mathbb{Z}, \exists y, xy \equiv 1 \mod N\}$ = $\{x \in \mathbb{Z}/N\mathbb{Z}, \gcd(x, N) = 1\}.$

Thm. (Euler totient function) $\varphi(N) := \operatorname{Card}((\mathbb{Z}/N\mathbb{Z})^*) = \prod_{i=1}^k \varphi(p_i^{\alpha_i}) = \prod_{i=1}^k p_i^{\alpha_i-1}(p_i-1)$ where $N = \prod_{i=1}^k p_i^{\alpha_i}$.

Thm. (Carmichael function) $\text{Exp}((\mathbb{Z}/N\mathbb{Z})^*) = \lambda(N) = \text{lcm}_{i=1}^k \lambda(p_i^{\alpha_i})$ where

$$\lambda(p_i^{\alpha_i}) = \begin{cases} \varphi(p_i^{\alpha_i}) = p_i^{\alpha_i - 1}(p_i - 1) & \text{if } p_i \text{ odd or } \alpha_i \le 2, \\ 2^{e-2} & \text{if } e \ge 3. \end{cases}$$

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016

Justification of RSA

9/43

11/43

Prop. If *N* is squarefree, then for all $a \in \mathbb{Z}$, $a^{\lambda(N)+1} \equiv a \mod N$. *Proof:*

Coro. RSA is valid: for all $x, x^{ed} \equiv x \mod N$. *Proof:*

Quadratic reciprocity (1/2)

Legendre symbol: for prime odd p and $a \in \mathbb{Z}$

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases} 0 & \text{if } p \mid a \\ 1 & \text{if } \exists x \text{ s.t. } a \equiv x^2 \mod p \\ -1 & \text{otherwise.} \end{cases}$$

Easy properties:

(i) $\binom{a}{p} \equiv a^{(p-1)/2} \mod p$; (ii) $\binom{-1}{p} = (-1)^{(p-1)/2}$; (iii) $\binom{a}{p} = \binom{a \mod p}{p}$; (iv) $\binom{ab}{p} = \binom{a}{p} \binom{b}{p}$;

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016

III. Finite fields

Thm. (characteristic) Let \mathbb{F} be a finite field. a) There exists a smallest p > 1 s.t. $p.1_{\mathbb{F}} = 0$; p is prime. b) The set $\{k.1_{\mathbb{F}}, 0 \le k < p\}$ is the smallest subfield of \mathbb{F} ; it is isomorphic to \mathbb{F}_p (prime subfield of \mathbb{F}).

Thm.

 $\begin{array}{ccccc} \mathbb{F} \times \mathbb{F} & \to & \mathbb{F} \\ (x,y) & \mapsto & x+y \end{array} \quad \text{ and } \quad \begin{array}{ccccccc} \mathbb{F}_p \times \mathbb{F} & \to & \mathbb{F} \\ (a,x) & \mapsto & ax \end{array}$

turn \mathbb{F} into a \mathbb{F}_p -vector space. If *n* is the dimension of this space, \mathbb{F} has p^n elements.

Thm. \mathbb{F}^{\times} is cyclic.

Quadratic reciprocity (2/2)

Not so easy properties: (Gauss) (v) $\binom{2}{p} = (-1)^{(p^2-1)/8}$; (vi) (Quadratic reciprocity law) *p* and *q* odd primes:

 $\left(\frac{q}{p}\right) = (-1)^{\frac{p-1}{2} \times \frac{q-1}{2}} \left(\frac{p}{q}\right).$

Jacobi symbol:
$$n \in \mathbb{Z}$$
, $m = \prod_{i=1}^{k} p_i \in \mathbb{Z}$ odd,

 $\left(\frac{n}{m}\right) = \prod_{i=1}^k \left(\frac{n}{p_i}\right).$

Properties: same as for the Legendre symbol.

Ex. Show that $\left(\frac{n}{m}\right) = 0$ iff gcd(n,m) > 1.

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016

Frobenius

13/43

15/43

Thm.

$$\begin{aligned}
\sigma_F : & \mathbb{F} & \to & \mathbb{F} \\
& x & \mapsto & x^p.
\end{aligned}$$

It is a field automorphism, i.e.

$$\sigma_F(1) = 1, \quad \sigma_F(x+y) = \sigma_F(x) + \sigma_F(y), \quad \sigma_F(xy) = \sigma_F(x)\sigma_F(y).$$

Fixed points are the elements of \mathbb{F}_p . *Proof:*

Properties of $\mathbf{K}[X]$

Thm. for all $A, B \in \mathbf{K}[X], B \neq 0$. there exists a unique pair (Q, R) in $\mathbf{K}[X]$ s.t.

A = BQ + R, with R = 0 or deg(R) < deg(B).

Thm. (Bézout) There exists U and V in $\mathbf{K}[X]$ s.t.

 $AU + BV = \gcd(A, B).$

Def. A(X) is irreducible if its degree is ≥ 1 , and all its divisors are constant, or aA(X) with $a \in \mathbf{K}^*$. **Thm.** We may factor polynomials

$$P = a \prod_{i=1}^{r} P_i^{\alpha_i},$$

where $a \in \mathbf{K}$, P_i monic irreducible and $\alpha_i > 0$.

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016

Building finite fields

Thm. (the canonical way) Let f(X) be an irreducible polynomial of degree *n* over \mathbb{F}_p . Then $\mathbb{F}_p[X]/(f(X))$ is a finite field of degree *n* and cardinality p^n , noted \mathbb{F}_{p^n} .

Quotient ring

Def. $A \equiv B \pmod{f}$ iff A - B is a multiple of f.

Def. K[X]/fK[X] or K[X]/(f)

Let \overline{P} be the class of P. $\mathbf{K}[X]/(f)$ together with $\overline{A} + \overline{B} = \overline{A + B}$, $\overline{A} \overline{B} = \overline{AB}$, is a ring. Canonical representant: for all P, there is a unique R of degree n - 1 s.t. $P \equiv R \mod f$.

With

 $\lambda \cdot \overline{A} = \overline{\lambda A},$

 $\mathbf{K}[X]/(f)$ is **K**-vector space of dimension *n*. The set $\{\overline{1}, \overline{X}, \dots, \overline{X^{n-1}}\}$ is a basis for this vector space.

Thm. *A* is invertible modulo *f* iff gcd(A, f) = 1.

Coro. $\mathbf{K}[X]/(f)$ is a field iff f is irreducible. Moreover, if $\mathbf{K} = \mathbb{F}_p$, $\mathbb{F}_p[X]/(f)$ is a field of cardinality $p^{\deg(f)}$.

Example

17/43

19/43

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016

Build \mathbb{F}_{41^2} , using a quadratic non-residue modulo 41.

$$\begin{pmatrix} \frac{7}{41} \end{pmatrix} = (-1)^{(41-1)/2 \times (7-1)/2} \begin{pmatrix} \frac{41}{7} \end{pmatrix} = \begin{pmatrix} \frac{41}{7} \end{pmatrix} = \begin{pmatrix} \frac{41 \mod 7}{7} \end{pmatrix} = \begin{pmatrix} \frac{6}{7} \end{pmatrix} = \begin{pmatrix} \frac{2}{7} \end{pmatrix} \begin{pmatrix} \frac{3}{7} \end{pmatrix} = \begin{pmatrix} \frac{3}{7} \end{pmatrix} = (-1) \begin{pmatrix} \frac{7}{3} \end{pmatrix} = -\begin{pmatrix} \frac{1}{3} \end{pmatrix} = -1$$

 $\Rightarrow \mathbf{K}_1 = \mathbb{F}_{41^2} \sim \mathbb{F}_{41}[X]/(X^2 - 7).$ This is a vector space of dimension 2 over \mathbb{F}_{41} . Let $\theta = \overline{X}$. All elements can be written $a + b\theta$ where a, b are in \mathbb{F}_{41} . $\theta^2 - 7 = \overline{X^2 - 7} = 0$. We get

 $\theta^2 = 7, \theta^3 = 7\theta, \theta^4 = 8, \dots, \theta^{80} = 1,$

so that θ does not generate \mathbf{K}^* , but $\theta + 10$ does.

Application (1/2)

Pb. Given $\binom{a}{p} = 1$, compute $\sqrt{a} \mod p$. Case $p \equiv 3 \mod 4$: $r = a^{(p+1)/4} \mod p$. Case $p \equiv 1 \mod 4$: find b s.t. $\Delta = b^2 - 4a$ is not a square. $\alpha = (-b + \sqrt{\Delta})/2 \implies \alpha^p = (-b - \sqrt{\Delta})/2 \implies \alpha \alpha^p = a$ since $\sqrt{\Delta}^p = (\frac{\Delta}{p})\sqrt{\Delta}$. Let $\beta = \alpha^{(p+1)/2} \mod (p, X^2 + bX + a)$. Then $\beta^2 = \alpha^{p+1} = a$; $\beta^p = \beta(\beta^2)^{(p-1)/2} = \beta a^{(p-1)/2} = \beta$ $\Rightarrow \beta \in \mathbb{F}_p$.

IV. Generic DLP

DLP: given $h \in G = \langle g \rangle$ of order *N*, find an integer *n*, $0 \le n < N$ such that $h = g^n$.

Z) The Pohlig-Hellman reduction.

A) Enumeration; baby-steps, giant steps (adaptation as exercises).

B) RHO.

C) Kangaroos.

D) Nechaev-Shoup.

Application (2/2)

Let $a = 2 \mod 41$, which is a square; b = 1 is s.t. $\Delta = 1 - 4 \times 2 = -7$ which is not a square; hence $\mathbb{F}_{41^2} \sim \mathbb{F}_{41}[X]/(X^2 + X + 2)$. $\alpha = X, \quad \alpha^p = 40X + 40, \quad \alpha \alpha^p = 2$. $\beta = X^{(p+1)/2} = 17, \quad 17^2 \equiv 2 \mod 41$.

F. Morain - École polytechnique - MPRI - cours 2.12.2 - 2015-2016

Z) The Pohlig-Hellman reduction

Idea: reduce the problem to the case N prime.

$$N = \prod_i p_i^{\alpha_i}$$

Solving $g^n = h$ is equivalent to knowing $n \mod N$, i.e. $n \mod p_i^{\alpha_i}$ for all *i* (chinese remainder theorem).

Idea: let $p^{\alpha} || N$ and $m = N/p^{\alpha}$. Then $b = h^m$ is in the cyclic group of ordre p^{α} generated by g^m . We can find the log of *b* in this group, which yields $n \mod p^{\alpha}$.

Cost: $O(\max(DL(p^{\alpha}))) = O(\max(DL(p))).$

Consequence: for DH, *N* must have at least one large prime factor.

21/43

B) The RHO method

Basic model: birthday paradox Let E be a finite set of cardinality m.

Thm. Suppose we draw uniformly *n* elements from *E* with replacement. The probability that all *n* elements are distinct is $Proba = \frac{1}{m} \prod_{k=1}^{n-1} (1 - \frac{k}{m}).$

Taking logarithms, and assuming $n \ll m$, we get

log Proba $\approx \log(n/m) - \frac{n(n-1)}{2m}$.

 \Rightarrow taking $n = O(\sqrt{m})$ will give a somewhat large value for this probability.

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016

Functional digraphs

Let $f : E \to E$ be a function on E. Consider $X_{n+1} = f(X_n)$ for some starting point $X_0 \in E$. The functional digraph of X is built with vertices X_i 's; an edge is put between X_i and X_j if $f(X_i) = X_j$.

The first part of the sequence is the set of X_i 's that are reached only once and there are μ of them.

The second part forms a loop containing λ distinct elements.

Rem. λ and ν cannot be too large on average (use $n = \lambda + \mu$ in the Theorem).

A very simple algorithm

```
Function NaiveDL(G, g, N, h)Input : G \supset \langle g \rangle, g of order NOutput: 0 \leq n < N, g^n = hinitialize a table \mathcal{L} for storing u triplets (elt of G, two ints < N);repeatdraw u and v at random modulo N;H \leftarrow g^u \circ h^v;if \exists (H', u', v') \in \mathcal{L} such that H = H' then//H = g^u \circ h^v = g^{u'} \circ h^{v'}//H = g^u \circ h^v = g^u \circ h^v//H = g^u \circ h^v<
```

Complexity: $O(\sqrt{n} \log n)$ on average, together with a space $O(\sqrt{n})$, which is no better than BSGS.

Examples

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016

1) E = G finite group, f(x) = ax and $x_0 = a \Rightarrow (x_n)$ purely is periodic, i.e., $\mu = 0$, and $\lambda = \operatorname{ord}_G(a)$.

2) Take $E = \mathbb{Z}/11\mathbb{Z}$ and $f : x \mapsto x^2 + 1 \mod 11$

Typical shape: a cycle and trees plugged on the structure.

25/43

Epact Floyd's algorithm **Function** $epact(f, x_0)$ **Input** : A function f, a starting point x_0 **Output**: The epact of (x_n) defined by $x_{n+1} = f(x_n)$ **Goal:** find λ and μ . $x \leftarrow x_0; y \leftarrow x_0; e \leftarrow 0;$ repeat **Prop.** There exists a unique e > 0 (epact) s.t. $\mu \le e < \lambda + \mu$ and $e \leftarrow e + 1;$ $X_{2e} = X_{e}$. $x \leftarrow f(x);$ It is the smallest non-zero multiple of λ that is $\geq \mu$: if $\mu = 0$, $e = \lambda$ $y \leftarrow f(f(y));$ and if $\mu > 0$, $e = \left\lceil \frac{\mu}{\lambda} \right\rceil \lambda$. until x = y; Proof: return e. **Cost:** 3e evaluations of f and e comparisons. For decreasing the number of evaluations, see Brent (and Montgomery). F. Morain - École polytechnique - MPRI - cours 2.12.2 - 2015-2016 F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016 29/43 30/43 Application to DL Asymptotic statistics **Pollard:** build a function f from G to G appearing to be random, i. e., Convenient source: Flajolet & Odlyzko (EUROCRYPT 1989). the epact of *f* is $c\sqrt{N}$ for some small *c*. ... Teske: **Thm.** When $m \to \infty$ • precompute *r* random elements $z_i = g^{\gamma_i} \circ h^{\delta_i}$ for $1 \le i \le r$ for $\overline{\lambda} \sim \overline{\mu} \sim \sqrt{\frac{\pi m}{8}} \approx 0.627 \sqrt{m}.$ some random exponents (say r = 20); • use some hash function $\mathcal{H}: G \to \{1, \ldots, r\};$ • define $f(y) = y \circ z_{\mathcal{H}(y)}$ so that Thm. $\overline{e} \sim \sqrt{\frac{\pi^5 m}{288}} \approx 1.03 \sqrt{m}$. $x_i = g^{c_i} \circ h^{d_i},$ Fundamental coro. A collision is expected to be found after where (c_i) and (d_i) are two integer sequences. $O(\sqrt{m})$ computations. **Ex.** if *G* contains integers, we may simply use $\mathcal{H}(x) = 1 + (x \mod r)$.

31/43

Application to DL (cont'd)

When *e* is found:

 $g^{c_{2e}} \circ h^{d_{2e}} = g^{c_e} \circ h^{d_e}$

or

 $g^{c_{2e}-c_e} = h^{d_e-d_{2e}}$

i.e.,

$$n(c_{2e}-c_e) \equiv (d_e-d_{2e}) \bmod N$$

 $\begin{aligned} & \textbf{Function Iterate}(G, N, \mathcal{H}, (z_i, \gamma_i, \delta_i), x, u_x, v_x) \\ & \textbf{Input} \quad : \mathcal{H} : G \to \{1, \dots, r\}; (z_i)_{1 \leq i \leq r} \text{ random powers } z_i = g^{\gamma_i} \circ h^{\delta_i} \\ & \text{of } G; x = g^{u_x} h^{v_x} \\ & \textbf{Output} : f(x, u_x, v_x) = (w, u_w, v_w) \text{ s.t. } w = g^{u_w} \circ h^{v_w} \\ & i \leftarrow \mathcal{H}(x); \\ & \textbf{return } (x \circ z_i, u_x + \gamma_i \pmod{N}, v_x + \delta_i \pmod{N}). \end{aligned}$

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016

Parallel RHO (1/3)

Goal: if we have *p* processors, want a gain of *p*.

We cannot use the notion of epact (all epacts have the same size).

More asymptotic parameters:

- Number of components: $\frac{1}{2} \log m$;
- component size of ν : 2m/3;
- tree size containing ν : m/3 (maximal tree rooted on a circle containing ν);
- number of cyclic nodes: $\sqrt{\pi m/2}$.
- \Rightarrow giant component that contains almost everybody.

The algorithm

```
Function RHO(G, g, N, h, \mathcal{H}, (z_i, \gamma_i, \delta_i))
     Input : \mathcal{H}: G \to \{1, \ldots, r\}; (z_i)_{1 \le i \le r} random powers z_i = g^{\gamma_i} \circ h^{\delta_i}
                    of G
     Output: 0 \le n < N, g^n = h
     if h = 1_G then
       \perp return 0
     x \leftarrow h; u_x \leftarrow 0; v_x \leftarrow 1;
     y \leftarrow x; u_y \leftarrow u_x; v_y \leftarrow v_x;
     repeat
           // invariant: x = g^{u_x} \circ h^{v_x}, y = g^{u_y} \circ h^{v_y}
           (x, u_x, v_x) \leftarrow \mathsf{lterate}(G, N, \mathcal{H}, (z_i, \gamma_i, \delta_i), x, u_x, v_x);
           (y, u_v, v_v) \leftarrow \text{Iterate}(G, N, \mathcal{H}, (z_i, \gamma_i, \delta_i), y, u_v, v_v);
           (y, u_y, v_y) \leftarrow \mathsf{lterate}(G, N, \mathcal{H}, (z_i, \gamma_i, \delta_i), y, u_y, v_y);
     until x = y;
     // g^{u_x} \circ h^{v_x} = g^{u_y} \circ h^{v_y}
     if v_x - v_y is invertible modulo N then
       | return (u_v - u_x)/(v_x - v_v) \pmod{N};
     else
       L return Failure.
```

Parallel RHO (2/3)

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016

Use the same f and store distinguished elements, i.e., elements having a special form.

If $\theta < 1$ is the proportion of distinguished elements, the time to reach one of these will be $1/\theta$.

33/43

Parallel RHO (3/3)

Function *DistinguishedPath*(f, x_0) **Input** : A function f, a starting point x_0 **Output**: The first distinguished element found starting at x_0 , $x \leftarrow x_0$; **repeat** $\mid x \leftarrow f(x)$; **until** x *is distinguished*; **return** x.

Rem. Many subttle points (cycles, automorphisms, etc.).

```
Prop. The expected running time is \sqrt{\pi N/2}/p + 1/\theta group operations.
```

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016

(Heuristic) analysis

The original positions of K_T and K_W can be either

In either case: back kangaroo (*B*) and a front kangaroo (*F*) heading right.

They are at mutual distance $\approx \ell/4$ at the beginning.

Since the average distance between two points is *m*, *B* needs $\ell/(4m)$ jumps to reach the initial position of *F*. After that, *B* needs *m* jumps to reach a point already reached by *F*. The total number of jumps is therefore $2(\ell/(4m) + m)$, which is minimized for $m = \sqrt{\ell}/2$, leading to a $2\sqrt{\ell}$ cost.

C) Kangaroos

 The wild kangaroo starts from <i>h</i> = gⁿ and uses the same random function. <i>T</i> = g^{d_T} and <i>W</i> = <i>h</i> ∘ g^{d_W} for two integer sequences d_T and d that are updated when computing <i>f</i>. 	
 When hitting a distinguished element, it is stored in a list depending on its observator (tame or wild) 	
When a collision occurs, the discrete logarithm is found	
E Morain – École polytechnique – MPBI – cours 2, 12.2 – 2015-2016	38/43
The algorithm	
Function Kangaroo(G, g, N, h, l) Input : $G \supset \langle g \rangle$, g of order N Output: $0 \le n < l, g^n = h$ $m \leftarrow \left\lceil \sqrt{\ell}/2 \right\rceil$; compute positive increments $(\delta_i)_{1 \le i \le r}$ of mean value m; initialize two tables \mathcal{T} and \mathcal{W} for storing pairs (elt of G, int < N); $T \leftarrow g^{\ell/2}; d_T \leftarrow \ell/2;$ $W \leftarrow h; d_W \leftarrow 0;$ while true do $\begin{pmatrix} (T, d_T) \leftarrow f((\delta_i), T, d_T); \\ \text{if } \exists (W', d') \in \mathcal{W} \text{ such that } W' = T \text{ then} \\ // T = g^{d_T}, W' = h \circ g^{d'} \\ \text{return } (d_T - d') \pmod{N}; \\ (W, d_W) \leftarrow f((\delta_i), W, d_W); \\ \text{if } \exists (T', d') \in \mathcal{T} \text{ such that } T' = W \text{ then} \\ // T' = g^{d'}, W = h \circ g^{d_W} \\ \text{return } (d' - d_W) \pmod{N}; \end{cases}$	

37/43

Parallel kangaroos

Idea: start p kangaroos that will discover and store distinguished elements.

Pollard: we assume p = 4p', and select u = 2p' + 1, v = 2p' - 1, so that p = u + v.

- Increments of the jumps will be $(uvs_1, ..., uvs_k)$ for small s_i 's, insisting on the mean to be $\approx \sqrt{\ell/(uv)}$;
- *i*-th tame kangaroo will start at $g^{\ell/2+iv}$ for $0 \le i < u$;
- *i*-th wild kangaroo W_i will start from $h \circ g^{iu}$, $0 \le i < v$;
- a collision will be $\ell/2 + iv = n + ju \mod (uv)$ and the solution is unique. This prevents kangaroos from the same herd to collide.

The final running time is effectively divided by *p*.

D) Nechaev/Shoup

Thm. Any generic group DL algorithm requires $\Theta(\sqrt{N})$ group operations.

Rough idea: given DL's for $h_1, h_2, ..., h_k$, we can only build new DL's for $O(k^2)$ elements of *G*. To cover *G*, we need $k \approx \sqrt{N}$.

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016	41/43	F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016	42/43
Take home messages			
To have a better than square-root algorithm for DL, you need			
specific ideas for specific groups.			
Many crypto problems of size n may have solution algorithms in			
$O(\sqrt{n})$ (time and/or space; deterministic or probabilistic).			