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I. Which groups?

Why? finite groups are used everywhere in crypto (and elsewhere).

Which tasks?

• representing elements;
• drawing elements at random;
• efficient group laws;
• computation of cardinality;
• structure (with generators);
• etc.
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Some groups

• (Z/NZ)∗;
• finite fields Fqn and subfields;
• algebraic curves (elliptic, hyperelliptic, any genus) over finite

fields;
• class groups;
• etc.
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Case study: order in a generic group

(G, ◦, 1G), Abelian, finite, of order N; computable ◦.

Def. ordG(a) = min{k > 0, ak = 1G}.

Thm. (Lagrange) ordG(a) | N.

Coro. a−1 = aN−1.

Def. Exp(G) = min{k > 0,∀ a ∈ G, ak = 1G}.

Prop.
1. Exp(G) | N;
2. Exp(G) = lcm(ordG(a), a ∈ G).

It can happen that Exp(G) < N, see later.
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Finding the order of an element

Pb. G = 〈g〉, N = ord(g); what is the order ω of a in G?

Thm. (Lagrange) ω | N.

Rem. If N is small, we can enumerate in O(N) or its divisors.

Prop. a is of order ω if and only if
i) aω = 1G;
ii) for all prime p | ω, aω/p 6= 1G.

Proof:

In practice, if N and its factorization are known, easy.

What if we don’t know N (completely)? E.g., (hyper)elliptic curves.
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Baby-steps giant-steps

Fundamental algorithm in ANT/crypto; due to Shanks.

Write:
ω = cu + d, 0 ≤ d < u, 0 ≤ c < N/u.

aω = 1⇔ (a−u)c = ad.

Number of group operations: Co = u + N/u minimized for u =
√

N,
hence 2

√
N group operations.

Set operations: u insertions in B and N/u membership tests in the
worst case.

⇒ B must be a hash table, where both operations take O(1).

Complexity: O(
√

N) in time and space.
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Function BSGS(G, g, N, a)
Input : G ⊃ 〈g〉, g of order N
Output: ω = ord(a)
u←

⌈√
N
⌉
;

// Step 1 (baby steps)
initialize a table B for storing u pairs (elt of G, int < N);
store(B, (1G, 0));
H ← a; store(B, (H, 1));
for d := 2 to u− 1 do

H ← H ◦ a; store(B, (H, d));

// Step 2 (giant steps)
H ← H ◦ a; f ← 1/H = a−u;
H ← 1G;
for c := 0 to N/u do

// H = f c

if ∃(H′, d) ∈ B such that H = H′ then
// H = f c = ad hence ω = cu + d
return cu + d;

H ← H ◦ f ;
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Exercises

Exo1-1. Decrease the average time by remarking that c ≈ N/(2u)
on average.

Exo1-2. What if computing 1/x is free?

Exo1-3. Design a variant which takes O(max(c, d)) operations. What
is its average running time?
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II. The ring (Z/NZ)∗

Thm. Z is an euclidean domain: a = bq + r, 0 ≤ r < |b|.

Def. Z/NZ = {0, 1, . . . ,N − 1} set of equivalence classes of
xRy⇐⇒ x− y ∈ NZ or x ≡ y mod N; can be equipped with ring
operations.

Prop. (Z/NZ)∗ = {x ∈ Z/NZ,∃y, xy ≡ 1 mod N}
= {x ∈ Z/NZ, gcd(x,N) = 1}.

Thm. (Euler totient function)
ϕ(N) := Card((Z/NZ)∗) =

∏k
i=1 ϕ(pαi

i ) =
∏k

i=1 pαi−1
i (pi − 1) where

N =
∏k

i=1 pαi
i .

Thm. (Carmichael function) Exp((Z/NZ)∗) = λ(N) = lcmk
i=1λ(pαi

i )
where

λ(pαi
i ) =

{
ϕ(pαi

i ) = pαi−1
i (pi − 1) if pi odd or αi ≤ 2,

2e−2 if e ≥ 3.
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More properties

Thm. Z/NZ is a field iff N is prime.

Thm. Z/NZ '∏k
i=1 Z/pαi

i Z.

Rem. Chinese Remaindering Theorem (CRT) Given (xi)1≤i≤k with
xi ∈ Z/pαi

i Z, ∃ unique x ∈ Z/NZ, x ≡ xi mod pαi
i for all i.

Thm. (Z/NZ)∗ is cyclic iff N = pα or 2pα for odd p, or N = 2, 4.
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Justification of RSA

Prop. If N is squarefree, then for all a ∈ Z, aλ(N)+1 ≡ a mod N.
Proof:

Coro. RSA is valid: for all x, xed ≡ x mod N.
Proof:
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Quadratic reciprocity (1/2)

Legendre symbol: for prime odd p and a ∈ Z

(
a
p

)
=





0 if p | a
1 if ∃ x s.t. a ≡ x2 mod p
−1 otherwise.

Easy properties:
(i)
(a

p

)
≡ a(p−1)/2 mod p ;

(ii)
(−1

p

)
= (−1)(p−1)/2 ;

(iii)
(a

p

)
=
(a mod p

p

)
;

(iv)
(ab

p

)
=
(a

p

)(b
p

)
;
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Quadratic reciprocity (2/2)

Not so easy properties: (Gauss)
(v)
(2

p

)
= (−1)(p2−1)/8;

(vi) (Quadratic reciprocity law) p and q odd primes:
(

q
p

)
= (−1)

p−1
2 ×

q−1
2

(
p
q

)
.

Jacobi symbol: n ∈ Z, m =
∏k

i=1 pi ∈ Z odd,

(
n
m

)
=

k∏

i=1

(
n
pi

)
.

Properties: same as for the Legendre symbol.

Ex. Show that
(n

m

)
= 0 iff gcd(n,m) > 1.
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III. Finite fields

Thm. (characteristic) Let F be a finite field.
a) There exists a smallest p > 1 s.t. p.1F = 0; p is prime.
b) The set {k.1F, 0 ≤ k < p} is the smallest subfield of F; it is
isomorphic to Fp (prime subfield of F).

Thm.

F× F → F
(x, y) 7→ x + y and Fp × F → F

(a, x) 7→ ax

turn F into a Fp-vector space. If n is the dimension of this space, F
has pn elements.

Thm. F× is cyclic.
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Frobenius

Thm.
σF : F → F

x 7→ xp.

It is a field automorphism, i.e.

σF(1) = 1, σF(x + y) = σF(x) + σF(y), σF(xy) = σF(x)σF(y).

Fixed points are the elements of Fp.
Proof:
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Properties of K[X]

Thm. for all A, B ∈ K[X], B 6= 0. there exists a unique pair (Q,R) in
K[X] s.t.

A = BQ + R, with R = 0 or deg(R) < deg(B).

Thm. (Bézout) There exists U and V in K[X] s.t.

AU + BV = gcd(A,B).

Def. A(X) is irreducible if its degree is ≥ 1, and all its divisors are
constant, or aA(X) with a ∈ K∗.
Thm. We may factor polynomials

P = a
r∏

i=1

Pαi
i ,

where a ∈ K , Pi monic irreducible and αi > 0.
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Quotient ring

Def. A ≡ B (mod f ) iff A− B is a multiple of f .

Def. K[X]/f K[X] or K[X]/(f )

Let P be the class of P. K[X]/(f ) together with
A + B = A + B, A B = AB, is a ring.
Canonical representant: for all P, there is a unique R of degree n− 1
s.t. P ≡ R mod f .

With
λ · A = λA,

K[X]/(f ) is K-vector space of dimension n. The set {1,X, . . . ,Xn−1}
is a basis for this vector space.

Thm. A is invertible modulo f iff gcd(A, f ) = 1.

Coro. K[X]/(f ) is a field iff f is irreducible. Moreover, if K = Fp,
Fp[X]/(f ) is a field of cardinality pdeg(f ).
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Building finite fields

Thm. (the canonical way)
Let f (X) be an irreducible polynomial of degree n over Fp.
Then Fp[X]/(f (X)) is a finite field of degree n and cardinality pn,
noted Fpn .
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Example

Build F412 , using a quadratic non-residue modulo 41.
( 7

41

)
= (−1)(41−1)/2×(7−1)/2

(41
7

)

=
(41

7

)
=
(41 mod 7

7

)

=
(6

7

)
=
(2

7

)(3
7

)
=
(3

7

)
= (−1)

(7
3

)

= −
(1

3

)
= −1

⇒ K1 = F412 ∼ F41[X]/(X2 − 7).
This is a vector space of dimension 2 over F41.
Let θ = X. All elements can be written a + bθ where a, b are in F41.
θ2 − 7 = X2 − 7 = 0. We get

θ2 = 7, θ3 = 7θ, θ4 = 8, . . . , θ80 = 1,

so that θ does not generate K∗, but θ + 10 does.
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Application (1/2)

Pb. Given
(a

p

)
= 1, compute

√
a mod p.

Case p ≡ 3 mod 4: r = a(p+1)/4 mod p.

Case p ≡ 1 mod 4: find b s.t. ∆ = b2 − 4a is not a square.

α = (−b +
√

∆)/2 ⇒ αp = (−b−
√

∆)/2 ⇒ ααp = a

since
√

∆
p

=
(

∆
p

)√
∆.

Let β = α(p+1)/2 mod (p,X2 + bX + a). Then

β2 = αp+1 = a;

βp = β(β2)(p−1)/2 = βa(p−1)/2 = β

⇒ β ∈ Fp.
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Application (2/2)

Let a = 2 mod 41, which is a square;
b = 1 is s.t. ∆ = 1− 4× 2 = −7 which is not a square; hence
F412 ∼ F41[X]/(X2 + X + 2).

α = X, αp = 40X + 40, ααp = 2.

β = X(p+1)/2 = 17, 172 ≡ 2 mod 41.
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IV. Generic DLP

DLP: given h ∈ G = 〈g〉 of order N, find an integer n, 0 ≤ n < N such
that h = gn.

Z) The Pohlig-Hellman reduction.

A) Enumeration; baby-steps, giant steps (adaptation as exercises).

B) RHO.

C) Kangaroos.

D) Nechaev-Shoup.
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Z) The Pohlig-Hellman reduction

Idea: reduce the problem to the case N prime.

N =
∏

i

pαi
i

Solving gn = h is equivalent to knowing n mod N, i.e. n mod pαi
i for all

i (chinese remainder theorem).

Idea: let pα || N and m = N/pα. Then b = hm is in the cyclic group of
ordre pα generated by gm. We can find the log of b in this group,
which yields n mod pα.

Cost: O(max(DL(pα))) = O(max(DL(p))).

Consequence: for DH, N must have at least one large prime factor.
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B) The RHO method

Basic model: birthday paradox
Let E be a finite set of cardinality m.

Thm. Suppose we draw uniformly n elements from E with
replacement. The probability that all n elements are distinct is
Proba = 1

m

∏n−1
k=1

(
1− k

m

)
.

Taking logarithms, and assuming n� m, we get

log Proba ≈ log(n/m)− n(n− 1)

2m
.

⇒ taking n = O(
√

m) will give a somewhat large value for this
probability.
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A very simple algorithm

Function NaiveDL(G, g, N, h)
Input : G ⊃ 〈g〉, g of order N
Output: 0 ≤ n < N, gn = h
initialize a table L for storing u triplets (elt of G, two ints < N);
repeat

draw u and v at random modulo N;
H ← gu ◦ hv;
if ∃(H′, u′, v′) ∈ L such that H = H′ then

// H = gu ◦ hv = gu′ ◦ hv′

// hence n(v− v′) = u′ − u mod N
if v− v′ is invertible modulo N then

return (u′ − u)/(v− v′) mod N;

else
store(L, (H, u, v));

until a collision is found ;

Complexity: O(
√

n log n) on average, together with a space O(
√

n),
which is no better than BSGS.
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Functional digraphs

Let f : E → E be a function on E.
Consider Xn+1 = f (Xn) for some starting point X0 ∈ E.
The functional digraph of X is built with vertices Xi’s; an edge is put
between Xi and Xj if f (Xi) = Xj.

&%
'$

•
X0

•
X1

•
X2

•
Xµ−1

•
Xµ
•

Xµ+1

•
•

Xµ+λ−1

The first part of the sequence is the set of Xi’s that are reached only
once and there are µ of them.
The second part forms a loop containing λ distinct elements.
Rem. λ and ν cannot be too large on average (use n = λ+ µ in the
Theorem).
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Examples

1) E = G finite group, f (x) = ax and x0 = a⇒ (xn) purely is periodic,
i.e., µ = 0, and λ = ordG(a).

2) Take E = Z/11Z and f : x 7→ x2 + 1 mod 11

0 - 1 - 2 - 5 - 4 - 6
 	?6
7�

9

?

10

6

3 - 8�

Typical shape: a cycle and trees plugged on the structure.
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Epact

Goal: find λ and µ.

Prop. There exists a unique e > 0 (epact) s.t. µ ≤ e < λ+ µ and
X2e = Xe.
It is the smallest non-zero multiple of λ that is ≥ µ: if µ = 0, e = λ
and if µ > 0, e = dµλeλ.

Proof:
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Floyd’s algorithm

Function epact(f , x0)
Input : A function f , a starting point x0
Output: The epact of (xn) defined by xn+1 = f (xn)
x← x0; y← x0; e← 0;
repeat

e← e + 1;
x← f (x);
y← f (f (y));

until x = y;
return e.

Cost: 3e evaluations of f and e comparisons. For decreasing the
number of evaluations, see Brent (and Montgomery).
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Asymptotic statistics

Convenient source: Flajolet & Odlyzko (EUROCRYPT 1989).

Thm. When m→∞

λ ∼ µ ∼
√
πm
8
≈ 0.627

√
m.

Thm. e ∼
√

π5m
288 ≈ 1.03

√
m.

Fundamental coro. A collision is expected to be found after
O(
√

m) computations.
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Application to DL

Pollard: build a function f from G to G appearing to be random, i. e.,
the epact of f is c

√
N for some small c.

. . . Teske:
• precompute r random elements zi = gγi ◦ hδi for 1 ≤ i ≤ r for

some random exponents (say r = 20);
• use some hash function H : G→ {1, . . . , r};
• define f (y) = y ◦ zH(y) so that

xi = gci ◦ hdi ,

where (ci) and (di) are two integer sequences.

Ex. if G contains integers, we may simply use H(x) = 1 + (x mod r).
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Application to DL (cont’d)

When e is found:
gc2e ◦ hd2e = gce ◦ hde

or
gc2e−ce = hde−d2e

i.e.,
n(c2e − ce) ≡ (de − d2e) mod N.

Function Iterate(G, N, H, (zi, γi, δi), x, ux, vx)
Input : H : G→ {1, . . . , r}; (zi)1≤i≤r random powers zi = gγi ◦ hδi

of G; x = gux hvx

Output: f (x, ux, vx) = (w, uw, vw) s.t. w = guw ◦ hvw

i← H(x);
return (x ◦ zi, ux + γi (mod N), vx + δi (mod N)).
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The algorithm

Function RHO(G, g, N, h, H, (zi, γi, δi))
Input : H : G→ {1, . . . , r}; (zi)1≤i≤r random powers zi = gγi ◦ hδi

of G
Output: 0 ≤ n < N, gn = h
if h = 1G then

return 0
x← h; ux ← 0; vx ← 1;
y← x; uy ← ux; vy ← vx;
repeat

// invariant: x = gux ◦ hvx, y = guy ◦ hvy

(x, ux, vx)← Iterate(G, N, H, (zi, γi, δi), x, ux, vx);
(y, uy, vy)← Iterate(G, N, H, (zi, γi, δi), y, uy, vy);
(y, uy, vy)← Iterate(G, N, H, (zi, γi, δi), y, uy, vy);

until x = y;
// gux ◦ hvx = guy ◦ hvy

if vx − vy is invertible modulo N then
return (uy − ux)/(vx − vy) (mod N);

else
return Failure.
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Parallel RHO (1/3)

Goal: if we have p processors, want a gain of p.

We cannot use the notion of epact (all epacts have the same size).

More asymptotic parameters:

• Number of components: 1
2 log m;

• component size of ν: 2m/3;
• tree size containing ν: m/3 (maximal tree rooted on a circle containing ν);
• number of cyclic nodes:

√
πm/2.

⇒ giant component that contains almost everybody.

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016 35/43

Parallel RHO (2/3)

Use the same f and store distinguished elements, i.e., elements
having a special form.

• -• -•. . . - . . .• -◦

•
@@R•
@@R

•

?•

?•

If θ < 1 is the proportion of distinguished elements, the time to reach
one of these will be 1/θ.
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Parallel RHO (3/3)

Function DistinguishedPath(f , x0)
Input : A function f , a starting point x0
Output: The first distinguished element found starting at x0,
x← x0; repeat

x← f (x);
until x is distinguished ;
return x.

Rem. Many subttle points (cycles, automorphisms, etc.).

Prop. The expected running time is
√
πN/2/p + 1/θ group

operations.
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C) Kangaroos

Pb: solve DLP when n ∈ [0, `] with ` ≤ N.
Goal: algorithm with running time O(

√
`) instead of O(

√
N). The

idea is to have two processes, traditionnaly called kangaroos:

• We use a sequence of integer increments (δi)1≤i≤r whose mean
size is m. Then, we iterate: f (x) = x ◦ gδH(x) .

• The tame kangaroo follows a random path starting from g`/2;
• The wild kangaroo starts from h = gn and uses the same

random function.
• T = gdT and W = h ◦ gdW for two integer sequences dT and dW

that are updated when computing f .
• When hitting a distinguished element, it is stored in a list

depending on its character (tame or wild).
• When a collision occurs, the discrete logarithm is found.
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(Heuristic) analysis

The original positions of KT and KW can be either

•
0

•
n

•
`/2

•
`

or

•
0

•
n

•
`/2

•
`

In either case: back kangaroo (B) and a front kangaroo (F) heading
right.
They are at mutual distance ≈ `/4 at the beginning.
Since the average distance between two points is m, B needs `/(4m)
jumps to reach the initial position of F. After that, B needs m jumps
to reach a point already reached by F. The total number of jumps is
therefore 2(`/(4m) + m), which is minimized for m =

√
`/2, leading to

a 2
√
` cost.
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The algorithm

Function Kangaroo(G, g, N, h, `)
Input : G ⊃ 〈g〉, g of order N
Output: 0 ≤ n < `, gn = h
m←

⌈√
`/2
⌉
;

compute positive increments (δi)1≤i≤r of mean value m;
initialize two tables T andW for storing pairs (elt of G, int < N);
T ← g`/2; dT ← `/2;
W ← h; dW ← 0;
while true do

(T, dT)← f ((δi),T, dT);
if ∃(W ′, d′) ∈ W such that W ′ = T then

// T = gdT, W ′ = h ◦ gd′

return (dT − d′) (mod N);

(W, dW)← f ((δi),W, dW);
if ∃(T ′, d′) ∈ T such that T ′ = W then

// T ′ = gd′, W = h ◦ gdW

return (d′ − dW) (mod N);
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Parallel kangaroos

Idea: start p kangaroos that will discover and store distinguished
elements.

Pollard: we assume p = 4p′, and select u = 2p′ + 1, v = 2p′ − 1, so
that p = u + v.

• Increments of the jumps will be (uvs1, . . . , uvsk) for small si’s,
insisting on the mean to be ≈

√
`/(uv);

• i-th tame kangaroo will start at g`/2+iv for 0 ≤ i < u;
• i-th wild kangaroo Wi will start from h ◦ giu, 0 ≤ i < v;
• a collision will be `/2 + iv = n + ju mod (uv) and the solution is

unique. This prevents kangaroos from the same herd to collide.

The final running time is effectively divided by p.
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D) Nechaev/Shoup

Thm. Any generic group DL algorithm requires Θ(
√

N) group
operations.

Rough idea: given DL’s for h1, h2, . . . , hk, we can only build new DL’s
for O(k2) elements of G. To cover G, we need k ≈

√
N.

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2015-2016 42/43

Take home messages

To have a better than square-root algorithm for DL, you need
specific ideas for specific groups.

Many crypto problems of size n may have solution algorithms in
O(
√

n) (time and/or space; deterministic or probabilistic).
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