Arithmetic algorithms for cryptology — 9 February 2015, Paris

The quasi-polynomial algorithm

Razvan Barbulescu CNRS and IMJ-PRG

R. Barbulescu — The quasi-polynomial algorithm

Outline of the talk

- ► Finite fields of small characteristic
- Classical algorithms for DLP in small characteristic
- ► The quasi-polynomial algorithm

Finite fields

Definition

Given a prime p and an irreducible polynomial $\varphi \in \mathbb{F}_p$, the field defined by φ is the set $\mathbb{F}_p[x]/\langle \varphi \rangle$, endowed by the operations

- addition: add elements as polynomials;
- multiplication: multiply elements as polynomials, then reduce modulo φ ;
- inversion: extended Euclid algorithm.

The prime p is the characteristic of the field of modulus φ .

Example

 $\varphi = x^2 + x + 1 \in \mathbb{F}_2[x]$ is irreducible because it has no roots, so it defines a field of 4 elements: 0, 1, x, x + 1. In order to compute the inverse of an element, say a = x, we use EEA for a and $b = \varphi$:

$$1 = 1 \cdot (x^2 + x + 1) + (x + 1) \cdot x$$

. The gcd is always 1 because φ is irreducible. Here $x^{-1} = x + 1$.

Easy isomorphism

Properties

• If φ_1 and φ_2 are two irreducible polynomials in $\mathbb{F}_p[x]$ of same degree, then

 $\mathbb{F}_{p}[x]/\langle \varphi_{1} \rangle \simeq \mathbb{F}_{p}[x]/\langle \varphi_{2} \rangle$

as fields. The isomorphism is computed in polynomial time and corresponds to a change of coordinates.

For all p and n, there are (1 + o(1))pⁿ/n irreducible polynomials over 𝔽_p of degree n.

 \mathbb{F}_{p^n} or $GF(p^n)$ denote "any field of p^n elements"

Example

Polynomials $\varphi_1 = x^3 + x + 1$ and $\varphi_2 = x^3 + x^2 + 1$ are irreducible modulo 2 because they have degree ≤ 3 and no roots. We compute a, b, c so that

$$\varphi_1(a+bx+cx^2)\equiv 0 \mod \varphi_2.$$

Then, we map any element P(x) in the field of modulus φ_1 to the field of modulus φ_2 as follows

$$P(x) \mapsto P(a + bx + cx^2).$$

Here $P(x) = x^2 + x$, and for example $x^2 + x + 1 \mapsto (x^2 + x)^2 + (x^2 + x) + 1 = x^2$. R. Barbulescu — The quasi-polynomial algorithm 3 / 23

DLP in finite fields

Multiplicative group

- the multiplicative group of $\mathbb{F}_{p^n}^*$ is cyclic
- its cardinality is $p^n 1$, which can be prime, e.g. $2^{607} 1$ is prime.
- A proportion of $\varphi(p^n-1)/(p^n-1)$ elements are generators, so easy to find.
- For all $a \in (\mathbb{F}_{p^n})^*$, $a^{p^n-1} = 1$.

Advantages

- by selecting a sparse modulus, e.g. xⁿ + x + 1 when irreducible, multiplication becomes faster;
- the complexity to multiply polynomials is slightly better for polynomials than for numbers;
- fast arithmetic is implemented by the C libraries: NTL and gf2x;
- Intel processors offer instructions to multiply polynomials over \mathbb{F}_2 ;
- if dedicated hardware is produced(FPGA), it is easier to implement multiplication in 𝔽_{2ⁿ} and 𝔽_{3ⁿ} than in 𝔽_p.

History

Chronology

- In 1984, the algorithm of Coppersmith was the first of complexity L(1/3).
- In 1989, the Special number field sieve(SNFS) had the same complexity.
- In 1993 and 1994 SNFS was transfered to DLP in \mathbb{F}_p and, by analogy, to \mathbb{F}_{2^n} .
- In 1999, it was explained that the algorithm of Coppersmith was a <u>particular case</u> of FFS(same complexity).

Revival thanks to pairings

Utilization of small characteristic fields

- Since 1984, small characteristic seemed much weaker than large characteristic and factorization, so it was abandoned.
- In 2000 Antoine Joux proposed to use pairings in cryptography, large or small characteristic.
- Pairings in characteristic 2 and 3 are the fastest and lead to many works of implementation.
- In 2013 Joux, Boneh and Franklin received the Gödel prize for their works on pairings.
- The NIST and some private companies were studying pairings for standardization and commercial applications.

Relations of small characteristic DLP to other problems

 F_Q is the field of Q elements, Q prime power.

Outline of the talk

- ► Finite fields of small characteristic
- Classical algorithms for DLP in small characteristic
- ▶ The quasi-polynomial algorithm

Smoothness

Definition

A polynomial in $\mathbb{F}_q[t]$ is *m*-smooth if it factors into polynomials of degree less than or equal to *m*.

Theorem

The probability that a degree-*n* polynomial is *m*-smooth is $1/u^{u(1+o(1))}$ where $u = \frac{n}{m}$.

Cases:

- n = D, m = D/6 gives a constant probability;
- n = D, m = 1 gives a probability $1/D! \approx 1/D^D$.

The finite field \mathbb{F}_{q^k} is represented as $\mathbb{F}_q[t]/\varphi$ for an irreducible polynomial $\varphi \in \mathbb{F}_q[t]$ of degree k.

Example

Take q = 3, k = 5, $\varphi = t^5 + t^4 + 2t^3 + 1$, $g = t \in \mathbb{F}_{3^5}$ and $\ell = 11 \mid 3^5 - 1$. We have

$$t^5 \equiv 2(t+1)(t^3+t^2+2t+1) \mod \varphi$$

The finite field \mathbb{F}_{q^k} is represented as $\mathbb{F}_q[t]/\varphi$ for an irreducible polynomial $\varphi \in \mathbb{F}_q[t]$ of degree k.

Example

Take q = 3, k = 5, $\varphi = t^5 + t^4 + 2t^3 + 1$, $g = t \in \mathbb{F}_{3^5}$ and $\ell = 11 \mid 3^5 - 1$. We have

$$t^5 \equiv 2(t+1)(t^3+t^2+2t+1) \mod \varphi$$

 $t^6 \equiv 2(t^2+1)(t^2+t+2) \mod \varphi$

The finite field \mathbb{F}_{q^k} is represented as $\mathbb{F}_q[t]/\varphi$ for an irreducible polynomial $\varphi \in \mathbb{F}_q[t]$ of degree k.

Example

Take q = 3, k = 5, $\varphi = t^5 + t^4 + 2t^3 + 1$, $g = t \in \mathbb{F}_{3^5}$ and $\ell = 11 \mid 3^5 - 1$. We have

$$\begin{array}{rcl} t^5 &\equiv& 2(t+1)(t^3+t^2+2t+1) &\mod \varphi \\ t^6 &\equiv& 2(t^2+1)(t^2+t+2) &\mod \varphi \\ t^7 &\equiv& 2(t+2)(t+1)(t+1) &\mod \varphi \end{array}$$

The finite field \mathbb{F}_{q^k} is represented as $\mathbb{F}_q[t]/\varphi$ for an irreducible polynomial $\varphi \in \mathbb{F}_q[t]$ of degree k.

Example

Take q = 3, k = 5, $\varphi = t^5 + t^4 + 2t^3 + 1$, $g = t \in \mathbb{F}_{3^5}$ and $\ell = 11 \mid 3^5 - 1$. We have

$$\begin{array}{rcl} t^5 &\equiv& 2(t+1)(t^3+t^2+2t+1) &\mod \varphi \\ t^6 &\equiv& 2(t^2+1)(t^2+t+2) &\mod \varphi \\ t^7 &\equiv& 2(t+2)(t+1)(t+1) &\mod \varphi \end{array}$$

The last relation gives:

$$7 \log_g t \equiv \log_g 2 + 1 \log_g (t+2) + 2 \log_g (t+1) \mod 11$$

The finite field \mathbb{F}_{q^k} is represented as $\mathbb{F}_q[t]/\varphi$ for an irreducible polynomial $\varphi \in \mathbb{F}_q[t]$ of degree k.

Example

Take q = 3, k = 5, $\varphi = t^5 + t^4 + 2t^3 + 1$, $g = t \in \mathbb{F}_{3^5}$ and $\ell = 11 \mid 3^5 - 1$. We have

$$\begin{array}{rcl} t^5 &\equiv& 2(t+1)(t^3+t^2+2t+1) &\mod \varphi \\ t^6 &\equiv& 2(t^2+1)(t^2+t+2) &\mod \varphi \\ t^7 &\equiv& 2(t+2)(t+1)(t+1) &\mod \varphi \end{array}$$

The last relation gives:

$$7 \log_g t \equiv \log_g 2 + 1 \log_g (t+2) + 2 \log_g (t+1) \mod 11$$

Proposition

If $a \in \mathbb{F}_q^*$ and ℓ is a factor of $q^k - 1$ coprime to (q - 1), then $\log a \equiv 0 \mod \ell$.

The finite field \mathbb{F}_{q^k} is represented as $\mathbb{F}_q[t]/\varphi$ for an irreducible polynomial $\varphi \in \mathbb{F}_q[t]$ of degree k.

Example

Take q = 3, k = 5, $\varphi = t^5 + t^4 + 2t^3 + 1$, $g = t \in \mathbb{F}_{3^5}$ and $\ell = 11 \mid 3^5 - 1$. We have

$$t^5 \equiv 2(t+1)(t^3+t^2+2t+1) \mod \varphi$$

 $t^6 \equiv 2(t^2+1)(t^2+t+2) \mod \varphi$

$$t^8 \equiv \ldots$$

The last relation gives:

$$7 \log_g t \equiv 1 \log_g (t+2) + 2 \log_g (t+1) \mod 11$$

$$8 \log_g (t+1) \equiv 1 \log_g (t+2) \mod 11$$

$$9 \log_g (t+2) \equiv 2 \log_g t \mod 11$$

We find $\log_g(t+1) \equiv 158 \mod 11$ and $\log_g(t+2) \equiv 54 \mod 11$.

Descent

Example (cont'd)

Let us compute $\log_g P$ for an arbitrary polynomial, say $P = t^4 + t + 2$. We have

$$P^{2} \equiv t^{4} + t^{3} + 2t^{2} + 2t + 2 \mod \varphi$$

$$P^{3} \equiv 2(t+1)(t+2)(t^{2}+1) \mod \varphi$$

$$P^{4} \equiv (t+1)(t+2)t^{2} \mod \varphi$$

Descent

Example (cont'd)

Let us compute $\log_g P$ for an arbitrary polynomial, say $P = t^4 + t + 2$. We have

$$\begin{array}{rcl} P^2 &\equiv& t^4 + t^3 + 2t^2 + 2t + 2 &\mod \varphi \\ P^3 &\equiv& 2(t+1)(t+2)(t^2+1) &\mod \varphi \\ P^4 &\equiv& (t+1)(t+2)t^2 &\mod \varphi \end{array}$$

By taking discrete logarithms we obtain

$$4\log_g P = 1\log_g(t+1) + 1\log_g(t+2) + 2\log_g t.$$

So $\log_g P = 114$.

Discrete logarithms of constants

Here ℓ is a prime factor of the group order $q^k - 1$, larger than q - 1.

Elements of $\mathbb{F}_q \subset \mathbb{F}_{q^k}$ are represented in $\mathbb{F}_q[t]/\langle \varphi \rangle$ by constants *a*. They satisfy $a^{q-1} = 1$, so we have $\log_g(a^{q-1}) \equiv \log_g(1) \equiv 0 \mod \ell.$ Hence, $(q-1)\log_g a \equiv 0 \mod \ell.$

Since ℓ is prime and larger than q-1,

$$\log_g a \equiv 0 \mod \ell.$$

Outline of the talk

- ► Finite fields of small characteristic
- Classical algorithms for DLP in small characteristic
- ► The quasi-polynomial algorithm

Main result

Theorem (based on heuristic assumptions)

Let K be any finite field \mathbb{F}_{q^k} . A discrete logarithm in K can be computed in heuristic time

$$\max(q,k)^{O(\log k)}.$$

Cases:

- ▶ $K = \mathbb{F}_{2^n}$, with prime *n*. Complexity is $n^{O(\log n)}$. Much better than $L_{2^n}(1/4 + o(1)) \approx 2^{\sqrt[4]{n}}$ (previous state-of-art: Joux 2013).
- ▶ $K = \mathbb{F}_{q^k}$, with $q = k^{O(1)}$. Complexity is log $Q^{O(\log \log Q)}$, where Q = #K. Again, this is $L_Q(o(1))$.
- ▶ $K = \mathbb{F}_{q^k}$, with $q \approx L_{q^k}(\alpha)$. Complexity is $L_{q^k}(\alpha + o(1))$, i.e. better than Joux-Lercier or FFS for $\alpha < 1/3$.

A well-chosen model for $\mathbb{F}_{q^{2k}}$

Simple case first

We suppose first $k \approx q$ and $k \leq q + 2$.

Choosing φ (same as for Joux' algorithm)

Try random $h_0, h_1 \in \mathbb{F}_{q^2}[t]$ with deg h_0 , deg $h_1 \leq 2$ until $T(t) := h_1(t)t^q - h_0(t)$ has an irreducible factor φ of degree k.

Heuristic

The existence of h_0 and h_1 is heuristic, but found in practice in O(k) trials.

Properties of φ

- $h_1(t)t^q \equiv h_0(t) \mod \varphi;$
- $P(t^q) \equiv P\left(\frac{h_0}{h_1}\right) \mod \varphi;$

•
$$P^q\equiv ilde{P}(t^q)\equiv ilde{P}\left(rac{h_0}{h_1}
ight) \mod arphi$$
,

where the tilde denotes the conjugation in \mathbb{F}_{q^2} .

A famous identity

Recall the identity

$$x^q - x = \prod_{\alpha \in \mathbb{F}_q} (x - \alpha).$$

We further have $x^q y - xy^q = \prod_{(\alpha:\beta)\in \mathbb{P}^1(\mathbb{F}_q)} (\beta x - \alpha y).$

A famous identity

Recall the identity

$$x^q - x = \prod_{\alpha \in \mathbb{F}_q} (x - \alpha).$$

We further have $x^q y - xy^q = \prod_{(\alpha:\beta)\in \mathbb{P}^1(\mathbb{F}_q)} (\beta x - \alpha y).$

A machine to make relations

- x = t and y = 1: h₀/h₁ t ≡ t^q t ≡ Π_{α∈ℝ_q}(t α).
 If the numerator of the left hand side is smooth, we obtain relations among linear polynomials.
- x = t + a, $a \in \mathbb{F}_q$, and y = 1: same relation.
- x = t + a, $a \in \mathbb{F}_{q^2}$, and y = 1: new relations. Joux' algorithm uses this idea.
- Let *P* be the polynomial whose logarithm is requested.

A famous identity

Recall the identity

$$x^q - x = \prod_{\alpha \in \mathbb{F}_q} (x - \alpha).$$

We further have $x^q y - xy^q = \prod_{(\alpha:\beta)\in\mathbb{P}^1(\mathbb{F}_q)} (\beta x - \alpha y).$

A machine to make relations

x = t and y = 1: h₀/h₁ - t ≡ t^q - t ≡ Π_{α∈ℝ_q}(t - α).
 If the numerator of the left hand side is smooth, we obtain relations among linear polynomials.

•
$$x = t + a$$
, $a \in \mathbb{F}_q$, and $y = 1$: same relation.

- x = t + a, $a \in \mathbb{F}_{q^2}$, and y = 1: new relations. Joux' algorithm uses this idea.
- Let P be the polynomial whose logarithm is requested.
 x = aP + b and y = cP + d, a, b, c, d ∈ 𝔽_{q²}: let us show that the left side is congruent to a small degree polynomial, whereas the right hand side is smooth in some new sense.

The right hand side is "smooth"

$$(aP+b)^q(cP+d) - (aP+b)(cP+d)^q = \prod_{(\alpha,\beta)\in\mathbb{P}^1(\mathbb{F}_q)} \beta(aP+b) - \alpha(cP+d)$$

$$=\prod_{(lpha,eta)\in\mathbb{P}^1(\mathbb{F}_q)}(-clpha+aeta)P-(dlpha-beta)$$

$$\lambda = \lambda \prod_{(lpha,eta)\in \mathbb{P}^1(\mathbb{F}_q)} \left(\mathsf{P} - rac{dlpha - beta}{aeta - clpha}
ight),$$

Here q + 1 out of the $q^2 + 1$ elements of $\{1\} \bigcup \{P + \gamma : \gamma \in \mathbb{F}_{q^2}\}$ occur.

The left hand side is small

For $m \in \operatorname{GL}_2(\mathbb{F}_{q^2})$, let \mathcal{L}_m be the residue

$$\mathcal{L}_m \mathrel{\mathop:}= h_1^{\deg P} \left((aP+b)^q (cP+d) - (aP+b)(cP+d)^q
ight) \mod arphi(t).$$

The left hand side is small

For $m \in \operatorname{GL}_2(\mathbb{F}_{q^2})$, let \mathcal{L}_m be the residue

$$\mathcal{L}_m := h_1^{\deg P} \left((aP+b)^q (cP+d) - (aP+b)(cP+d)^q \right) \mod \varphi(t).$$

We have deg $\mathcal{L}_m \leq 3 \deg P$. Indeed, we have

$$\mathcal{L}_{m} = h_{1}^{\deg P} (\tilde{a}\tilde{P}(t^{q}) + \tilde{b})(cP + d) - (aP(t) + b)(\tilde{c}\tilde{P}(t^{q}) + \tilde{d}) \\ = h_{1}^{\deg P} \left(\tilde{a}\tilde{P}\left(\frac{h_{0}}{h_{1}}\right) + \tilde{b}\right)(cP + d) - (aP + b)\left(\tilde{c}\tilde{P}\left(\frac{h_{0}}{h_{1}}\right) + \tilde{d}\right).$$

For a constant proportion of matrices m, \mathcal{L}_m is $(\deg P)/2$ -smooth.

Procedure to "break" a polynomial *P*

Each matrix *m* in the quotient set $\mathcal{P}_q := \mathrm{PGL}_2(\mathbb{F}_{q^2})/\mathrm{PGL}_2(\mathbb{F}_q)$ such that \mathcal{L}_m is $(\deg P)/2$ -smooth leads to a different equation

$$\prod_{i} P_{i,m}^{e_{i,m}} = \lambda \prod_{\gamma \in \mathbb{P}^1(\mathbb{F}_{q^2})} (P + \gamma)^{v_m(\gamma)},$$

where

- ▶ deg $P_i \leq (\text{deg } P)/2;$
- \triangleright $v_m(\gamma)$ are integer exponents;
- \triangleright λ is a constant in \mathbb{F}_{q^2} .

By taking discrete logarithm we find

$$\sum_{i} e_{i,m} \log P_{i,m} \equiv \sum_{\gamma} v_m(\gamma) \log(P + \gamma) \mod \ell.$$

Heuristic

We have enough equations and we can combine them to obtain

$$\sum_{i,m} e'_{i,m} \log P_{i,m} \equiv \log P \mod \ell.$$

Linear algebra step for *P*

Since $\#PGL_2(\mathbb{F}_{q^i}) = q^{3i} - q^i$, $\#\mathcal{P}_q = q^3 + q$. A constant fraction give linear equations among logarithms, so the matrix below has more rows than columns.

The heuristic states that we can combine the rows to obtain row

$$(1, 0, \ldots, 0).$$

Building block of the quasi-polynomial algorithm

We have just proved:

Proposition (Under heuristic assumptions)

There exists an algorithm whose complexity is polynomial in q and k and which can be used for the following two tasks.

- 1. Given an element of $\mathbb{F}_{q^{2k}}$ represented by a polynomial $P \in \mathbb{F}_{q^2}[t]$ with $2 \leq \deg P \leq k 1$, the algorithm returns an expression of $\log P$ as a linear combination of at most $O(kq^2)$ logarithms $\log P_i$ with $\deg P_i \leq \lceil \frac{1}{2} \deg P \rceil$ and of $\log h_1$.
- 2. The algorithm returns the logarithm of h_1 and the logarithms of all the elements of $\mathbb{F}_{q^{2k}}$ of the form t + a, for a in \mathbb{F}_{q^2} .

Complexity

Tree characteristics

- depth=log k because we half the degree at each level;
- arity=O(q²k) because the sons are polynomials in the LHS of the q² equations used;
- number of nodes= $q^{O(\log k)}$ because $k \le q+2$.

Conclusion

- DLP in small characteristic finite fields was introduced because it has faster arithmetic;
- ▶ it was abandoned in 1984 because of the algorithm of Coppersmith
- ▶ it was revived in 2000 by Joux
- ▶ it is asymptotically weak because of the quasi-polynomial algorithm.
- ▶ Small characteristic pairings are broken for the sizes proposed for cryptography.