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Finite fields

Definition
Given a prime p and an irreducible polynomial ϕ ∈ Fp, the field defined by ϕ is the set
Fp[x ]/〈ϕ〉, endowed by the operations

• addition: add elements as polynomials;

• multiplication: multiply elements as polynomials, then reduce modulo ϕ;

• inversion: extended Euclid algorithm.

The prime p is the characteristic of the field of modulus ϕ.

Example

ϕ = x2 + x + 1 ∈ F2[x ] is irreducible because it has no roots, so it defines a field of 4
elements: 0, 1, x , x + 1. In order to compute the inverse of an element, say a = x , we

use EEA for a and b = ϕ:

1 = 1 · (x2 + x + 1) + (x + 1) · x

. The gcd is always 1 because ϕ is irreducible. Here x−1 = x + 1.
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Easy isomorphism
Properties

• If ϕ1 and ϕ2 are two irreducible polynomials in Fp[x ] of same degree, then

Fp[x ]/〈ϕ1〉 ' Fp[x ]/〈ϕ2〉

as fields. The isomorphism is computed in polynomial time and corresponds to a
change of coordinates.

• For all p and n, there are (1 + o(1))pn/n irreducible polynomials over Fp of
degree n.

Fpn or GF(pn) denote “any field of pn elements”

Example

Polynomials ϕ1 = x3 + x + 1 and ϕ2 = x3 + x2 + 1 are irreducible modulo 2 because
they have degree ≤ 3 and no roots. We compute a, b, c so that

ϕ1(a + bx + cx2) ≡ 0 mod ϕ2.

Then, we map any element P(x) in the field of modulus ϕ1 to the field of modulus ϕ2

as follows
P(x) 7→ P(a + bx + cx2).

Here P(x) = x2 + x , and for example x2 + x + 1 7→ (x2 + x)2 + (x2 + x) + 1 = x2.
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DLP in finite fields

Multiplicative group

• the multiplicative group of F∗pn is cyclic

• its cardinality is pn − 1, which can be prime, e.g. 2607 − 1 is prime.

• A proportion of ϕ(pn − 1)/(pn − 1) elements are generators, so easy to find.

• For all a ∈ (Fpn)
∗, ap

n−1 = 1.

Advantages

• by selecting a sparse modulus, e.g. xn + x + 1 when irreducible, multiplication
becomes faster;

• the complexity to multiply polynomials is slightly better for polynomials than for
numbers;

• fast arithmetic is implemented by the C libraries: NTL and gf2x;

• Intel processors offer instructions to multiply polynomials over F2;

• if dedicated hardware is produced(FPGA), it is easier to implement multiplication
in F2n and F3n than in Fp.
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History

factorization DLP in F∗p DLP in F∗2n

Random squares

1980

Index calculus

1979

Index calculus

≈1980

SNFS

1989

SNFS

1993

FFS

1994

Coppersmith

1984

Chronology

• In 1984, the algorithm of Coppersmith was the first of complexity L(1/3).

• In 1989, the Special number field sieve(SNFS) had the same complexity.

• In 1993 and 1994 SNFS was transfered to DLP in Fp and, by analogy, to F2n.

• In 1999, it was explained that the algorithm of Coppersmith was a particular case
of FFS(same complexity).
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Revival thanks to pairings

Utilization of small characteristic fields

• Since 1984, small characteristic seemed much weaker than large characteristic and
factorization, so it was abandoned.

• In 2000 Antoine Joux proposed to use pairings in cryptography, large or small
characteristic.

• Pairings in characteristic 2 and 3 are the fastest and lead to many works of
implementation.

• In 2013 Joux, Boneh and Franklin received the Gödel prize for their works on
pairings.

• The NIST and some private companies were studying pairings for standardization
and commercial applications.
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Relations of small characteristic DLP to other problems

factorization discrete log. in Fp

discrete log. in F2n

pairings inversion

over F2n

elliptic curves

discrete log. over F2n

same complexity

analogous

relies on

relies on

FQ is the field of Q elements, Q prime power.
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Smoothness

Definition

A polynomial in Fq[t] is m-smooth if it factors into polynomials of degree less than or
equal to m.

Theorem

The probability that a degree-n polynomial is m-smooth is 1/uu(1+o(1)) where u = n
m .

Cases:

• n = D, m = D/6 gives a constant probability;

• n = D, m = 1 gives a probability 1/D! ≈ 1/DD .
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Obtaining relations

The finite field Fqk is represented as Fq[t]/ϕ
for an irreducible polynomial ϕ ∈ Fq[t] of degree k .

Example

Take q = 3, k = 5, ϕ = t5 + t4 + 2t3 + 1, g = t ∈ F35 and ` = 11 | 35 − 1. We have

t5 ≡ 2(t + 1)(t3 + t2 + 2t + 1) mod ϕ

The last relation gives:

7 logg t ≡ 1 logg(t + 2) + 2 logg(t + 1) mod 11
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Proposition

If a ∈ F∗q and ` is a factor of qk − 1 coprime to (q − 1), then log a ≡ 0 mod `.
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The finite field Fqk is represented as Fq[t]/ϕ
for an irreducible polynomial ϕ ∈ Fq[t] of degree k .

Example

Take q = 3, k = 5, ϕ = t5 + t4 + 2t3 + 1, g = t ∈ F35 and ` = 11 | 35 − 1. We have

t5 ≡ 2(t + 1)(t3 + t2 + 2t + 1) mod ϕ

t6 ≡ 2(t2 + 1)(t2 + t + 2) mod ϕ

t8 ≡ . . .

The last relation gives:

7 logg t ≡ 1 logg(t + 2) + 2 logg(t + 1) mod 11

8 logg(t + 1) ≡ 1 logg(t + 2) mod 11

9 logg(t + 2) ≡ 2 logg t mod 11

We find logg(t + 1) ≡ 158 mod 11 and logg(t + 2) ≡ 54 mod 11.
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Descent

Example (cont’d)

Let us compute logg P for an arbitrary polynomial, say P = t4 + t + 2.
We have

P2 ≡ t4 + t3 + 2t2 + 2t + 2 mod ϕ

P3 ≡ 2(t + 1)(t + 2)(t2 + 1) mod ϕ

P4 ≡ (t + 1)(t + 2)t2 mod ϕ.

By taking discrete logarithms we obtain

4 logg P = 1 logg(t + 1) + 1 logg(t + 2) + 2 logg t.

So logg P = 114.

R. Barbulescu — The quasi-polynomial algorithm 11 / 23



Descent

Example (cont’d)

Let us compute logg P for an arbitrary polynomial, say P = t4 + t + 2.
We have

P2 ≡ t4 + t3 + 2t2 + 2t + 2 mod ϕ

P3 ≡ 2(t + 1)(t + 2)(t2 + 1) mod ϕ

P4 ≡ (t + 1)(t + 2)t2 mod ϕ.

By taking discrete logarithms we obtain

4 logg P = 1 logg(t + 1) + 1 logg(t + 2) + 2 logg t.

So logg P = 114.

R. Barbulescu — The quasi-polynomial algorithm 11 / 23



Discrete logarithms of constants

Here ` is a prime factor of the group order qk − 1, larger than q − 1.

Elements of Fq

Elements of Fq ⊂ Fqk are represented in Fq[t]/〈ϕ〉 by constants a. They satisfy
aq−1 = 1, so we have

logg(aq−1) ≡ logg(1) ≡ 0 mod `.

Hence,

(q − 1) logg a ≡ 0 mod `.

Since ` is prime and larger than q − 1,

logg a ≡ 0 mod `.
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Main result

Theorem (based on heuristic assumptions)

Let K be any finite field Fqk . A discrete logarithm in K can be computed in heuristic
time

max(q, k)O(log k).

Cases:

I K = F2n, with prime n. Complexity is nO(log n). Much better than
L2n(1/4 + o(1)) ≈ 2

4
√
n (previous state-of-art: Joux 2013).

I K = Fqk , with q = kO(1). Complexity is logQO(log logQ), where Q = #K . Again,
this is LQ(o(1)).

I K = Fqk , with q ≈ Lqk(α). Complexity is Lqk(α + o(1)), i.e. better than
Joux-Lercier or FFS for α < 1/3.
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A well-chosen model for Fq2k

Simple case first

We suppose first k ≈ q and k ≤ q + 2.

Choosing ϕ (same as for Joux’ algorithm)

Try random h0, h1 ∈ Fq2[t] with deg h0, deg h1 ≤ 2 until T (t) := h1(t)tq − h0(t) has an
irreducible factor ϕ of degree k .

Heuristic

The existence of h0 and h1 is heuristic, but found in practice in O(k) trials.

Properties of ϕ

• h1(t)tq ≡ h0(t) mod ϕ;

• P(tq) ≡ P
(
h0
h1

)
mod ϕ;

• Pq ≡ P̃(tq) ≡ P̃
(
h0
h1

)
mod ϕ,

where the tilde denotes the conjugation in Fq2.
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A famous identity

Recall the identity

xq − x =
∏
α∈Fq

(x − α).

We further have xqy − xy q =
∏

(α:β)∈P1(Fq)
(βx − αy).

A machine to make relations

• x = t and y = 1: h0/h1 − t ≡ tq − t ≡
∏

α∈Fq
(t − α).

If the numerator of the left hand side is smooth, we obtain relations among linear
polynomials.

• x = t + a, a ∈ Fq, and y = 1: same relation.

• x = t + a, a ∈ Fq2, and y = 1: new relations. Joux’ algorithm uses this idea.

• Let P be the polynomial whose logarithm is requested.

x = aP + b and y = cP + d , a, b, c , d ∈ Fq2: let us show that the left side is
congruent to a small degree polynomial, whereas the right hand side is smooth in
some new sense.

R. Barbulescu — The quasi-polynomial algorithm 16 / 23



A famous identity

Recall the identity

xq − x =
∏
α∈Fq

(x − α).

We further have xqy − xy q =
∏

(α:β)∈P1(Fq)
(βx − αy).

A machine to make relations

• x = t and y = 1: h0/h1 − t ≡ tq − t ≡
∏

α∈Fq
(t − α).

If the numerator of the left hand side is smooth, we obtain relations among linear
polynomials.

• x = t + a, a ∈ Fq, and y = 1: same relation.

• x = t + a, a ∈ Fq2, and y = 1: new relations. Joux’ algorithm uses this idea.

• Let P be the polynomial whose logarithm is requested.

x = aP + b and y = cP + d , a, b, c , d ∈ Fq2: let us show that the left side is
congruent to a small degree polynomial, whereas the right hand side is smooth in
some new sense.

R. Barbulescu — The quasi-polynomial algorithm 16 / 23



A famous identity

Recall the identity

xq − x =
∏
α∈Fq

(x − α).

We further have xqy − xy q =
∏

(α:β)∈P1(Fq)
(βx − αy).

A machine to make relations

• x = t and y = 1: h0/h1 − t ≡ tq − t ≡
∏

α∈Fq
(t − α).

If the numerator of the left hand side is smooth, we obtain relations among linear
polynomials.

• x = t + a, a ∈ Fq, and y = 1: same relation.

• x = t + a, a ∈ Fq2, and y = 1: new relations. Joux’ algorithm uses this idea.

• Let P be the polynomial whose logarithm is requested.

x = aP + b and y = cP + d , a, b, c , d ∈ Fq2: let us show that the left side is
congruent to a small degree polynomial, whereas the right hand side is smooth in
some new sense.

R. Barbulescu — The quasi-polynomial algorithm 16 / 23



The right hand side is “smooth”

(aP + b)q(cP + d)− (aP + b)(cP + d)q =
∏

(α,β)∈P1(Fq)

β(aP + b)− α(cP + d)

=
∏

(α,β)∈P1(Fq)

(−cα + aβ)P − (dα− bβ)

= λ
∏

(α,β)∈P1(Fq)

(
P − dα− bβ

aβ − cα

)
,

Here q + 1 out of the q2 + 1 elements of {1}
⋃
{P + γ : γ ∈ Fq2} occur.
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The left hand side is small

For m ∈ GL2(Fq2), let Lm be the residue

Lm := hdegP1

(
(aP + b)q(cP + d)− (aP + b)(cP + d)q

)
mod ϕ(t).

We have degLm ≤ 3 degP . Indeed, we have

Lm = hdegP1 (ãP̃(tq) + b̃)(cP + d)− (aP(t) + b)(c̃ P̃(tq) + d̃)

= hdegP1

(
ãP̃

(
h0
h1

)
+ b̃

)
(cP + d)− (aP + b)

(
c̃ P̃

(
h0
h1

)
+ d̃

)
.

For a constant proportion of matrices m, Lm is (degP)/2-smooth.
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Procedure to ”break” a polynomial P
Each matrix m in the quotient set Pq := PGL2(Fq2)/PGL2(Fq) such that Lm is
(degP)/2-smooth leads to a different equation∏

i

P
ei,m
i ,m = λ

∏
γ∈P1(Fq2)

(P + γ)vm(γ),

where

I degPi ≤ (degP)/2;

I vm(γ) are integer exponents;

I λ is a constant in Fq2.

By taking discrete logarithm we find∑
i

ei ,m logPi ,m ≡
∑
γ

vm(γ) log(P + γ) mod `.

Heuristic
We have enough equations and we can combine them to obtain∑

i ,m

e ′i ,m logPi ,m ≡ logP mod `.
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Linear algebra step for P

Since #PGL2(Fqi ) = q3i − qi , #Pq = q3 + q. A constant fraction give linear equations
among logarithms, so the matrix below has more rows than columns.

m ∈ Pq

γ ∈ Fq2

vm(γ)

The heuristic states that we can combine the rows to obtain row

(1, 0, . . . , 0).
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Building block of the quasi-polynomial algorithm

We have just proved:

Proposition (Under heuristic assumptions)

There exists an algorithm whose complexity is polynomial in q and k and which can be
used for the following two tasks.

1. Given an element of Fq2k represented by a polynomial P ∈ Fq2[t] with
2 ≤ degP ≤ k − 1, the algorithm returns an expression of logP as a linear
combination of at most O(kq2) logarithms logPi with degPi ≤ d12 degPe and of
log h1.

2. The algorithm returns the logarithm of h1 and the logarithms of all the elements
of Fq2k of the form t + a, for a in Fq2.
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Complexity

P

•
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deg = k

deg = k/2

deg = k/4

. . .

deg = 1

Tree characteristics

• depth=log k because we half the degree at each level;

• arity=O(q2k) because the sons are polynomials in the LHS of the q2 equations
used;

• number of nodes=qO(log k) because k ≤ q + 2.
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Conclusion

I DLP in small characteristic finite fields was introduced because it has faster
arithmetic;

I it was abandoned in 1984 because of the algorithm of Coppersmith

I it was revived in 2000 by Joux

I it is asymptotically weak because of the quasi-polynomial algorithm.

I Small characteristic pairings are broken for the sizes proposed for cryptography.
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