
Arithmetic algorithms for cryptology — 2 February 2015, Paris

Linear algebra and NFS

Razvan Barbulescu
CNRS and IMJ-PRG

R. Barbulescu — Linear algebra and NFS 0 / 23

Outline of the talk

I Linear algebra

I The number field sieve

R. Barbulescu — Linear algebra and NFS 1 / 23

Linear algebra in cryptography

• what to solve? DLP and factoring modern algorithms, of complexity L(1/3) or less
require to solve Mw = 0, for a sparse matrix M (few non-zero entries per row).

• K =? For factoring K = F2,
while for DLP K = F` with |`| between 200 and 600 bits

• software
• very few implementations available for linear algebra software over so large

fields, e.g. LINBOX uses fields of 32 bits
• CADO: linear algebra over F2; Hamza Jeljeli: software for Fp

• extra difficulty For some DLP algorithms we have a few (in practice 1 to 6) heavy
columns which must be treated separately and require large amounts of memory.

R. Barbulescu — Linear algebra and NFS 2 / 23

Full vs sparse linear algebra1

Full matrix algorithms

• space O(N2), matrix represented in memory as arrays

• time O(Nω), same as matrix multiplication, where
• Gauss (naive multiplication) ω = 3;
• Strassen ω = 2.81;
• Coppersmith-Winograd ω = 2.38;
• open problem: ω = 2?

Sparse matrix algorithms

• space Nλ,
• matrix stored as a list of Nλ pairs (i , ji ,0), . . ., (i , ji ,ki) containing the positions

of non-zero entries;
• matrix is read-only, we implement matrix times vector multiplication and use it

as a black box (building block)

• time O(N2λ), representing O(N) calls of the black box.

1Courtesy to E. Thomé
R. Barbulescu — Linear algebra and NFS 3 / 23

Wiedemann algorithm: main idea

Problem

Given a field K and a matrix M ∈ MatN×N(K), with λ non-zero entries per row, such
that detM = 0. In O(N2λ) operations over K , find a non-zero solution of

Mw = 0.

Sketch of the solution

1. Find a polynomial h in K [x] such that h(M) = 0 (for example the characteristic
polynomial).

2. Since detM = 0, h(x) = xh−(x) for a polynomial h−.

3. Pick a random vector u and evaluate w = h−(M)u.

4. We have: Mw = Mh−(M)u = h(M)u = 0u = 0.

5. If h was chosen of minimal degree then h−(M) 6= 0. Since u is random we will
show that, with high probability, w 6= 0.

R. Barbulescu — Linear algebra and NFS 4 / 23

Retrieving the linear generator

The problem

Given a sequence generated by a linear recurrence, find the linear generator:

• for 1, 10, 100, 1000, . . ., find 1− 10x ;

• for 1, 1, 2, 3, 5, 8, 13, 21, . . ., find 1− x − x2.

Formalization
Let a0, a1, . . . be a sequence given by the recurrence

∀k , ak = −λ1ak−1 − λ2ak−2 − · · · − λnak−n.

Then, the linear generator Λ = 1 + λ1x + · · ·+ λnx
n satisfies

(a0 + a1x + · · · a2n−1x
2n−1)Λ(x) ≡ (b0 + · · ·+ bn−1x

n−1) mod x2n,

for some scalars b0, . . . , bn−1.

Solutions

• (s0, r0) = (0, x2n) and (s1, r1) = (1,
∑2n−1

i=0 aix
i)

• if (s, r) and (s ′, r ′) are solutions, any combination
(α(x)s + β(x)s ′, α(x)r + β(x)r ′) is also solution, α, β ∈ K [x].

R. Barbulescu — Linear algebra and NFS 5 / 23

Extended Euclid algorithm (EEA)
Algorithm

Input two polynomials f , g ∈ K [x] with deg f , deg g ≤ 2n and deg(gcd(f , g)) < n.
Output a sequence of triples (ri , ti , si) ∈ K [x]3 such that ri = ti f + sig , and

deg r0 ≥ deg r1 ≥ . . . ≥ deg rk , where rk = gcd(f , g)

1:

(
r1 t1 s1

r0 t0 s0

)
←

(
g 0 1

f 1 0

)
2: i ← 1
3: while deg ri ≥ n do
4: qi ← ri−1 div ri

5:

(
ri+1 ti+1 si+1

ri ti si

)
←

(
−qi 1

1 0

)(
ri ti si

ri−1 ti−1 si−1

)
6: i ← i + 1
7: end while
8: return {(r0, t0, s0), . . . , (ri , ti , si)}

Properties

• The sequence (deg ri) is strictly decreasing, while (deg ti) and (deg si) increasing.

• For all i , deg si = deg q0 + · · ·+ deg qi−1 = deg r0 − deg ri−1.

Complexity for deg f , deg g ≤ n

EEA costs O(n2), fast algorithms cost O(M(n)(log n)).
R. Barbulescu — Linear algebra and NFS 6 / 23

Computing linear generators with EEA
Theorem

EEA applied to f = x2n and g =
∑2n−1

k=0 akx
k outputs (r , t, s) such that s is a linear

generator.

Proof.

• r0 = x2n and r1 =
∑2n−1

k=0 akx
k have a GCD of degree less than n because the

sequence (ak) is not identical zero. So deg ri < n for large enough i .

• Let i0 be the last value of i in the algorithm, i.e.

deg ri0 < n ≤ deg ri0−1.

We have deg si0 = deg r0 − deg ri0−1 = 2n − deg ri−1 ≤ n.

• The pair (s, r) satisfies the definition of the linear generator.

Berlekamp-Massey (alternative to compute linear generator)

• comes from the theory of error correcting codes (BCH);

• complexity O(n2), same as EEA;

• fast variants of complexity O(M(n)(log n)) (same as EEA);

• unlike EEA, generalizes to linear generators over matrices (Thomé 2003, etc).

R. Barbulescu — Linear algebra and NFS 7 / 23

Wiedemann
Algorithm

Input An N × N singular matrix M over a field K
Output a non-trivial solution of Mu = 0

1: x←Random(KN×1), y←Random(K 1×N),
2: [Krylov] Compute ai = yM ix for i in [0, 2N − 1]

3: [Linear generator] Compute the linear generator Λ =
∑deg Λ

i=0 cdeg Λ−ix
i of (an)n∈N

4: h(x)←
∑deg Λ

i=0 cix
i

5: h−(x)← x− valx hh(x)
6: v ←Random(KN×1); . can be v ← x
7: [Make solution] u ← h−(M)v
8: repeat
9: u ← Mu

10: until Mu = 0 and u 6= 0 . ≤ N + 1− deg Λ times

Complexity

• one product matrix times vector costs Nλ multiplications in K

• Krylov: 2N2λ + N2 operations in K

• Linear generator: N2 (complexity of EEA). But there exist fast algorithms of
complexity O(N(logN)2).

• make solution: N2λ (Horner algorithm)

• total: (3 + o(1))N2λ.
R. Barbulescu — Linear algebra and NFS 8 / 23

Correctness

Notation

• µ=minimal degree monic polynomial such that µ(M) = 0;

• µx=minimal degree monic polynomial such that µx(M)x = 0;

• µx ,y=minimal degree monic polynomial such that y tµx ,y(M)x = 0.

Theorem
If x and y are randomly chosen in a finite field K , then, with probability greater than
or equal to 1−min(1,O(N

#K)),

µ = µx = µx ,y .

Proof.

• Clearly µx ,y divides µx , which divides µ.

• Given a polynomial µ′, µ′(M)x = 0 if and only if x is in a vectorial subspace, so it
occurs with probability O(1/#K). Since µ has at most N cofactors of irreducible
divisors, the failure probability is min(1,O(N/#K))

• Given a vector x and a polynomial µ′ such that µ′(M)x 6= 0, we have
y tµ′(M)x 6= 0 except if we picked by error y in the hyperplane of vectors
perpendicular on µ′(M)x . This occurs with probability O(1/#K).

R. Barbulescu — Linear algebra and NFS 9 / 23

Two levels of parallelism
Inside the black box

? matrix product is done block-wise

? each computing unit (node or CPU cores/pair of GPUs)

stores one block of the matrix,

so we parallelize the memory

? synchronize after each call to the block box: high speed

communication (InfiniBand or two GPU’s on the same PC)

Outside the block box

? unlike Wiedemann, there exists an algorithm where

one has independent sequences of computations

? no communication at all (for this level of parallelism)

? each sequence stores the complete matrix

in memory: no memory parallelism

? compatible with the parallelism inside black box

R. Barbulescu — Linear algebra and NFS 10 / 23

Other algorithms

Lanczos

• comes from the EDP context;

• does Gram-Schimdt orthogonalization w.r.t M tM ;

• cost (2 + o(1))N2λ.

Block Wiedemann

• Krylov and Make solution allow outside black box parallelism;

• minimal polynomial with coefficients in m × n matrices, e.g. 2× 2;

• linear generator is slowed down by a small factor depending on m and n;

• when K = F2 and n = 32, 32 calls of the black box cost as much as one call when
K = F` when ` has 32 bits.

Block-Lanczos

If computations are done on n cores, we synchronize after each iteration, so N/n
synchronizations. This is better than Wiedemann, not as good as Block Wiedemann.

In practice

• DLP: all algorithms can be used;

• factoring: Lanczos and Wiedemann might fail

R. Barbulescu — Linear algebra and NFS 11 / 23

Non-homogeneous systems and left-hand kernel

Left kernel

Sparse matrices are stored as a list {(0, i0,0), . . . , (1, i1,0), . . .}. We can sort the list on
the second coordinate, in quasi-linear time O(Nλ) and obtain the sparse representation
of M t . Then we apply Wiedemann to M t .

Solve Mw = b 1st method
Apply the homogeneous algorithm to the system M bt

0 · · · 0 0

 (x |xN+1)t = 0.

Rescale the solution so that the last coordinate is −1.

R. Barbulescu — Linear algebra and NFS 12 / 23

Non-homogeneous systems: 2nd method

Solve Mw = b, 2nd method
Wiedemann is modified as follows:

1. Compute a polynomial h so that h(M)b = 0.

2. Write h = xh−(x) + h0 and compute w = −1
h0
h−(M)b.

Block Wiedemann can also be modified.

Getting rid of heavy columns (Thomé, to be published)

• In the 2014 record computation of DLP in Fp, the computations related to 2
heavy columns took half of the time of linear algebra (homogeneous system).

• E. Thomé proposed to use the Block Wiedemann with the heavy columns as
vectors b, thus solving a non-homogeneous system.

R. Barbulescu — Linear algebra and NFS 13 / 23

Outline of the talk

I Linear algebra

I The number field sieve

R. Barbulescu — Linear algebra and NFS 14 / 23

The benefit of commutative diagrams

Example for DLP (with Gaussian integers)

• Goal: DLP in Fp for p ≡ 1 mod 4.

• Compute a root of r 2 + 1 = 0 in Fp and put f = x − r and g = x2 + 1.

• Compute pairs of integers (a, b) such that F (a, b) = a− rb and G (a, b) = a2 + b2

are smooth.

• Factor a − br =
∏

qeii and (a −
√
−1b) =

∏
(πj + σj

√
−1)εj

(Z[
√
−1] is an unique factorization ring).

Since G (a, b) = a2 + b2 =
∏

j(π
2
j + σ2

j), all qi , πj and σj are small.

• We obtain in F∗p: ∏
qeii ≡ a − br ≡

∏
(πj + σjr)εj mod p.

• Take discrete log to obtain a linear equation.

• Continue as in Index Calculus.

What changed?

If f and g have small coeffs, we replace the smoothness probability of a large integer
by two tiny integers simultaneously.

R. Barbulescu — Linear algebra and NFS 15 / 23

Polynomial selection

Goal

Find two polynomials f and g with a common root modulo a given integer (composite
N for factoring or prime p for DLP).

Gaussian integers

In the previous example we can use rational reconstruction(EEA) to write r ≡ u/v
mod p with u, v ≈ √p. Replace f by u − xv , so ‖f ‖∞ ≈

√
p. Then

1. F (a, b) ≈ √p,

2. G (a, b) tiny.

Is as if we tested smoothness for numbers of size
√
p instead of p.

Base-m

Put m = bN1/dc and write N = md + Nd−1m
d−1 + · · ·N1m + N0 in base M and put

• f = xd + · · ·+ N1x + N0;

• g = x −m.

We have |F (a, b)| ≈ E dm and |G (a, b)| ≈ Em where E upper bounds |a| and |b|.

R. Barbulescu — Linear algebra and NFS 16 / 23

Change of complexity: L(1/3)

Tiny quantities?

We have |F (a, b)| ≈ E dm and |G (a, b)| ≈ Em where E upper bounds |a| and |b|.

Goal
The key fact in the DLP algorithms is the size of the smoothness bound and of the
quantities which must be smooth. How to choose everything small?

Order of magnitude

• Write the smoothness bound B = L(1/3), the bound on the integers (a, b),
E = L(1/3) and d = (logN/ log logN)1/3. Then
• F (a, b) = L(1/3)dL(1)1/d = L(2/3);
• G (a, b) = L(1/3)L(1)1/d = L(2/3);

• smoothness probability = 1/L(2/3− 1/3) = 1/L(1/3) so we need L(1/3) pairs
a, b.

• OK because E = L(1/3).

R. Barbulescu — Linear algebra and NFS 17 / 23

The number field sieve (NFS): diagram
NFS for DLP in Fp

Let f , g ∈ Z[x] be two irreducible polynomials, which have a common root m
modulo p.

a − bx ∈ Z[x]

Z/pZ

Z[x]/〈f (x)〉 Z[x]/〈g(x)〉

Computations in Z[αf]?

• Mathematical parts of the code are negligible, albeit they produce bugs.

• Implementations available: PARI/GP, Magma, CADO.

R. Barbulescu — Linear algebra and NFS 18 / 23

The number field sieve (NFS): diagram
NFS for DLP in Fp

Let f , g ∈ Z[x] be two irreducible polynomials, which have a common root m
modulo p.

a − bx ∈ Z[x]

Z/pZ

Z[αf] Z[αg]

x 7→ αf x 7→ αg

αf 7→ m αg 7→ m

Computations in Z[αf]?

• Mathematical parts of the code are negligible, albeit they produce bugs.

• Implementations available: PARI/GP, Magma, CADO.

R. Barbulescu — Linear algebra and NFS 18 / 23

NFS: algorithm for DLP

Input a finite field Fpn, two elements t (generator) and s
Output logt s

1: (Polynomial selection) Choose two polynomials f and g in Z[x] such that one has
the diagram presented before;

2: (Sieve) Collect coprime pairs (a, b) such that F (a, b) and G (a, b) are B-smooth
(for a parameter B);

3: Write a linear equation for each pair (a, b) found in the Sieve stage.

4: (Linear algebra) Solve the linear system to find (virtual) logarithms of the prime
ideals of norm less than B ;

5: (Individual logarithm) Write logt s in terms of the previously computed logs.

Factor base

Here we factor into prime ideals of the two number fields. We have F (a, b)G (a, b)
smooth if and only if (a − αf b) and (a − bαg) factor into ideals of the factor base.

R. Barbulescu — Linear algebra and NFS 19 / 23

NFS: algorithm for factorization

Input an integer N
Output with probability 50% a non-trivial factor of N

1: (Polynomial selection) Choose two polynomials f and g in Z[x] such that one has
the diagram presented before;

2: (Sieve) Collect coprime pairs (a, b) such that F (a, b) and G (a, b) are B-smooth
(for a parameter B);

3: Write an exponent vector for each pair (a, b) found in the Sieve stage, modulo 2.

4: (Linear algebra) Find a linear combination of the rows of M which sum to zero;

5: (Square root) Compute a product in the number fields to obtain X 2 ≡ Y 2 mod N .

Success probability

Using Block Wiedemann we compute 32 or more solutions at a time. We only repeat
the Square root stage. We succeed with probability 1− 2−32.

R. Barbulescu — Linear algebra and NFS 20 / 23

NFS: sieve

Naive variant (1989)

1. For f , enumerate integers a and , for each, sieve the polynomial F (a, x); obtain
pairs (a, b) where F (a, b) is smooth.

2. For g , do the same to find pairs (a, b) where G (a, b) is smooth.

3. Intersect the two sets.

Special-Q (1993)

Given a prime q, and a root r such that f (r) ≡ 0 mod q we compute two rational
reconstructions (EEA)

r ≡ a0

b0
≡ a1

b1
mod q,

with a0, b0, a1, b1 ≈
√
q. Then we sieve the pairs (i , j) so that

• F (a0i + a1j , b0i + b1j)/q is B-smooth;

• G (a0i + a1j , b0i + b1j) is B-smooth.

advantage With almost no extra work, we know that we sieve the pairs which have at
list one factor q which is large, but smaller than the smoothness bound.

Franke-Kleinjung (2009)

We enumerate directly the vectors of a lattice.

R. Barbulescu — Linear algebra and NFS 21 / 23

Individual logarithm

Smoothing (also called continued fraction descent)

When computing logt s, as in Index calculus, we test random i until t is mod p is
B-smooth.

If P(x , y) is the probability that a number less than x is y -smooth, then one can prove
that

P(x1, y)P(x2, y) ≥ P(x1x2, y).

Hence, we do a rational reconstruction (EEA) of (t is mod p) before testing
smoothness.

Descent by special-Q

We fix 0 < c < 1. If the log of g is required, we search a pair (a, b) so that G (a, b)/q
is a qc-smooth integer and F (a, b) is qc-smooth. Hence we obtain a relation between
log q and logs of smaller ideals.

In short, individual log consists of:

1. The smoothing stage allows to write the log of a number of size L(1) as
(log q)O(1) logs of primes of ideals of size L(2/3).

2. By the descent stage, one writes the logs of size L(2/3) as log qO(log q) primes and
ideals of size L(1/3), in the factor base.

R. Barbulescu — Linear algebra and NFS 22 / 23

Conclusion

I Cryptographic algorithms require sparse algebra

• F2 for factoring;
• F` with large ` for DLP;
• parallelism is a problem, although Block-Wiedemann allows perfect parallelism

for ≤ 10 computing sites.

I NFS is the best algorithm for factoring and the best algorithm for DLP in Fp (and
large characteristic).

I NFS has complexity L(1/3) because it requires smoothness for numbers of size
L(2/3).

I NFS was improved especially by accelerating the sieve and making linear algebra
parallel.

R. Barbulescu — Linear algebra and NFS 23 / 23

	Linear algebra
	The number field sieve

