MPRI – cours 2.12.2 F. Morain

Tutorial, 2014/09/22

- 1. Find a multiple of 49 all decimal digits of which are equal to 1.
- 2. What are the generators of $(\mathbb{Z}/13\mathbb{Z})^*$?
- 3. Compute $1/5 \mod 17$.

4. Let d(n) denote the number of divisors of n; hence $d(6) = \#\{1, 2, 3, 6\} = 4$. Characterize the integers n for which d(n) is odd.

5. Let $(e_i)_{1 \leq i \leq n}$ be a sequence of integers and x an element of some group G. Put $E = \prod_{i=1}^{n} e_i$ and $E_i = E/e_i$. Show that one can compute all $y_i = x^{E_i}$ using $O(n \log n)$ group operations.

6. Let $E(x) = x^e \mod N$ be the encryption function for RSA with the usual notations. Compute the number of fixed points of E, i.e., the number of x that satisfy E(x) = x.

7. Characterize the integers N s.t. $\varphi(N) \mid N-1$.

- 8. Suppose N = pq, p and q distinct primes.
 - a) Show that the equation $x^2 \equiv 1 \mod N$ has four roots modulo N.
 - b) Show that two of the solutions yield a factorization of N.

9. Suppose N = pq, p and q distinct primes. Let a be prime to N and suppose an oracle gives us the order r of a modulo N. Can we factor N?