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Plan

The general picture
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Notations

Finite field = FQ, with Q = pn with:
p is a prime = the characteristic.
n is integer (prime or not prime).

Main complexity is in LQ(
1
3).

Limits between algorithms:

p > LQ(2
3): NFS

LQ(1
3) < p < LQ(2

3): NFS-HD
p < LQ(1

3): FFS – quasi-polynomial.
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Relation between log p and n

In terms of size: logQ = n log p.
If p = LQ(α, c), then n = 1

c

(
log Q

log log Q

)1−α
.

Hence:
log p = c(logQ)α(log logQ)1−α

n = 1
c (logQ)1−α(log logQ)α−1

The limits correspond to log p or n reaching ≈ (logQ)2/3, thus
creating norms that are too big for an LQ(1/3)-algorithm.

Rem. To get straight lines on the next picture, we must add
another level of log.
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Complexities on a picture

log n

log log p

p = LQ(1/3)

p = LQ(2/3)

NFS: LQ(1/3, (64/9)1/3)

NFS-HD: LQ(1/3, (128/9)1/3)

Quasi-Poly:
LQ(α + o(1))

when
p = LQ(α)
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Complexities: variants
Coppersmith’s multiple-fields variant:

Initially invented for factorization;
Extended to discrete log over Fp by Matyukhin (see also
Commeine–Semaev);
Complexity exponent drops from

(
64
9

)1/3
≈ 1.923 to ≈ 1.902.

Uses a subexponential number of algebraic sides, with a
common rational side.

SNFS variant:
If N is of a special form, then its factorization by NFS can
have a complexity exponent as low as

(
32
9

)1/3
;

Historically very important;
Used for computing factors for the Cunningham project; in
particular numbers 2n ± 1;
SNFS extended to DL in Fp by Semaev;
Active research topic: recent paper by Joux–Pierrot.
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DL records
We give records as of today (November 2013).
Most of them are very recent, or too old to hold long.

This might change quickly!

Fp, 160 digits. Kleinjung (2007).
F3334135357 , 429 digits. Joux (2013).
F36·97 , 278 digits. Hayashi-Shimoyama-Shinohara-Takagi
(2012).
F26168 , 1857 digits. Joux (2013) (see also records by
Göloğlu-Granger-McGuire-Zumbrägel).
F2809 , 244 digits. Nancy (2013).

Rem: Remember that the record for integer factorization is
RSA-768, with 232 digits (2010).
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The magic diagram

Let f (x) be a polynomial and m an integer such that f (m) ≡ 0
mod p. We denote by α the algebraic number that is a root of f .
The diagram commutes (the maps are ring homomorphisms).

Z[x ]

Z[x ]/(x −m) Z[x ]/f (x)

Z/pZ ∼= Fp

x 7→ m x 7→ α

mod p α 7→ m mod p

a + bx ∈

a + bm ∈ 3 a + bα

a + bm ∈

smooth? smooth?

If smooth on both sides, then we get a relation in Fp.
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What does it mean to be smooth?

On the rational side (left): smoothness of integers. OK.

On the algebraic side (right):
Smoothness in a number ring.
In general, this is not a Unique Factorization Domain.
Have to factor ideals.
A lot of (theoretical and practical) technicalities to define the
“log of an ideal mapped to Fp.”
Work of Schirokauer.

Rem. Main mathematical notion: Dedekind domain. Algorithms
for manipulating ideals have been developped in the late 80’s
(Cohen’s school).
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Practical considerations

Rem. For a fast implementation, have to write some
two-dimensional Eratosthenes-like sieve.
A bit of lattice theory, here.

Rem. For finding relations, exactly the same code can be used as
for integer factorization by NFS.

Warning. The linear algebra step is very different: over F2 for
factoring; over Z/(p − 1)Z for DL.
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Sizes, complexity

The degree d of f (x) will be ≈ (log p)1/3.

The size of the coefficients of f and g is around p1/d ≈ Lp(2/3).

The size of the candidates (a, b) for getting a relation is
≈ Lp(1/3).

The integers that we have to test for smoothness (the “norms”)
have size Lp(2/3).

We set the smoothness bound to ≈ Lp(1/3).

The overall complexity is Lp

(
1/3,

(
64
9

)1/3
)
.

Rem. Understanding the Lp(1/3) nature of the complexity is ok.
Getting the right exponent is very much error-prone.
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DL in Fpn, with small n
Need to find f and g , such that we get a similar commutative
diagram:

Z[x ]

Z[x ]/f (x) Z[x ]/g(x)

Fpn

This imposes that both f and g have a degree at least n, in order
to have a common irreducible factor of degere n modulo p.

Game: Find such polynomials with coefficents and degree as small
as possible.
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Quasi-polynomial algorithm
Recent result by Barbulescu, Gaudry, Joux, Thomé (2013, still
under review).

Theorem (based on heuristics)
Let K be a finite field of the form Fqk . A discrete logarithm in K
can be computed in heuristic time

max(q, k)O(log k).

Cases:
K = F2n , with prime n. Complexity is nO(log n). Much better
than L2n (1/3 + o(1)) ≈ 2 3√n.
K = Fqk , with q ≈ k. Complexity is logQO(log log Q), where
Q = #K . Again, this is LQ(o(1)).
K = Fqk , with q ≈ Lqk (α). Complexity is Lqk (α + o(1)), i.e.
better than Joux-Lercier or FFS for α < 1/3.
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Setting

The setting of the algorithm is the following:

K = Fq2k , with k ≈ q.
The field Fq2 is represented in any usual way.

The extension of degree k is constructed as follows:
Take h0 and h1 two polynomials over Fq2 , of small degree (2
should be ok).
Let Φ(X ) = h1(X )Xq − h0(X ).
Until there is an irreducible factor I(X ) of Φ(X ) of degree k.

Rem. This works only if k ≤ q + 2.
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How to fit in this setting?

If the given field Fpn is such that n > p + 2, we embed the DL in
Fpn into a larger field:
Let q be the smallest power of p such that q + 2 ≥ n and set
k = n.

Then, Fq2k contains Fpn and we are in the previous setting.
The cost of this embedding is reflected by the max() in the
formula of the complexity.

Rem. If n is composite, it might not be necessary to pay as much
for this extension.
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General strategy

Given an element P(x) in Fq2k represented as a polynomial of
degree D ≤ k − 1 over Fq2 , we are going to descend it:

Find a linear relation between logP and the logs of elements
of degrees at most D/2;
Do it recursively: each new log can be again expressed in
terms of logs of polynomials of smaller degrees;
Go down to degree 1;
The logs of all linear polynomials can be found in
polynomial-time in q.
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One step of descent

Proposition (heuristic)
Let P(X ) ∈ Fq2 of degree D < k. In time polynomial in D and q,
we can express logP as a linear combination

∑
ei logPi , where

degPi ≤ D/2, and the number of Pi is in O(q2D).

Provided that the logs of linear polynomials can be computed in
polynomial time in q, then the main result follows from the
analysis of the size of the descent tree.
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The descent tree

Each node of the descent tree corresponds to one application of
the Proposition, hence its arity is in q2D.

level degPi width of tree
0 k 1
1 k/2 q2k
2 k/4 q2k · q2 k

2
3 k/8 q2k · q2 k

2 · q
2 k

4...
...

...
log k 1 ≤ q2 log kk log k

Total number of nodes = qO(log k).
Each node yields a cost that is polynomial in q, hence the result.
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One step of descent: how?
Start from the field equation:

Xq − X =
∏

(α:β)∈P1(Fq)

(βX − α),

Plug the input P(X ), twisted by an homography m =

(
a b
c d

)
:

(aP(X ) + b)q(cP(X ) + d)− (aP(X ) + b)(cP(X ) + d)q

=
∏

(α:β)∈P1(Fq)

β(aP(X ) + b)− α(cP(X ) + d)

=
∏

(α:β)∈P1(Fq)

(βa − αc)P(X ) + (βb − αd)

= λ
∏

(α:β)∈P1(Fq)

P(X )−m−1 · (α : β).
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One step of descent: how?

Left-hand side:
Let the q-power come inside the formulae, and use
Xq ≡ h0(X )/h1(X ).
Hence, modulo denominator cleaning, it is a polynomial of degree
O(degP).
Probability that LHS splits in polys of degree ≤ 1

2 degP is
constant.

Right-hand side:
All factors are in

{
P(X )− γ | γ ∈ Fq2

}
.
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One step of descent: how?

Now, we let the matrix m =

(
a b
c d

)
vary.

The RHS is the same as for m = Id if m is in PGL2(Fq).
The appropriate set where to pick m is the set of cosets:

Pq = PGL2(Fq2)/PGL2(Fq).

For any q, the order of PGL2(Fq) = q3 − q, so

#Pq = q3 + q.

Conclusion: Have Θ(q3) relations; need q2 to eliminate the
right-hand sides. More than enough! (but heuristic)
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Logarithms of linear polynomials

Strategy: set P(X ) = X in the same machinery as before.

The LHS have degree: the same as degrees of h0 and h1, say 2.
The probability that it splits into linear factors is 1/2.

By construction, the RHS is a product of linear factors.

Conclusion: Have Θ(q3) relations; expect to need O(q2) to get a
full rank matrix. Again, more than enough! (but heuristic)

Rem: Here, this is a kernel computation, whereas inside the
descent tree, we solve inhomogenous systems.
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Final remarks

Today’s situation:
Very recent algorithm; DL is a hot topic these days.
Many practical improvements yet to be discovered.
It might be possible to prove some of the heuristics.

Big Open Questions:
Can we get a (heuristic) polynomial-time algorithm in small
characteristic ?
Can we extend the range of applicability of the
quasi-polynomial time algorithm.
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