
The discrete logarithm problem.
2 – Subexponential algorithms

Pierrick Gaudry

Caramel – LORIA
CNRS, Université de Lorraine, Inria

MPRI – 12.2 – 2013-2014

1/32

References

Recommended books:

Mathematics of Public Key Cryptography,
by Steven Galbraith.
Cambridge University Press, 2012.
Algorithmic Cryptanalysis,
by Antoine Joux.
Chapman and Hall, CRC, 2009

2/32

Plan

Refresh on smoothness

L(1/2) index calculus in finite fields

An exemple of L(1/3) algorithm

3/32

The L notation

Definition: subexponential L-function
Let N be the main parameter (usually the input of the algorithm).
For parameters α ∈ [0, 1] and c > 0, we define the
subexponential L-function by

LN(α, c) = exp
(
c(logN)α(log logN)1−α

)
.

Rem: α is the main parameter. α = 0 means polynomial-time;
α = 1 means purely exponential.
Rem: Sometimes, we drop the c parameter. All algorithms in this
lecture will have complexity in LN(

1
2) or in LN(

1
3).

Rem: Crude approximation. The input N has n = logN bits,
LN(α) ≈ 2nα .

4/32

The prime number theorem
The most “non-smooth” integers are primes. And there are tons of
them!
Prime Number Theorem
Let π(x) be the number of primes less than or equal to x . Then

π(x) ∼ x/ ln(x).

Can be refined with the logarithmic integral:

Li(x) =
∫ x

2

dt
ln t

Then we have π(x) ∼ Li(x), and more precisely, under RH,

π(x) = Li(x) + O(
√

x ln x).

5/32

Smooth integers: examples

Pick the right answer:

A 100-bit integer is 10-bit smooth with probability
� 1/10 � 1/5000 � 1/1010 � 1/260

A 100-digit integer is 10-digit smooth with probability
� 1/10 � 1/5000 � 1/1010 � 1/260

A 500-bit integer is 100-bit smooth with probability
� 1/10 � 1/5000 � 1/1010 � 1/260

Hint: remember u−u.

6/32

Smooth integers: examples

Pick the right answer:

A 100-bit integer is 10-bit smooth with probability
� 1/10 � 1/5000 � 1/1010 � 1/260

A 100-digit integer is 10-digit smooth with probability
� 1/10 � 1/5000 � 1/1010 � 1/260

A 500-bit integer is 100-bit smooth with probability
� 1/10 � 1/5000 � 1/1010 � 1/260

Hint: remember u−u.

6/32

Smooth integers: theorem of CEP

Def. We let ψ(x , y) be the number of y -smooth integers that are
less than or equal to x .

Theorem (Canfield – Erdős – Pomerance)
For any ε > 0. Uniformly in y ≥ (log x)1+ε, as x →∞,

ψ(x , y)/x = u−u(1+o(1)),

where u = log x/ log y .

In all our algorithms, y is much larger than this bound: it is
subexponential, or (in next lecture), exponential in log x .

7/32

Smooth integers: theorem with L

Easy corollary of CEP:

Smoothness probabilities with L notation
Let α, β, c, d , with 0 < β < α ≤ 1. The probability that a
number less than or equal to LN(α, c) is LN(β, d)-smooth is

LN

(
α− β, (α− β) c

d

)−1+o(1)
.

Main application: α = 1, β = 1/2.
Then an integer less than N is LN(1/2)-smooth with probability in
1/LN(1/2).

8/32

Smooth polynomials: theorem of PGF

Let Fq be a finite field. Smooth polynomials over Fq are exactly as
frequent as smooth integers, with the degree taking the role of
the log (both are “size” functions).

Theorem (Panario – Gourdon – Flajolet)
Let Nq(n,m) be the number of monic polynomials over Fq, of
degree n that are m-smooth.
Then we have

Nq(n,m)/qn = u−u(1+o(1)),

where u = n/m.

Rem. Degenerate case. If m = 1 (completely splitting
polynomials), then Nq(n, 1) = qn/n!.

9/32

Plan

Refresh on smoothness

L(1/2) index calculus in finite fields

An exemple of L(1/3) algorithm

10/32

Discrete log in prime fields

Let p be a prime. Let g be a generator of F∗p.

Goal: compute the discrete log of h in base g .

1. Fix a smoothness bound B, and construct the factor base
F = {pi prime; pi ≤ B}.

2. Collect relations.
Repeat the following until enough relations:
2.1 Pick a and b at random and compute z = gahb.
2.2 Seen as an integer in [0, p − 1], check if z is B-smooth.
2.3 If yes, write z as a product of elements of F and store the

corresponding relation as a row of a matrix.
3. Find a vector v in the left-kernel of the matrix, modulo p− 1.
4. Deduce the discrete log relation between h and g .

11/32

DL in prime fields: Analysis
Step 1: can be done with Erathostenes’ sieve. Cost is Õ(B).
We get #F = π(B) ∼ B/ ln(B) elements.
Step 2:
The cost of computing z is O(log(p)) operations in Fp.
Testing its smoothness is more problematic:

Computing the full factorization (with NFS) would be
possible, but costly in practice.
After Smith’s lectures, you’ll know about ECM, and this is the
best choice asymptotically.
Trial-division is an option if B is not too large.

We’ll use NFS: the full factorization can be computed in Lp(1/3).
The probability that z gives a relation is given by CEP.
We need more than #F relations to ensure a non-trivial kernel.
Step 3:
The matrix is sparse; Wiedemann’s algorithm gives a non-trivial
kernel vector in time Õ((#F)2).

12/32

DL in prime fields: Analysis
The optimal choice for B will be of the form Lp(

1
2 , b).

Then #F = Lp(
1
2 , b + o(1)).

The probability that z gives a relation is then

Lp
(1
2 ,−

1
2b + o(1)

)
.

So the number of time we have to run the loop of Step 2 is

Lp
(1
2 , b + o(1)

)
· Lp

(1
2 ,

1
2b + o(1)

)
= Lp

(1
2 , b +

1
2b + o(1)

)
.

The cost of each iteration is dominated by the factorization which,
with NFS is in Lp(

1
3). This is swallowed in the o(1).

The value of b that minimizes Step 2 is then b =
√
2/2. The total

cost of Step 2 is
Lp
(1
2 ,
√
2+ o(1)

)
.

Finally, the cost of linear algebra is in Lp(
1
2 , 2b + o(1)), which is

the same.
13/32

Sparse linear algebra

Theorem: Sparse kernel computation
Let M be a singular square matrix of size n, with w non-zero
entries per row on average.
A uniformly distributed element of the kernel of M can be
computed in time O(wn2) and memory O(wn).

Rem. The corresponding algorithm works in a black-box model:
the key operation is a matrix-vector product.
Rem. This is a probabilistic algorithm.
Rem. If the matrix is not square, then we can add empty
rows/columns.

Thm. Kernel computation implies system solving.

14/32

Wiedemann’s algo: min poly to kernel

Def. The minimal polynomial µM(T) of the matrix M is the
non-zero polynomial of smallest degree such that µM(M) = 0.
Rem. The characteristic polynomial is a multiple of µM(T). The
degree of µM is at most n.

Hypothesis: µM(T) is known.
Since M is supposed to be singular, then T |µM(T).

µM(T) = T kν(T).

Let v be a random (non-zero) vector.
Then, µM(M)v = 0, but with high probability ν(M)v 6= 0.
Therefore, there exists i < k such that w = M iν(M)v 6= 0, and
Mw = 0. The vector w is a non-trivial element of KerM.

Conclusion: given the minimal polynomial, one can get a kernel
element in less than n matrix-vector products.

15/32

Wiedemann’s algo: computing min poly
Let u and v be random vectors and define the Krylov sequence:

ai =
tu M i v .

Fact: This sequence is a linear recurrence relation sequence, whose
characteristic polynomial is a factor of µM(T).
Hypothesis: the characteristic polynomial is equal to µN(T).

Thm. Given 2n terms of a linear recurrence relation sequence,
it is possible to get its characteristic polynomial in O(n2)
operations, or Õ(n) operations with fast multiplication.

Rem. Computing 2n terms of the sequence costs O(n)
matrix-vector products.
Algorithm: Extended GCD stopped in the middle.

List of keywords for related questions: Toeplitz linear system,
rational reconstruction, Padé approximant, continued fractions.

16/32

DL in prime fields: Summary

Two key tools of the basic index calculus:
Smoothness properties;
Sparse linear algebra.

Theorem
In a prime field Fp, the discrete logarithm problem can be solved
with the basic index calculus in time Lp(

1
2 ,
√
2).

17/32

DL in finite fields of small characteristic

Consider the DL problem in F2n .

Dictionnary:
Integers ↔ Polynomials over F2.
Primes ↔ Irreducible polys.
B-smooth ↔ Degree-logB-smooth.

Then, copy-paste the same algorithm.

18/32

Discrete log in F2n

1. Fix a smoothness bound B, and construct the factor base
F = {pi irred; deg pi ≤ logB}.

2. Collect relations. Repeat the following until enough relations:
2.1 Pick a and b at random and compute z = gahb.
2.2 Seen as a poly of degree < n, check if z is smooth.
2.3 If yes, write z as a product of elements of F and store the

corresponding relation as a row of a matrix.
3. Find a vector v in the left-kernel of the matrix, modulo 2n− 1.
4. Deduce the discrete log relation between h and g .

19/32

Index calculus: general theorem

Theorem
In any finite field Fq, the discrete logarithm problem can be solved
with the index calculus algorithm in time Lq(

1
2 , c).

For prime fields and fields of fixed characteristic, it is possible to
choose c =

√
2.

Rem. This is much better than for a generic group: Pollard’s Rho
complexity is √q ≈ Lq(1, 1

2).
Rem. On the other hand, except for the linear algebra step, the
index calculus does not take advantage of the presence of
subgroups.
E.g. In the DSA signature scheme, we work in a
Pollard-Rho-resistant subgroup of the multiplicative group of an
index-calculus-resistant finite field.

20/32

Plan

Refresh on smoothness

L(1/2) index calculus in finite fields

An exemple of L(1/3) algorithm

21/32

Foreword about L(1/3)
A short history of L(1/2) to L(1/3) transition:

Late 70’ / early 80’s, we had L(1/2) algorithms for factoring
and dlog in all finite fields.
1984: Coppersmith’s algorithm. L(1/3) for finite fields in
characteristic 2.
End of 80’s, early 90’s: Number Field Sieve for factoring in
L(1/3), by Lenstra, Pollard,
1993: Gordon and Schirokauer adapted the Number Field
Sieve for DL in prime fields.
1994: Function Field Sieve (Adleman). L(1/3) for finite
fields of small characteristic.
90’s – mid-2000’s: Improvements to NFS for DL.
End of the 2000’s: we had L(1/3) algorithms for factoring and
dlog in all finite fields.

2013: L(1/4), then quasi-polynomial for small-characteristic
finite fields.

22/32

Foreword about L(1/3)
A short history of L(1/2) to L(1/3) transition:

Late 70’ / early 80’s, we had L(1/2) algorithms for factoring
and dlog in all finite fields.
1984: Coppersmith’s algorithm. L(1/3) for finite fields in
characteristic 2.
End of 80’s, early 90’s: Number Field Sieve for factoring in
L(1/3), by Lenstra, Pollard,
1993: Gordon and Schirokauer adapted the Number Field
Sieve for DL in prime fields.
1994: Function Field Sieve (Adleman). L(1/3) for finite
fields of small characteristic.
90’s – mid-2000’s: Improvements to NFS for DL.
End of the 2000’s: we had L(1/3) algorithms for factoring and
dlog in all finite fields.
2013: L(1/4), then quasi-polynomial for small-characteristic
finite fields.

22/32

Joux-Lercier’s algorithm: setting
This algorithm by Joux-Lercier (2006) is the simplest L(1/3) dlog
algorithm. It works in small characteristic.
Setting:
Let F2n be the target finite field.
We choose an unusual representation: Pick γ1 and γ2 as follows:

γ1 and γ2 are two polynomials over F2, of resp. degrees d1
and d2, with d1d2 ≥ n.
γ1(γ2(x))− x has an irreducible factor ϕ of degree n.

Then F2n = F2[x]/ϕ(x).
Define y = γ2(x), so that in F2n , we have{

y = γ2(x)
x = γ1(y)

From now on, x and y are elements of F2n , not indeterminates.
23/32

Joux-Lercier’s algorithm: factor base

The factor base F is made of two sets of elements of F2n :
The elements p(x), where p is irreducible of degree ≤ B;
The elements p(y), where p is irreducible of degree ≤ B;

The smoothness bound B is to be set later.

The cardinality of F is then around 2B+2/B.

Indeed, the number of irreducible polynomials of degree n is about
2n/n (very classical result, using Moebius transform).

24/32

Joux-Lercier’s algorithm: relations
Consider a bivariate polynomial φ(X ,Y) = A(Y) + B(Y)X .
After evaluating φ at (x , y), we get two different expressions (the
norms) for φ(x , y) in F2n :

φ(x , y) = φ(x , γ2(x))
= φ(γ1(y), y))

If both univariate expressions are B-smooth, then we get a
multiplicative relation between factor base elements:∏

i
pi(x)ei =

∏
j

pj(y)fj .

This translates into a linear relation between logs of FB elements.

If one has more than #F relations, then one can solve the system
(assuming it has full rank).

25/32

Joux-Lercier’s algorithm: analysis

Parameters: d1, d2, B, and e = degy φ.
Let’s start to evaluate the degrees of the elements to test for
smoothness:

deg φ(x , γ2(x)) = 1+ ed2
deg φ(γ1(y), y) = d1 + e

The number of φ that we test is 22e . We hope to spend the same
time testing them as doing the linear algebra whose cost is
22B+o(1).

So we fix e = B.

Let B = e = log2 L2n(1
3 , β).

We tune d1 and d2 to minimize the norms.

The degree of the product of the norms is then in log2 L2n(2
3 , f (β)).

The probability that a φ gives a relation is in 1/L2n(1
3 , g(β)).

26/32

Joux-Lercier’s algorithm: analysis

Expected number of relations is then L2n(1
3 , 2βg(β)).

It should be larger than the factor base: L2n(1
3 , β).

We tune β to be as small as possible, when ensuring this inequality
to hold.
Complexity of Joux-Lercier
The discrete logarithms of small elements in F2n can be computed
in time L2n(1

3 , (
32
9)1/3).

Summary: what led us to L(1/3) instead of L(1/2) ?
Instead of having to smooth an element in L(1), we have to
simultaneously smooth two elements in L(2/3).
This idea is present in all the L(1/3) algorithms.

27/32

Joux-Lercier’s algorithm: individual logs

Let h be an element for which we want the log. In general, h is not
in the factor base: it has degree ≈ n in x .

Ignition: Let’s start with the classical index-calculus.
Repeat

Select a random integer α;
Compute h′ = hgα;
Test whether h′ is smooth.

Since we can repeat the loop only L(1/3) times, we can hope for
L(2/3)-smoothness.
We are left with the question of computing the log of elements of
degree log2 L2n(2/3, c).

28/32

Joux-Lercier’s algorithm: descent

Let Q be an irreducible polynomial, s.t. we look for the log of the
element Q(x) (resp. Q(y)).

Definition: Q-lattice
The set of polynomials A0, A1, . . . , Ak such that
φ(X ,Y) = A0(Y) + A1(Y)X + · · ·+ Ak(Y)X k verifies

Q(x) | φ(x , γ2(x)) or resp. Q(y) | φ(γ1(y), y)

is an F2[X]-lattice called the Q-lattice on the x -side (resp. on the
y -side).

Lattice theory: the determinant of the Q-lattice is Q, and we can
find a basis with coordinates of degree ≈ 1

k degQ.
Rem. In that case, this can be computed with an easy linear
algebra, after putting indeterminates for coefficients of Ai .

29/32

Joux-Lercier’s algo: analysis of descent

If degQ ≈ nα, with 1
3 ≤ α ≤

2
3 , then:

Take k ≈ n(α−1/3)/2;
The product of the norms has degree ≈ n(α+1)/2;

In time L1/3, we can hope to find a function φ such that both
norms are nα/2+ 1

6 -smooth.

Therefore, we can rewrite the log of Q(x) (resp. Q(y)) in terms of
the logs of smaller elements.

2
3 −→

1
2 −→

5
12 −→

3
8 −→

17
48 · · ·

Rem. Need a careful analysis when getting close to 1
3 .

30/32

Joux-Lercier’s algo: descent tree

A descent tree is constructed:
Each node is labelled by an irreducible polynomial;
The children of a node are such that the log of the node
polynomial is a linear combination of the logs of the children
polynomials.
The degrees of the children polynomials are less than the
degrees of the node polynomial.
The arity is polynomial in n.
The depth is polynomial in n.
The leafs have degree less than the factor base bound.

31/32

Joux-Lercier’s algo: conclusion

The complexity of the individual log step is an order of magnitude
less than for the precomputation step.

Overall complexity of Joux-Lercier’s algorithm
The discrete logarithm problem in F2n can be solved in

L2n

(
1
3 ,
(32

9

)1/3
)
.

This algorithm can be viewed as a special case of the Function
Field Sieve (same complexity, but faster in practice).

Rem. This works not only in characteristic 2, but also in any
“small” characteristic.

32/32

	Refresh on smoothness
	L(1/2) index calculus in finite fields
	An exemple of L(1/3) algorithm

