The discrete logarithm problem. 2 – Subexponential algorithms

Pierrick Gaudry

CARAMEL – LORIA CNRS, UNIVERSITÉ DE LORRAINE, INRIA

MPRI - 12.2 - 2013-2014

References

Recommended books:

- Mathematics of Public Key Cryptography, by Steven Galbraith.
 Cambridge University Press, 2012.
- Algorithmic Cryptanalysis, by Antoine Joux. Chapman and Hall, CRC, 2009

Refresh on smoothness

L(1/2) index calculus in finite fields

An exemple of L(1/3) algorithm

Definition: subexponential *L*-function

Let *N* be the main parameter (usually the input of the algorithm). For parameters $\alpha \in [0, 1]$ and c > 0, we define the **subexponential** *L*-function by

$$\mathcal{L}_{\mathcal{N}}(lpha, oldsymbol{c}) = \exp\left(oldsymbol{c}(\log oldsymbol{N})^lpha (\log \log oldsymbol{N})^{1-lpha}
ight).$$

Rem: α is the main parameter. $\alpha = 0$ means polynomial-time;

 $\alpha = 1$ means purely exponential.

Rem: Sometimes, we drop the *c* parameter. All algorithms in this lecture will have complexity in $L_N(\frac{1}{2})$ or in $L_N(\frac{1}{3})$. **Rem:** Crude approximation. The input *N* has $n = \log N$ bits, $L_N(\alpha) \approx 2^{n^{\alpha}}$.

The prime number theorem

The most "non-smooth" integers are primes. And there are tons of them!

Prime Number Theorem

Let $\pi(x)$ be the number of primes less than or equal to x. Then

 $\pi(x) \sim x/\ln(x).$

Can be refined with the logarithmic integral:

$$\operatorname{Li}(x) = \int_2^x \frac{\mathrm{d}t}{\ln t}$$

Then we have $\pi(x) \sim \operatorname{Li}(x)$, and more precisely, under RH,

$$\pi(x) = \operatorname{Li}(x) + O(\sqrt{x} \ln x).$$

Pick the right answer:

- A 100-bit integer is 10-bit smooth with probability \Box 1/10 \Box 1/5000 \Box 1/10¹⁰ \Box 1/2⁶⁰
- A 100-digit integer is 10-digit smooth with probability \Box 1/10 \Box 1/5000 \Box 1/10¹⁰ \Box 1/2⁶⁰
- A 500-bit integer is 100-bit smooth with probability \Box 1/10 \Box 1/5000 \Box 1/10¹⁰ \Box 1/2⁶⁰

Pick the right answer:

- A 100-bit integer is 10-bit smooth with probability \Box 1/10 \Box 1/5000 \Box 1/10¹⁰ \Box 1/2⁶⁰
- A 100-digit integer is 10-digit smooth with probability \Box 1/10 \Box 1/5000 \Box 1/10¹⁰ \Box 1/2⁶⁰
- A 500-bit integer is 100-bit smooth with probability \Box 1/10 \Box 1/5000 \Box 1/10¹⁰ \Box 1/2⁶⁰

Hint: remember u^{-u} .

Def. We let $\psi(x, y)$ be the number of y-smooth integers that are less than or equal to x.

Theorem (Canfield – Erdős – Pomerance)

For any $\varepsilon > 0$. Uniformly in $y \ge (\log x)^{1+\varepsilon}$, as $x \to \infty$,

$$\psi(x,y)/x = u^{-u(1+o(1))},$$

where $u = \log x / \log y$.

In all our algorithms, y is much larger than this bound: it is subexponential, or (in next lecture), exponential in log x.

Easy corollary of CEP:

Smoothness probabilities with L notation

Let α , β , c, d, with $0 < \beta < \alpha \le 1$. The probability that a number less than or equal to $L_N(\alpha, c)$ is $L_N(\beta, d)$ -smooth is

$$L_N\left(\alpha-\beta,(\alpha-\beta)\frac{c}{d}\right)^{-1+o(1)}$$

Main application: $\alpha = 1$, $\beta = 1/2$. Then an integer less than N is $L_N(1/2)$ -smooth with probability in $1/L_N(1/2)$. Let \mathbb{F}_q be a finite field. Smooth polynomials over \mathbb{F}_q are exactly as frequent as smooth integers, with the **degree** taking the role of the log (both are "size" functions).

Theorem (Panario – Gourdon – Flajolet)

Let $N_q(n, m)$ be the number of monic polynomials over \mathbb{F}_q , of degree *n* that are *m*-smooth.

Then we have

$$N_q(n,m)/q^n = u^{-u(1+o(1))},$$

where u = n/m.

Rem. Degenerate case. If m = 1 (completely splitting polynomials), then $N_q(n, 1) = q^n/n!$.

Refresh on smoothness

L(1/2) index calculus in finite fields

An exemple of L(1/3) algorithm

Let p be a prime. Let g be a generator of \mathbb{F}_p^* .

Goal: compute the discrete log of h in base g.

- 1. Fix a **smoothness bound** *B*, and construct the **factor base** $\mathcal{F} = \{p_i \text{ prime}; p_i \leq B\}.$
- 2. Collect relations.

Repeat the following until enough relations:

- 2.1 Pick *a* and *b* at random and compute $z = g^a h^b$.
- 2.2 Seen as an integer in [0, p-1], check if z is B-smooth.
- 2.3 If yes, write z as a product of elements of \mathcal{F} and store the corresponding relation as a row of a matrix.
- 3. Find a vector v in the **left-kernel** of the matrix, modulo p-1.
- 4. Deduce the discrete log relation between h and g.

DL in prime fields: Analysis

Step 1: can be done with Erathostenes' sieve. Cost is O(B). We get $\#\mathcal{F} = \pi(B) \sim B/\ln(B)$ elements. **Step 2:**

The cost of computing z is $O(\log(p))$ operations in \mathbb{F}_p . Testing its smoothness is more problematic:

- Computing the full factorization (with NFS) would be possible, but costly in practice.
- After Smith's lectures, you'll know about ECM, and this is the best choice asymptotically.
- Trial-division is an option if *B* is not too large.

We'll use NFS: the full factorization can be computed in $L_p(1/3)$.

The probability that z gives a relation is given by CEP.

We need more than $\#\mathcal{F}$ relations to ensure a non-trivial kernel. **Step 3:**

The matrix is sparse; Wiedemann's algorithm gives a non-trivial kernel vector in time $\tilde{O}((\#\mathcal{F})^2)$.

The optimal choice for *B* will be of the form $L_p(\frac{1}{2}, b)$. Then $\#\mathcal{F} = L_p(\frac{1}{2}, b + o(1))$. The probability that *z* gives a relation is then

$$L_p\Big(\frac{1}{2},-\frac{1}{2b}+o(1)\Big).$$

So the number of time we have to run the loop of Step 2 is

$$L_p\Big(rac{1}{2},b+o(1)\Big)\cdot L_p\Big(rac{1}{2},rac{1}{2b}+o(1)\Big)=L_p\Big(rac{1}{2},b+rac{1}{2b}+o(1)\Big).$$

The cost of each iteration is dominated by the factorization which, with NFS is in $L_p(\frac{1}{3})$. This is swallowed in the o(1). The value of *b* that minimizes Step 2 is then $b = \sqrt{2}/2$. The **total cost** of Step 2 is

$$L_p\left(\frac{1}{2},\sqrt{2}+o(1)\right).$$

Finally, the cost of linear algebra is in $L_p(\frac{1}{2}, 2b + o(1))$, which is the same.

Theorem: Sparse kernel computation

Let M be a singular square matrix of size n, with w non-zero entries per row on average. A uniformly distributed element of the kernel of M can be computed in time $O(wn^2)$ and memory O(wn).

Rem. The corresponding algorithm works in a black-box model: the key operation is a matrix-vector product.Rem. This is a probabilistic algorithm.Rem. If the matrix is not square, then we can add empty rows/columns.

Thm. Kernel computation implies system solving.

Def. The **minimal polynomial** $\mu_M(T)$ of the matrix M is the non-zero polynomial of smallest degree such that $\mu_M(M) = 0$. **Rem.** The characteristic polynomial is a multiple of $\mu_M(T)$. The degree of μ_M is at most n.

Hypothesis: $\mu_M(T)$ is known. Since *M* is supposed to be singular, then $T \mid \mu_M(T)$.

$$\mu_M(T)=T^k\nu(T).$$

Let v be a random (non-zero) vector. Then, $\mu_M(M)v = 0$, but with high probability $\nu(M)v \neq 0$. Therefore, there exists i < k such that $w = M^i \nu(M)v \neq 0$, and Mw = 0. The vector w is a non-trivial element of KerM.

Conclusion: given the minimal polynomial, one can get a kernel element in less than *n* matrix-vector products.

Let u and v be random vectors and define the **Krylov sequence**:

 $a_i = {}^t u M^i v.$

Fact: This sequence is a linear recurrence relation sequence, whose characteristic polynomial is a factor of $\mu_M(T)$. **Hypothesis:** the characteristic polynomial is equal to $\mu_N(T)$.

Thm. Given 2n terms of a linear recurrence relation sequence, it is possible to get its characteristic polynomial in $O(n^2)$ operations, or $\tilde{O}(n)$ operations with fast multiplication.

Rem. Computing 2n terms of the sequence costs O(n) matrix-vector products.

Algorithm: Extended GCD stopped in the middle.

List of **keywords** for related questions: Toeplitz linear system, rational reconstruction, Padé approximant, continued fractions.

Two key tools of the basic index calculus:

- Smoothness properties;
- Sparse linear algebra.

Theorem

In a prime field \mathbb{F}_p , the discrete logarithm problem can be solved with the basic index calculus in time $L_p(\frac{1}{2}, \sqrt{2})$.

Consider the DL problem in \mathbb{F}_{2^n} .

Dictionnary:

- Integers \leftrightarrow Polynomials over \mathbb{F}_2 .
- Primes \leftrightarrow Irreducible polys.
- *B*-smooth \leftrightarrow Degree-log *B*-smooth.

Then, copy-paste the same algorithm.

- 1. Fix a smoothness bound *B*, and construct the factor base $\mathcal{F} = \{p_i \text{ irred}; \deg p_i \leq \log B\}.$
- 2. Collect relations. Repeat the following until enough relations:
 - 2.1 Pick *a* and *b* at random and compute $z = g^a h^b$.
 - 2.2 Seen as a poly of degree < n, check if z is smooth.
 - 2.3 If yes, write z as a product of elements of \mathcal{F} and store the corresponding relation as a row of a matrix.
- 3. Find a vector v in the left-kernel of the matrix, modulo $2^n 1$.
- 4. Deduce the discrete log relation between h and g.

Theorem

In any finite field \mathbb{F}_q , the discrete logarithm problem can be solved with the index calculus algorithm in time $L_q(\frac{1}{2}, c)$. For prime fields and fields of fixed characteristic, it is possible to choose $c = \sqrt{2}$.

Rem. This is much better than for a generic group: Pollard's Rho complexity is $\sqrt{q} \approx L_q(1, \frac{1}{2})$.

Rem. On the other hand, except for the linear algebra step, the index calculus does not take advantage of the presence of subgroups.

E.g. In the **DSA** signature scheme, we work in a Pollard-Rho-resistant subgroup of the multiplicative group of an index-calculus-resistant finite field.

Refresh on smoothness

L(1/2) index calculus in finite fields

An exemple of L(1/3) algorithm

Foreword about L(1/3)

A short history of L(1/2) to L(1/3) transition:

- Late 70' / early 80's, we had L(1/2) algorithms for factoring and dlog in all finite fields.
- 1984: **Coppersmith**'s algorithm. L(1/3) for finite fields in characteristic 2.
- End of 80's, early 90's: Number Field Sieve for factoring in L(1/3), by Lenstra, Pollard,
- 1993: Gordon and Schirokauer adapted the Number Field Sieve for DL in prime fields.
- 1994: **Function Field Sieve** (Adleman). *L*(1/3) for finite fields of small characteristic.
- 90's mid-2000's: Improvements to NFS for DL.
- End of the 2000's: we had L(1/3) algorithms for factoring and dlog in all finite fields.

Foreword about L(1/3)

A short history of L(1/2) to L(1/3) transition:

- Late 70' / early 80's, we had L(1/2) algorithms for factoring and dlog in all finite fields.
- 1984: **Coppersmith**'s algorithm. L(1/3) for finite fields in characteristic 2.
- End of 80's, early 90's: Number Field Sieve for factoring in L(1/3), by Lenstra, Pollard,
- 1993: Gordon and Schirokauer adapted the Number Field Sieve for DL in prime fields.
- 1994: **Function Field Sieve** (Adleman). *L*(1/3) for finite fields of small characteristic.
- 90's mid-2000's: Improvements to NFS for DL.
- End of the 2000's: we had L(1/3) algorithms for factoring and dlog in all finite fields.
- 2013: *L*(1/4), then quasi-polynomial for small-characteristic finite fields.

Joux-Lercier's algorithm: setting

This algorithm by **Joux-Lercier** (2006) is the simplest L(1/3) dlog algorithm. It works in small characteristic. **Setting:**

Let \mathbb{F}_{2^n} be the target finite field.

We choose an **unusual representation**: Pick γ_1 and γ_2 as follows:

- γ₁ and γ₂ are two polynomials over 𝔽₂, of resp. degrees d₁
 and d₂, with d₁d₂ ≥ n.
- $\gamma_1(\gamma_2(x)) x$ has an irreducible factor φ of degree *n*.

Then $\mathbb{F}_{2^n} = \mathbb{F}_2[x]/\varphi(x)$. Define $y = \gamma_2(x)$, so that in \mathbb{F}_{2^n} , we have

$$\begin{cases} y = \gamma_2(x) \\ x = \gamma_1(y) \end{cases}$$

From now on, x and y are **elements** of \mathbb{F}_{2^n} , not indeterminates.

The **factor base** \mathcal{F} is made of two sets of elements of \mathbb{F}_{2^n} :

- The elements p(x), where p is irreducible of degree $\leq B$;
- The elements p(y), where p is irreducible of degree $\leq B$; The **smoothness bound** B is to be set later.

The cardinality of \mathcal{F} is then around $2^{B+2}/B$.

Indeed, the number of irreducible polynomials of degree n is about $2^n/n$ (very classical result, using Moebius transform).

Consider a **bivariate polynomial** $\phi(X, Y) = A(Y) + B(Y)X$. After evaluating ϕ at (x, y), we get two different expressions (the **norms**) for $\phi(x, y)$ in \mathbb{F}_{2^n} :

$$egin{array}{rcl} \phi(x,y)&=&\phi(x,\gamma_2(x))\ &=&\phi(\gamma_1(y),y)) \end{array}$$

If **both** univariate expressions are *B*-smooth, then we get a multiplicative relation between factor base elements:

1

$$\prod_i p_i(x)^{e_i} = \prod_j p_j(y)^{f_j}.$$

This translates into a linear relation between logs of FB elements.

If one has more than $\#\mathcal{F}$ relations, then one can solve the system (assuming it has full rank).

Parameters: d_1 , d_2 , B, and $e = \deg_y \phi$. Let's start to evaluate the degrees of the elements to test for smoothness:

$$\deg \phi(x, \gamma_2(x)) = 1 + ed_2 \deg \phi(\gamma_1(y), y) = d_1 + e$$

The number of ϕ that we test is 2^{2e} . We hope to spend the **same time** testing them as doing the linear algebra whose cost is $2^{2B+o(1)}$.

So we fix
$$e = B$$
.

Let $B = e = \log_2 L_{2^n}(\frac{1}{3}, \beta)$. We tune d_1 and d_2 to minimize the norms.

The degree of the product of the norms is then in $\log_2 L_{2^n}(\frac{2}{3}, f(\beta))$. The probability that a ϕ gives a relation is in $1/L_{2^n}(\frac{1}{3}, g(\beta))$. Expected number of relations is then $L_{2^n}(\frac{1}{3}, 2\beta g(\beta))$. It should be larger than the factor base: $L_{2^n}(\frac{1}{3}, \beta)$. We tupe β to be as small as possible, when ensuring the

We tune β to be as small as possible, when ensuring this inequality to hold.

Complexity of Joux-Lercier

The discrete logarithms of small elements in \mathbb{F}_{2^n} can be computed in time $L_{2^n}(\frac{1}{3},(\frac{32}{9})^{1/3})$.

Summary: what led us to L(1/3) instead of L(1/2) ? Instead of having to smooth an element in L(1), we have to simultaneously smooth two elements in L(2/3). This idea is present in **all** the L(1/3) algorithms. Let *h* be an element for which we want the log. In general, *h* is not in the factor base: it has degree $\approx n$ in *x*.

Ignition: Let's start with the classical index-calculus. Repeat

- Select a random integer α ;
- Compute $h' = hg^{\alpha}$;
- Test whether *h*′ is smooth.

Since we can repeat the loop only L(1/3) times, we can hope for L(2/3)-smoothness. We are left with the question of computing the log of elements of degree $\log_2 L_{2^n}(2/3, c)$.

Joux-Lercier's algorithm: descent

Let Q be an irreducible polynomial, s.t. we look for the log of the element Q(x) (resp. Q(y)).

Definition: Q-lattice

The set of polynomials A_0 , A_1 , ..., A_k such that $\phi(X, Y) = A_0(Y) + A_1(Y)X + \cdots + A_k(Y)X^k$ verifies

 $Q(x) \mid \phi(x, \gamma_2(x))$ or resp. $Q(y) \mid \phi(\gamma_1(y), y)$

is an $\mathbb{F}_2[X]$ -lattice called the Q-lattice on the x-side (resp. on the y-side).

Lattice theory: the determinant of the *Q*-lattice is *Q*, and we can find a basis with coordinates of degree $\approx \frac{1}{k} \deg Q$. **Rem.** In that case, this can be computed with an easy linear algebra, after putting indeterminates for coefficients of A_i .

If deg
$$Q \approx n^{\alpha}$$
, with $\frac{1}{3} \leq \alpha \leq \frac{2}{3}$, then:

• Take
$$k \approx n^{(\alpha - 1/3)/2}$$
;

• The product of the norms has degree $\approx n^{(\alpha+1)/2}$; In time $L_{1/3}$, we can hope to find a function ϕ such that both norms are $n^{\alpha/2+\frac{1}{6}}$ -smooth.

Therefore, we can rewrite the log of Q(x) (resp. Q(y)) in terms of the logs of smaller elements.

$$\frac{2}{3} \longrightarrow \frac{1}{2} \longrightarrow \frac{5}{12} \longrightarrow \frac{3}{8} \longrightarrow \frac{17}{48} \cdots$$

Rem. Need a careful analysis when getting close to $\frac{1}{3}$.

A **descent tree** is constructed:

- Each node is labelled by an irreducible polynomial;
- The children of a node are such that the log of the node polynomial is a linear combination of the logs of the children polynomials.
- The degrees of the children polynomials are less than the degrees of the node polynomial.
- The arity is polynomial in *n*.
- The depth is polynomial in *n*.
- The leafs have degree less than the factor base bound.

The complexity of the individual log step is an order of magnitude less than for the precomputation step.

Overall complexity of Joux-Lercier's algorithm

The discrete logarithm problem in \mathbb{F}_{2^n} can be solved in

$$L_{2^n}\left(\frac{1}{3},\left(\frac{32}{9}\right)^{1/3}\right).$$

This algorithm can be viewed as a special case of the Function Field Sieve (same complexity, but faster in practice).

Rem. This works not only in characteristic 2, but also in any "small" characteristic.