
The discrete logarithm problem.
1 – Generic algorithms

Pierrick Gaudry

Caramel – LORIA
CNRS, Université de Lorraine, Inria

MPRI – 12.2 – 2013-2014

1/31

References

Recommended book:

Mathematics of Public Key Cryptography, by Steven Galbraith.
Cambridge University Press, 2012.

600 pages, most of them related to 12.2 in terms of topic.
Should be at the right difficulty level (not too elementary, not too
much mathematical background is assumed).

2/31

Plan

Motivation

Square root algorithms

Complexity results

Variants of the DLP

3/31

A few words of crypto

Public key cryptography was invented in the 70’s.
This solves major practical problems for the deployment of crypto
in everyday life:

Key exchange over an insecure channel;
Certificates (be sure that you are talking to the right person);
Signatures.
. . .

The most basic (and historically important) algorithm is the
Diffie-Hellman key exchange.
All currently used public key algorithms have their security rely on
number theoretic problems:

Integer factorization (RSA);
Discrete logarithm.

4/31

The discrete logarithm problem

Definition: the discrete log problem
Let G be a cyclic group of order N, with a generator g .
The DLP is:

Given h ∈ G , find an integer x such that h = gx .

Classical assumptions:
The order N is known.
The group G is effective, i.e. we have

a compact representation of the elements of G (ideally, in
O(logN) bits);
an efficient algorithm for the group law (polynomial time in
logN).

Rem: the integer x makes sense only modulo N.

5/31

The DL as an explicit isomorphism

Cyclic group isomorphism
G is a cyclic group means

G ∼= Z/NZ.

The map from Z/NZ to G is the exponentiation:

x 7→ gx .

It can be computed in O(logN) operations in G .
The inverse map from G to Z/NZ is the DL:

gx 7→ x .

It is a much harder problem. The exhaustive search will take N
operations.

6/31

Security – Orders of magnitude

Important question:
How many operations can The Big Computer do ?

Large-scale academic computations (e.g. factorization of
RSA-768): about 265 operations. This corresponds to enough
energy dissipation to heat to boiling point 2 olympic pools.
Handling 2112 operations would correspond to boiling all the
water on the planet. [Credits: Universal security, by Lenstra,
Kleinjung, Thomé]

Conclusion: in crypto, we consider as secure a system for
which the best attack requires at least 2128 operations.

Exercise: read Digital Fortress by Dan Brown, and look for
numerous mistakes.

7/31

Examples of groups
Easy groups:

(Z/NZ,+). The DL is just a division.
{exp(2iπ/n) : i ∈ [0, n − 1]}. The DL is more or less the
classical logarithm.

Moderately hard groups:
Finite fields of prime order. DLP can be solved in
subexponential time.
Class groups of number fields. DLP can be solved in
subexponential time.
Finite fields of small characteristic. Quasi-polynomial time
algorithm (practical ?).

Hard groups:
Elliptic curves.
Genus 2 hyperelliptic curves.

8/31

Plan

Motivation

Square root algorithms

Complexity results

Variants of the DLP

9/31

Pohlig–Hellman reduction: CRT step

Assume that we know the factorization of the group order

N =
∏

pei
i .

For each i , let us project h = gx on the subgroup of order pei
i :

Let
gi = gN/pei

i and hi = hN/pei
i .

Then, gi is of order pei
i and

hi = gxi
i

where xi is congruent to x modulo pei
i .

Algorithm: Compute xi for every i , and then reconstruct x by the
Chinese Remainder Theorem.

10/31

Pohlig–Hellman reduction: Hensel step
From the previous slide, we can assume that N = pe .
Let us write the unknown x in base p:

x = x0 + x1p + x2p2 + · · ·+ xe−1pe−1.

Then, x0 can be found as the discrete logarithm between

g0 = gpe−1 and h0 = hpe−1
,

in the subgroup of order p.

Induction:
Assuming x0, . . . , xi−1 are known, we have:

h g−(x0+x1p+···+xi−1pi−1) = gpi (xi+xi+1p+···+xe−1pe−1−i).

Raising both sides to the power pe−i−1, we obtain a discrete log
equation in the subgroup of order p, with solution xi .

11/31

Pohlig–Hellman reduction: result

Theorem of Pohlig–Hellman
Let G be a cyclic group of known factored order N =

∏
pei

i .
The DLP in G can be solved at the cost of

For each i , solving ei instances of DLP in a group of order pi ;
Additional operations in G (a number that is polynomial in
logN).

Rem: Since the number of factors and the exponents are
polynomial in logN, sometimes the result is stated as

The DLP in a cyclic group is not harder than the DLP
in its subgroup of largest prime order.

From now, we concentrate on DLP in prime order groups.

12/31

Shanks’ baby-step giant-step algorithm
This algorithm is a time-memory tradeoff.
Let K be a parameter (in the end, K ≈

√
N). Write the dlog x as

x = x0 + K x1, with 0 ≤ x0 < K and 0 ≤ x1 < N/K .

Algorithm

1. Compute Baby Steps:
For all i in [0,K − 1], compte g i .
Store in a hash table the resulting pairs (g i , i).

2. Compute Giant Steps:
For all j in [0, bN/Kc], compute hg−Kj .
If the resulting element is in the BS table, then get the
corresponding i , and return x = i + Kj .

Important remark: once g−K has been precomputed, each giant
step costs only one operation.

13/31

Baby-step giant-step algorithm: analysis

Total cost: K + N/K group operations. We do not count the
searches in the table.
Memory requirement: K group elements and indices.
Optimize for the worst-case: take K = b

√
Nc.

Theorem
Discrete logarithms in a cyclic group of order N can be computed
in less than 2d

√
Ne operations.

If one is interested in the average running time, one expect the
algorithm to stop at the middle of the giant steps.
Need to choose K for minimizing K + N/2K . That is, take
K =

√
N/2, and this yields:

Thm. Discrete logarithms in a cyclic group of order N can be
computed in expected time

√
2N group operations.

14/31

Baby-step giant-step algorithm: exercises
In the case where the group G is the set of points of an elliptic
curve, the inverse in the group is very cheap compared to a group
operation.
Exercise 1:

Adapt the BSGS algorithm to take advantage of this cheap
inversion.
Optimize parameters for a worst-case complexity.
Optimize parameters for an average-case complexity.

Sometimes, we know that the discrete log lies in a subinterval
[a, b] of [0,N − 1].
Exercise 2:

Adapt the BSGS algorithm to this situation.
Combine with the previous improvement when the inversion is
cheap.

15/31

Pollard’s Rho algorithm
Pollard’s Rho algorithm for integer factorization can be adapted to
DL computations.
Differences:

Detection of a match: for IF, have to compute a GCD, for
DL, this is just a comparison of elements.
In IF, we can forget the link with the starting point. In DL, we
need something to get the result after a collision has been
found.

Need a pseudo-random function f : G → G . We construct it as
follows:

For 0 ≤ i < 20, let ai , bi be random integers modulo N.
Precompute Ti = gaihbi .
For an element z ∈ G , we define

f (z) = z TH(z),

where H is a hash function from G to [0, 19].
16/31

Pollard’s Rho algorithm
Key feature: if we know a formula z = gahb for z , we can deduce
a similar formula for f (z).

Pollard’s Rho Algorithm

1. Compute z0 = gx0hy0 , for random x0, y0;
2. Compute the sequence zn+1 = f (zn), and simlutaneously

xn+1 = xn + aH(zn) and yn+1 = yn + bH(zn). At each step, we
have zn = gxnhyn .

3. If we have a collision zn = zm for n 6= m, then return

x ≡ (xn − xm)/(ym − yn) mod N.

Rem. For collision detection without storage, use Floyd’s algo.
Rem. If gcd(yn − ym,N) 6= 1, then the algorithm fails. If N is
prime, this occurs with probability 1/N.

17/31

First conclusion on generic algorithms

Combining Pohlig-Hellman and Pollard’s Rho, we get:

Solving DLP in generic groups
Let G be a cyclic group of order N, whose largest prime factor is p.
Discrete logarithms in G can be computed in O(

√p) group
operations, and O(1) storage.

Rem. The O(1) storage is heuristic. If we allow O(
√p) elements

to be stored, the result is rigorously proven.
We’ll see later that this algorithm is optimal, up to a constant
factor.

Question: what about parallelization ?

18/31

Pollard’s Rho with distinguished points
We want an arbitrary criterion that says “this point is special”.
Let H′ be a hash function that has nothing to do with H.

Definition: distinguished point
An element z of G is k-distinguished if the first k bits of H′(z)
are 0.

Idea: replace Floyd’s cycle detection by storing all distinguised
points that we find in the sequence zn, and look for a collision
among them.
It works, because, if there is a collision between non-distinguished
points, the two sequences will continue on the same path and
reach sooner or later a distinguished point.
Comparison with the store-all-points strategy:

Divide by 2k the memory requirement;
Add about 2k steps (delay before detection).

19/31

Parallel collision search
Alternative approach: When a distinguished point is hit, start a
new sequence from scratch.

Parallel algorithm (client / server model):
1. The server precomputes the Ti that define f and send them

to the clients.
2. All clients do the same independently:

2.1 Pick a starting point z0 = gx0hy0 at random;
2.2 Construct the sequence zn+1 = f (zn).
2.3 When zn is distinguished, it is sent to the server together with

its formula in terms of g and h. Then the client goes back to
step 2.1.

3. Each time the server receives a distinguished point, it stores it
in a datastructure.

4. When the server detects that it has received twice the same
point, it computes the discrete log.

20/31

Parallel collision search: analysis

The analysis no longer relies on statistics on functional graphs of
random functions, but on the birthday paradox.

Result:
This algorithm gives an almost perfect N-fold speed-up if N
processors are available.
The memory required on each client is O(1) group elements.
The memory required on the server is (say) 1000 times the
number of clients.
It works very well in practice. Used for setting records in
ECDLP computations.

21/31

Cheap automorphisms

The trick with the inverse map can be genrealized.
Hypothesis: there exists an automorphism φ of G , such that we
can quickly compute a canonical representative for each orbit:

Given z ∈ G, compute z̄ in Oz = {φk(z) : k ∈ Z}, such
that for any z ′ ∈ Oz , z̄ ′ = z̄ .

Rem. If k is small and φ can be efficiently computed, then it’s ok.
We require furthermore that if z is known in terms of g and h,
then so is z̄ .
Then, modify the sequence zn, so that it works only with canonical
representatives.
Result:

Let G be a group with a cheap automorphism of order K .
Then we can save a factor

√
K in the discrete log complexity.

Main example: Elliptic curves defined over a subfield.
22/31

Plan

Motivation

Square root algorithms

Complexity results

Variants of the DLP

23/31

A lower bound

Theorem (Shoup): Lower bound on DLP
Let A be a probabilistic generic algorithm for solving the DLP. If A
succeeds with probability at least 1

2 on a group G , then A must
perform at least Ω(

√
#G) group operations in G .

Rem. Can be refined, for algorithms with proba of success that is
at least 1/(logG)k .
Consequence: Pollard’s Rho is optimal, up to constants.

Rem: Previously, Nechaev proved the same result for deterministic
algorithms.

24/31

What is a generic group?

Def. An encoding of a group G of prime order N is an injective
function σ : G → {0, 1}dt log Ne, where t is some constant t ≥ 1.

Def. A generic algorithm A for the DLP in a group G of order N,
takes as input N, σ(g), σ(h), returns an integer x , and access to
an oracle O:
When the oracle O is invoked with two inputs σ(z1) and σ(z2), it
returns σ(z1/z2).

The algorithm A succeeds if x verifies h = gx .

25/31

Tools for the proof

Main idea: the oracle O will play hide-and-seek with the
algorithm A.
The algorithm is not given the encoding map σ. The oracle will
change it (define it!) on-the-fly.
It has to ensure that it gives consistent ouput to A.
As long as the number of queries stays low, the oracle has enough
room to play.
Modelisation: the “constraints” can be encoded inside the oracle
with multivariate polynomials.

Key Lemma: Let F (x1, . . . , xk) ∈ FN [x1, . . . , xk] be a non-zero
polynomial of total degree d . Then for (x1, . . . , xk) chosen
uniformly at random in Fk

N , the probability that F (x1, . . . , xk) = 0
is at most d/N.

26/31

Random self-reducibility

Hypothesis: we have an algorithm A that solves the discrete
logarithm problem in G for a fraction 1/P of the inputs.

Let h be an element for which we want the discrete log.
Repeat:

Pick a random integer a;
Compute h′ = hga, and try to solve the DLP for h′ with A.
If it works, then log h = log h′ − a.

One expects that after P trials, it works.

In complexity theory, this property is called random
self-reducibility.

27/31

Plan

Motivation

Square root algorithms

Complexity results

Variants of the DLP

28/31

The DH problem

Remember the DH protocol? What is its security?

The Diffie-Hellman Problem
Let G be a cyclic group. Given g , ga, gb three elements of G , the
DHP is to compute gab.

The DHP can not be harder than the DLP (if we know how to
compute DL, then one computes a from ga and raise gb to the
power a).

Question: converse ?

Rem. There exists a decisional variant of the DHP: given g , ga,
gb, gc , try to guess if c = ab. Very useful in crypto.

29/31

Maurer–Wolf reduction

Theorem (Maurer–Wolf). Reduction DHP–DLP
Let G be a group of order N. Assume that there exists an
algorithm A that can solve the (computational) DHP. Then, there
exists an algorithm that can solve the DLP in G , that will do a
subexponential number of calls to A.

By subexponential, we mean:
LN(1/2) if we accept a reasonable heuristic related to elliptic
curves.
LN(2/3) for a proven result (with hyperelliptic curves).

Conclusion: some kind of “proof” that DHP is hard, if one
believes that DLP is hard in our specific instance of G .

30/31

Low Hamming weight DLP

If we know in advance that the discrete log (as an integer in
[0,N − 1]) has a low Hamming weight w in base 2, then we can
use it to speed-up the computations.

Theorem (Coppersmith, Stinson). Low Hamming weight DLP
Let G be a group of order N, and set n = log2 N. There exists an
algorithm that can compute a DLP in G of weight w in
O(
√
w
(n/2

w/2
)
) operations in G , with a storage requirement of

O(
√
w
(n/2

w/2
)
) elements.

This is about the square root of the search space, so it fits within
the general “square root improvements”.

Rem. Memory requirement is huge. Still open to get a full
square-root improvement with low-memory.

31/31

	Motivation
	Square root algorithms
	Complexity results
	Variants of the DLP

