MPRI – Cours 2.12.2

F. Morain

Lecture II: discrete logarithm in generic groups 2012/10/15

The slides are available on http://www.lix.polytechnique.fr/Labo/Francois.Morain/MPRI/2012

Contents

- I. Introduction.
- II. The Pohlig-Hellman reduction.
- III. Baby steps giant steps.
- IV. Pollard's ρ .
- V. Nechaev/Shoup theorem (à la Stinson).

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2011-2012

1

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2011-2012

. . . .

I. Introduction

Def. (DLP) Given $G = \langle g \rangle$ of order n and $a \in G$, find $x \in [0..n[$ s.t. $a = g^x$.

Adaptive and non-adaptive: *a* is given beforehand, or only after some precomputation have been done (see Adleman's algorithm later).

Goal: find a resistant group.

Rem. DL is easy in $(\mathbb{Z}/N\mathbb{Z}, +)$, since $a = xg \mod N$ is solvable in polynomial time (Euclid).

Relatively easy groups: (subexponential methods) finite fields, curves of very large genus, class groups of number fields.

Probably difficult groups: (exponential methods only?) elliptic curves.

Variants of the DL problem

Decisional DH problem: given (g, g^a, g^b, g^c) , do we have $c = ab \mod n$?

Computational DH problem: given (g, g^a, g^b) , compute g^{ab} .

DL problem: given (g, g^a) , find a.

Prop. DL \Rightarrow CDH \Rightarrow DCDH.

Thm. converse true for a large class of groups (Maurer & Wolf - see Smith's part).

More problems: ℓ -SDH (given $g, g^{\alpha}, \ldots, g^{\alpha^{\ell}}$, compute $g^{\alpha^{\ell+1}}$).

Rem. Generalized problems on pairings.

Generic groups

Rem. generic means we cannot use specific properties of G, just group operations.

Known generic solutions:

- enumeration: O(n);
- Shanks: deterministic time and space $O(\sqrt{n})$;
- Pollard: probabilistic time $O(\sqrt{n})$, space O(1) elements of G.

Rem. All these algorithms can be more or less distributed.

II. The Pohlig-Hellman reduction

Idea: reduce the problem to the case n prime.

$$n = \prod_i p_i^{\alpha_i}$$

Solving $g^x = a$ is equivalent to knowing $x \mod n$, i.e. $x \mod p_i^{\alpha_i}$ for all i (chinese remainder theorem).

Idea: let $p^{\alpha} \mid\mid n$ and $m = n/p^{\alpha}$. Then $b = a^m$ is in the cyclic group of ordre p^{α} generated by g^m . We can find the log of b in this group, which yields $x \bmod p^{\alpha}$.

Cost: $O(\max(DL(p^{\alpha}))) = O(\max(DL(p))).$

Consequence: in DH, *n* must have at least one large prime factor.

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2011-2012

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2011-2012

0/4

III. Baby steps giant steps (1/2)

Shanks:

$$x = cu + d, 0 \le d < u, \quad 0 \le c < n/u$$
$$g^x = a \Leftrightarrow a(g^{-u})^c = g^d.$$

Step 1 (baby steps): compute $\mathcal{B} = \{g^d, 0 \le d < u\}$;

Step 2 (giant steps):

- compute $f = g^{-u} = 1/g^u$;
- h = a;
- for c=0..n/u {will contain af^c } if $h \in \mathcal{B}$ then stop; else $h=h \cdot f$.

End: $h = af^c = g^d$ hence x = cu + d.

Number of group operations: $C_o = u + n/u$, minimized for $u = \sqrt{n}$.

Shanks (2/2)

In the worst case, Step 2 requires n/u membership tests.

\mathcal{B}	insertions	membership tests
list	$u \times O(1)$	$\frac{n}{u} O(u)$
sorted	$O(u \log u)$	$\frac{n}{u}O(\log u)$
hash table	$u \times O(1)$	$\frac{n}{u} O(1)$

Prop. If membership test = O(1), then dominant term is C_o , minimal for $u = \sqrt{n} \Rightarrow$ (deterministic) time and space $O(\sqrt{n})$.

Rem. all kinds of trade-offs possible if low memory available.

IV. Pollard's ρ

Prop. Let $f: E \to E$, #E = m; $X_{n+1} = f(X_n)$ with $X_0 \in E$. The functional digraph of *X* is:

Ex1. If E = G finite group, f(x) = ax and $x_0 = a$, (x_n) purely periodic, i.e., $\mu = 0$, and $\lambda = \operatorname{ord}_G(a)$.

Ex2. $E_m = \mathbb{Z}/11\mathbb{Z}, f : x \mapsto x^2 + 1 \mod 11$:

Theoretical results

Thm.

$$\operatorname{Proba}(\lambda + \mu = n) = \frac{1}{m} \prod_{k=1}^{n-1} \left(1 - \frac{k}{m} \right) \le \frac{n}{m} \exp\left(-\frac{n(n-1)}{2} \right).$$

Thm. (Flajolet, Odlyzko, 1990) When $m \to \infty$

$$\overline{\lambda} \sim \overline{\mu} \sim \sqrt{\frac{\pi m}{8}} \approx 0.627 \sqrt{m}.$$

F. Morain - École polytechnique - MPRI - cours 2.12.2 - 2011-2012

Finding λ and μ : the epact

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2011-2012 Application to DL (1/2)

Prop. There exists a unique e > 0 (epact) s.t. $\mu < e < \lambda + \mu$ and

 $X_{2e} = X_e$. It is the smallest non-zero multiple of λ that is $\geq \mu$: if $\mu = 0$, $e = \lambda$ and if $\mu > 0$, $e = \lceil \frac{\mu}{\lambda} \rceil \lambda$.

Floyd's algorithm:

Prop. We need 3e evaluations of f and e comparisons.

Thm.
$$\overline{e} \sim \sqrt{\frac{\pi^5 m}{288}} \approx 1.03 \sqrt{m}$$
.

Rem. Finding λ can be cumbersome.

Partition $G = G_1 \cup G_2 \cup G_3$, $\#G_i \approx \#G/3$ for which testing $x \in G_i$ is easy.

Ex.
$$G = (\mathbb{Z}/p\mathbb{Z})^*$$
, $G_1 = \{1 \le z \le p/3\}$, $G_2 = \{p/3 < z \le 2p/3\}$, $G_3 = \{2p/3 < z < p\}$.

Define

$$f(z) = \begin{cases} az & \text{if } z \in G_1, \\ z^2 & \text{if } z \in G_2, \\ gz & \text{if } z \in G_3. \end{cases}$$

Algorithm: iterate f starting at $X_0 = a$, $X_{i+1} = f(X_i)$ until $X_{2e} = X_e$.

Conj. If f behaves like a random function, then $e = O(\sqrt{n})$.

F. Morain - École polytechnique - MPRI - cours 2.12.2 - 2011-2012

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2011-2012

Application to DL (2/2)

Let $X_i = a^{c_i} g^{d_i}$, where $c_0 = 1$, $d_0 = 0$, and c_{i+1} , d_{i+1} obtained via use of f.

When *e* is found:

$$a^{c_{2e}}g^{d_{2e}}=a^{c_e}g^{d_e}$$

or

$$a^{c_{2e}-c_e}=\varrho^{d_e-d_{2e}}$$

i.e.,

$$x(c_{2e} - c_e) \equiv (d_e - d_{2e}) \bmod n.$$

With high probability, $c_{2e} - c_e$ is invertible modulo n; otherwise, we have a factor of n...

Improvements

Storing a few points:

- Compute *r* random points $M_k = g^{\gamma_k} h^{\delta_k}$ for $1 \le k \le r$;
- use $\mathcal{H}: G \to \{1,\ldots,r\}$;
- define $F(Y) = Y \cdot M_{\mathcal{H}(Y)}$.

Experimentally, r = 20 is enough to have a large mixing of points. Under a plausible model, this leads to a $O(\sqrt{n})$ method (see Teske).

Storing a lot of points: (van Oorschot and Wiener) using distinguished point (say $x \cdots y000000$). Key to a distributed implementation.

F. Morain - École polytechnique - MPRI - cours 2.12.2 - 2011-2012

F. Morain – École polytechnique – MPRI – cours 2.12.2 – 2011-2012

V. Nechaev/Shoup theorem (à la Stinson)

Encoding function: injective map $\sigma: \mathbb{Z}/n\mathbb{Z} \to S$ where S is a set of binary strings s.t. #S > n.

Ex. $G = (\mathbb{Z}/q\mathbb{Z})^* = \langle g \rangle, n = q - 1, \sigma : x \mapsto g^x \mod q, S \text{ can be } \{0, 1\}^\ell$ where $a < 2^{\ell}$.

Wanted: a generic algorithm should work for any σ , in other words it receives σ as an input.

Oracle \mathcal{O} : given $\sigma(i)$ and $\sigma(j)$, computes $\sigma(ci \pm dj \mod n)$ for any given known integers c and d. This is the only operation permitted.

Game: given $\sigma_1 = \sigma(1)$ and $\sigma_2 = \sigma(x)$ for random x, GENLOG succeeds if it outputs x.

Ex. Pollard's algorithm belongs to this class.

Reference: Cryptography, Theory and Practice, 2nd edition.

Stinson (2/5)

GENLOG produces $(\sigma_1, \sigma_2, \dots, \sigma_m)$ using \mathcal{O} where

$$\sigma_i = \sigma(c_i + xd_i \bmod n),$$

with $(c_1, d_1) = (1, 0)$ and $(c_2, d_2) = (0, 1), (c_i, d_i) \in \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$.

Two cases: non-adaptive (choose c_i , d_i before receiving $\sigma(x)$) or adaptive.

Thm. Let $\beta = \text{Proba}(GenLog \text{ succeeds})$. For $\beta > \delta > 0$, one must have $m = \Omega(n^{1/2})$.

15/1

Stinson (3/5)

The non-adaptive case:

Step 1: (precomputations) GenLog chooses

$$C = \{(c_i, d_i), 1 \leq i \leq m\} \subset \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$$

Step 2: upon receiving $\sigma(x)$, computes all $\sigma_i = \sigma(c_i + xd_i)$.

Step 3: check whether $\sigma_i = \sigma_j$ for some (i,j); since σ is injective, $\sigma_i = \sigma_j$ iff $c_i + xd_i \equiv c_j + xd_j$, return x.

Step 4: return a random value *y*.

Stinson (4/5)

Analysis:

$$Good(\mathcal{C}) = \{(c_i - c_j)/(d_i - d_j)\}, \#Good(\mathcal{C}) = \mathcal{G} \leq m(m-1)/2.$$

If $x \in Good(C)$, GenLog returns x, otherwise some y.

 α is the event " $x \in Good(\mathcal{C})$ ":

$$\begin{aligned} \operatorname{Proba}(\beta) &=& \operatorname{Proba}(\beta \| \alpha) \operatorname{Proba}(\alpha) + \operatorname{Proba}(\beta \| \overline{\alpha}) \operatorname{Proba}(\overline{\alpha}) \\ &=& 1 \times \frac{\mathcal{G}}{n} + \frac{1}{n - \mathcal{G}} \times \frac{n - \mathcal{G}}{n} \\ &=& \frac{\mathcal{G} + 1}{n} \leq \frac{m(m - 1)/2 + 1}{n}. \end{aligned}$$

 \Rightarrow if proba $> \delta > 0$, then m must be $\Omega(n^{1/2})$. \square

F. Morain - École polytechnique - MPRI - cours 2.12.2 - 2011-2012

17

F. Morain - École polytechnique - MPRI - cours 2.12.2 - 2011-2012

40

Stinson (5/5)

The adaptive case: For $1 \le i \le m$, $C_i = \{\sigma_j, 1 \le j \le i\}$. Then a can be computed at time i if $a \in \text{Good}(C_i)$. If $a \notin \text{Good}(C_i)$, then $a \in \mathbb{Z}/n\mathbb{Z} - \text{Good}(C_i)$ with proba $1/(n - \#\text{Good}(C_i))$.

And now, what? this result tells you (only) that if you want an algorithm that is faster than Pollard's ρ or Shanks, then you have to work harder...