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|. Introduction

Def. (DLP) Given G = (g) of order n and a € G, find x € [0..n] s.t.
a=g".
Adaptive and non-adaptive: « is given beforehand, or only after

some precomputation have been done (see Adleman’s algorithm
later).

Goal: find a resistant group.

Rem. DL is easy in (Z/NZ,+), since a = xg mod N is solvable in
polynomial time (Euclid).

Relatively easy groups: (subexponential methods) finite fields,
curves of very large genus, class groups of number fields.

Probably difficult groups: (exponential methods only?) elliptic
curves.
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Variants of the DL problem

Decisional DH problem: given (g, g%, g°, g°), do we have
¢ = ab mod n?

Computational DH problem: given (g, g%, g”), compute g.
DL problem: given (g, g%), find a.
Prop. DL = CDH = DCDH.

Thm. converse true for a large class of groups (Maurer & Wolf — see
Smith’s part).
More problems: (-SDH (given g, g%, ..., g, compute g ).

Rem. Generalized problems on pairings.
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Generic groups

Rem. generic means we cannot use specific properties of G, just
group operations.

Known generic solutions:
e enumeration: O(n);
e Shanks: deterministic time and space O(y/n);
e Pollard: probabilistic time O(y/n), space O(1) elements of G.

Rem. All these algorithms can be more or less distributed.
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ll. The Pohlig-Hellman reduction

Idea: reduce the problem to the case n prime.
n= pr-l"

Solving g* = a is equivalent to knowing x mod #, i.e. x mod p;
(chinese remainder theorem).

" for all i

Idea: let p || n and m = n/p®. Then b = a™ is in the cyclic group of
ordre p® generated by g”. We can find the log of 5 in this group,
which yields x mod p©.

Cost: O(max(DL(p®))) = O(max(DL(p))).

Consequence: in DH, n must have at least one large prime factor.
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[ll. Baby steps giant steps (1/2)

Shanks:
x=cu+d,0<d<u, 0<c<n/u
g=asalg") =g’
Step 1 (baby steps): compute B = {g¢,0 < d < u};
Step 2 (giant steps):
e compute f = g“ = 1/g"
e h—a;

e forc=0..n/u
{will contain af*}
if h € Bthen stop; else h=#h-f.

End: i = af¢ = g hence x = cu + d.

Number of group operations: C, = u + n/u, minimized for u = /n.
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Shanks (2/2)

In the worst case, Step 2 requires n/u membership tests.

B insertions | membership tests
list ux 0(1) 20(u)
sorted O(ulogu) ® O(logu)
hash table | u x O(1) 2 0(1)

Prop. If membership test = O(1), then dominant term is C,, minimal
for u = /n = (deterministic) time and space O(\/n).

Rem. all kinds of trade-offs possible if low memory available.
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V. Pollard’s p

Prop. Letf : E — E, #E = m; X,.1 = f(X,) with X, € E. The
functional digraph of X is:

XLL—H
X#
*——— o o — — —
Xo X X> X1
Xu—i—)\—l

Ex1. If E = G finite group, f(x) = ax and xo = a, (x,) purely periodic,
i.e., p=0,and A = ordg(a).

Ex2.E, = Z/11Z,f : x — x> + 1 mod 11:
9

0—+1—+2—+5—+4—>6~—7

U

3—10—38

F. Morain — Ecole polytechnique — MPRI — cours 2.12.2 — 2011-2012

9N

Theoretical results

Thm.

Proba(A + p = n) = ;rﬁ <1 - i) < %exp <_n(n2— 1)> .

k=1

Thm. (Flajolet, Odlyzko, 1990) When m — oo

X~ T~ ,/%%0.627\/ﬁ
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Finding A\ and y: the epact

Prop. There exists a unique e > 0 (epact) s.t. p < e < A+ p and
X2, = X,. It is the smallest non-zero multiple of A thatis > p: if 4 =0,
e=xandif u>0,e=[5]A

Floyd’s algorithm:

X <= X0; Y <- X0; e <= 0;
repeat

X <= £(X); Y <= £(f(Y)); e <= e+];
until X = Y;

Prop. We need 3e evaluations of f and e comparisons.

Thm.e ~ /2 ~ 1.03/m.

Rem. Finding A\ can be cumbersome.
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Application to DL (1/2)

Partition G = G, U G, U G3, #G; =~ #G/3 for which testing x € G; is
easy.

Ex. G = (Z/pZ)*, Gy ={1 <z<p/3}, G, ={p/3 <z<2p/3},

Gs ={2p/3 <z < p}.

Define
az ifz € Gy,
flz) =< ¢ ifz€ Gy,
gz ifzeGs.

Algorithm: iterate f starting at Xy = q, X;11 = f(X;) until X5, = X,.

Conij. If f behaves like a random function, then e = O(y/n).
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Application to DL (2/2)

Let X; = a“g%, where ¢y = 1, dy = 0, and ¢;,, d;, obtained via use
of f.

When e is found:
aCZegdZe — ace gde

or

a2 C — gde*dze

i.e.,
x(¢2e — ¢o) = (d, — da,) mod n.

With high probability, ¢, — ¢, is invertible modulo »; otherwise, we
have a factor of n. ..
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Improvements

Storing a few points:
e Compute r random points M; = g%h% for 1 < k < r;
euseH:G—{l,...,r};
o define F(Y) =Y - Myy).
Experimentally, » = 20 is enough to have a large mixing of points.
Under a plausible model, this leads to a O(y/n) method (see Teske).

Storing a lot of points: (van Oorschot and Wiener) using

distinguished point (say x - - - y000000). Key to a distributed
implementation.
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V. Nechaev/Shoup theorem (a la Stinson)

Encoding function: injective map o : Z/nZ — S where S is a set of
binary strings s.t. #S > n.

Ex.G = (Z/qZ)* = (g),n =g — 1,0 : x — g" mod ¢, S can be {0, 1}/
where g < 2¢.

Wanted: a generic algorithm should work for any o, in other words it
receives o as an input.

Oracle O: given (i) and o(j), computes o(ci & dj mod n) for any
given known integers ¢ and d. This is the only operation permitted.

Game: given o, = ¢(1) and o, = o(x) for random x, GENLOG
succeeds if it outputs x.

Ex. Pollard’s algorithm belongs to this class.

Reference: Cryptography, Theory and Practice, 2nd edition.
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Stinson (2/5)

GENLOG produces (01,03, ...,0,) using O where
o; = o(c¢; + xd; mod n),
with (c1,d;) = (1,0) and (¢2,d2) = (0, 1), (¢i,di) € Z/nZ x Z/nZ.

Two cases: non-adaptive (choose c;, d; before receiving o(x)) or
adaptive.

Thm. Let § = Proba(GenLog succeeds). For 5 > § > 0, one must
have m = Q(n'/?).
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Stinson (3/5)

The non-adaptive case:

Step 1: (precomputations) GenLog chooses
C=A{(ci,di),1 <i<m} CZ/nZ x Z/nZ
Step 2: upon receiving o(x), computes all o; = o(c; + xd;).

Step 3: check whether o; = o; for some (i, ); since o is injective,
o; = oj iff ¢; + xd; = ¢j + xd;, return x.

Step 4: return a random value y.
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Stinson (4/5)

Analysis:
Good(C) = {(ci — ¢j)/(d; — d))}, #Good(C) = G < m(m — 1)/2.
If x € Good(C), GenLog returns x, otherwise some y.

a is the event “x € Good(C)”:

Proba() = Proba(f| a)Proba(a) + Proba(f||a)Proba(a)
= 1x g + : x 1= g
n n—¢g n
g+1 _ mm—1)/2+1

n - n

= if proba > ¢ > 0, then m must be Q(n'/?). O
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Stinson (5/5)

The adaptive case: For 1 <i <m, C; = {0;,1 <j <i}. Thenacan
be computed at time i if a € Good((;). If a ¢ Good(C;), then
a € 7Z/nZ — Good(C;) with proba 1/(n — #Good(C;)).

And now, what? this result tells you (only) that if you want an
algorithm that is faster than Pollard’s p or Shanks, then you have to
work harder. ..
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