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|. Motivations

Context: use elliptic curves of known cardinality when
Schoof’s algorithm is inedaquate.

Fundamental theorem: (Hasse, Deuring, ...) if
4p = U? — DV?, there exists an elliptic curve E/F, of cardinality

m=p+1-U.

A short list of applications:

» Primality proving: ECPP (Atkin 1986, M.); EAKS
(Couveignes/Ezome/Lercier);

» Building cyclic elliptic curves (M. 1991);

» E of given cardinality (but varying p —
Broker/Stevenhagen);

» Pairing friendly curves (see Freeman/Scott/Teske
taxonomy paper).

Rem. For ease of presentation, stick to I, with p (large) prime; results generalize to any finite field.



ECPP in one slide

function ECPP(N)
e if N is small enough, prove its primality directly.

e repeat
find D €  s.t. 4N = U? — DV? (Cornacchia)
until m =N+ 1— U = ¢N' with ¢ > 1 small, N’ probable prime;

e use the CM method to build E and find P of order m;
e return ECPP(N').

Variants differ in the choice of 2; fastest leads to heuristic
O((logN)*); record still at 20,000 dd.



Two slightly different contexts
» ECPP:

>

>

| 2

probable prime N ~ 23090;

N to be proven prime, so more checks are necessary and
some tricks cannot be used (Montgomery form only if
Bernstein in some cases?);

numerous D’s available, happy with 3 | D;

#E proven by the succesful termination of the algorithm on
subsequent numbers;

(very) few verifications of the certificate?

> Cryptography

>

>

>

>

» prime p ~ 2°%;

any parametrization of E possible;

few D’s available, perhaps D =5 mod 8, and perhaps no
point of order 4 at all. . . ;

#E often prime or almost prime;

many verifications of the certificate?

In both cases, potentially large D’s or h’s (see later for large in
ECPP; pairing friendly curves have large requirements).



Il. Defining the CM methods

Notations: D = m*Dg where Dy is the discriminant of an
imaginary quadratic field K; D is the discriminant of
O = [1,mo] where Zg = [1,0]; h(O) =#CI(0).

Ex. D=—12-4,K=Q(i), Zg = [1,i], h=1, Cl = {(1,0,1)}.

Thm. 4p = U? — DV? iff p splits in the ring class field Kp (m = 1
corresponds to the Hilbert Class Field of K).

Thm. K, = K(j(mw)) where j is the modular invariant

1
Jj(z) = 5+744+ Z cnq"

n>0

with ¢ = exp(2inz).



Algebraic theory

Write a = [0, ] and a = a; / o; define j(a) = j(a).

Thm. K /K is Galois, with group ~ CI(&) and therefore
[Kp : K] = h(0). Moreover:

(@)Y =j(i"a).

Thm. Hp(X) = [Ticcio)(X —J(i)) € Z[X].

Fundamental Thm. 4p = U — DV? iff (D/p) = +1 and Hp(X)
has k(&) roots modulo p.

Ex. 4p = U?>+4V?ifand only if p =2 or p =1 mod 4.

References: LNM 21, Serre, Cox.



“Computing” Kp

Computation of Hj(X): write each class of CI(0) as
i=lay, ] and evaluate j(oy /op) as a multiprecision number.

EX. H_ 3(X) =X, H_4(X) = X — 1728;
H_53(X) = X> +3491750X> — 5151296875 X + 12771880859375;

H_3,.(X) = X%+ 654403829760X + 5209253090426880.
= p=x>+y?iff (—4/p) = +1;
dp = x> +3 x 5%? iff (—75/p) = +1 and H_5,.s(X) factors
modulo p.

More on this later!



The CM method

INPUT:

> p(org=p");

» D < 0 (fundamental or not);

» Uand VinZs.t. p= (U?>—-DV?)/4.
OUTPUT:

» E/F,st. m=#EF,)=p+1-U,

» a proof of correctness.



The CM method

INPUT:

> p(org=p");

» D < 0 (fundamental or not);

» Uand VinZs.t. p= (U?>—-DV?)/4.
OUTPUT:

» E/F,st. m=#EF,)=p+1-U,

» a proof of correctness.

Rem.

» if U and V are not known, compute them using
Cornacchia’s algorithm;

» proof of correctness: might involve factoring m and
exhibiting generators of E/F,; soft proof could be P s.t.
[m]P = Og but [m'|P = Og (m' =p+1+ U is the cardinality
of a twist E’ of E); in ECPP, proof is recursive.



The CM method (more precise)

INPUT:

> p(org=p");

» D < 0 (fundamental or not);

» Uand VinZs.t. p= (U?>—DV?) /4.
OuTPUT:

» E having CM by the order of discriminant D; as a
consequence E/F, s.t. m=#E(F,) =p+1-U,

» a proof of correctness.

Rem. The proof of correctness could involve volcanoes.



Let’s open drawers
function CM(p, D, U, V)
1. Compute Hp[j](X).

2. Find a root jo of Hp[j](X) mod p.

3. Find E of invariant jy:
3 .
o2y 2jo 3
1728 — jo 1728 — jo
where ¢ accounts for twists of E.

E:Y’=X+

4. Prove that E has cardinality m=p+1—U.


http://arxiv.org/abs/0904.2243

Let’s open drawers
function CM(p, D, U, V)
1. Compute Hp[j](X).
= three methods for this! all in O(D'*¢): complex, p-adic, CRT.

2. Find a root jy of Hplj](X) mod p.
= use Galois theory + classical tricks from computer algebra

3. Find E of invariant jy:
3 .
o2y 2jo 3
1728 — jo 1728 — jo
where ¢ accounts for twists of E.

= Try to try only one curve (see recent Rubin/Silverberg, cf.
part IV.)

E:Y’=X+

4. Prove that E has cardinality m=p+1—U.

= Use adequate parametrizations to check [m|P = O,
sometimes Edwards/Montgomery curves — see
http://arxiv.org/abs/0904.2243.


http://arxiv.org/abs/0904.2243

lll. Replacing j: class invariants
Q. How do we find smaller defining polynomials for Kp?
Two cases:

» construct Kp;
» build a CM curve (need some relation between f and j).

From j(v/—2) = 8000, one solves
. (X+16)°
(x) J="%
to get X = 26.

Key remark: equation (x) is a modular equation for Xy(2) =
generalize to Xy(N) or X°(N) for any N > 1.

<= replace j(«) by class invariants f(c) for some modular
function f.

Rem. The classical Weber functions are §, {1, f» s.t. —f(a)%*,
f1(a)?* and f,(a)?* are roots of ().



A) Modular functions for I'°(N)

w(8)-(: 2}

y(N)=[:T'N)] =N +1/p)

pIN

Def. f on H* is a modular function for I°(N) if and only if
VM € TO(N),z e H*, (fo M) (z) = f(Mz) = f(z)
(+ some technical conditions).

Thm. Let f be a function for T°(N), I'/T°(N) = {% }1<v<yv)

Put
)

y(N
Q[f)(X) = HIX —for)= ZR

where R, (J) € C(J). Then ®[f|(X,J) =0 is called a modular
equation for TO(N).



Why do class invariants exist?

Thm. If f =Y a,q" has integer coefficients, ®[f](X,J) € Z[X,J].
Coro. If j(7) is an algebraic integer, so is f(7).

= if f(z) € Kp and we know its conjugates, we are done!
Shimura’s reciprocity law tells us when f(z) is in Kp.

Use Schertz’s simplified formulation that also gives conjugates

of f(z).



What is a small invariant?

Def. 77 (P = ¥ (a; + b;w)X") = log(max{|a;|,|b:|}).
Prop. (Hindry & Silverman)

H(f(z)) _ deg,(P[f])

G denyep) ! T =D O

= we have a measure for the size of f(z) w.r.t. j(z).

= favor invariants with small deg, ®[f], e.g., deg, = 1 (i.e.,
g(X°(N)) = 0); degy ® = y(N).



B) Finding functions on I'Y(N): Newman’s lemma

Lemma. If N > 1 and (r,) is a sequence of integers such that

Zrd:()a

dN

N
Y dry=0mod24, Y — r;=0mod 24,
d|N d|N d

Hd}’d — t2

dN

with ¢ € Q*, then the function

g@) =[In(z/a)"

d|N
is @ modular function on I°(N).

nz) =q"* 11 —-qm.

m>1



Some studied (sub)families

Enge/Schertz:

c (nGnG)Y
mPlﬁpz(Z) (n(}jf[)Z)T](Z)) )

24

where ¢ = ged(24,(pi —1)(p2—1)) "

Generalized Weber functions (Enge+M.):

oty = (L0

n(z)

where ¢ =24/gcd(24,N — 1), s =2t if t is odd and not a square,
s =t otherwise; N = 2 classical, w, = f;, N =3 by A. Gee.



The genus 0 case
My =¢"N(1+...)and deg, = 1, (M) = 1/y(N).

Two cases:
» use generalized Weber for N — 1 | 24:

®[3*(X,J) = (X +16)° — JX,
®[l(X,J) = (X +27)(X +3)* -
®[d](X,J) = (X2+ 16X +16)% — JX(X + 16),

» Klein, Fricke (with nx = n(z/K)):
N | Sy ()
6| mgn; 'man;” 1/12
8 | ngn, *n3n, 1/12
10 | njons 'm2m; 1/18
12 | miyng ny maman | 1/24
16 | nigng 'man; 1/24
18 | nisn 'ng 'msman® | 1/36




Generalized Weber functions (Enge + M.)

Thm. If f is a Newman function for (V) and
B?> =D mod (4N), then f((—B++/D)/2) is a class invariant. Its
conjugates are given by a N-system a la Schertz.

A glimpse at our winter work: find all cases where {§,w¢ is
a class invariant for e | s. Needs: classification of N mod 12 +
extension of Schertz’s results.

Prop. (a) If N =5 mod 12 and 31D, then w3 is a class
invariant.

(b) If N =7 mod 12 and 21 D, then w% is a class invariant.

(c) If N =7 mod 12 and D = 88 mod 112, then {4w% is a class
invariant.

H nulld] =X+ (0 - 1)X-20-5;



Generalized Weber functions (2/2)

N =3 (compare Gee): use wj for

B D mod 36
0:1 0,12 1
0:1 | 9,21
1.3 |24

2:3 | 4,16,28
1:3 | 33

2:3 | 1,13,25

[N S R AN S

N =4:if D=1 mod 8, use 4 (c = 1/48).
N =25: for D a square mod 20, use toys (¢ = 1/30).

Much more results in our preprint.



Comparing the invariants

f c(f) deg;
e e({—1) s(N—1)
oy 24(0+1) 2
e(f— 21 .
L (54;) Gife>3
10¢ e(pr—1) s(p2=1)(p1—1)
p1p2 24(pa+1) 24
0° e(N—1+S(N)) | s(N—1+S(N))
N 24y(N) 24
e e(0—1)? o(¢-1)?
Wy N0+ 1) 1
fo¢ e(pi=D(p2=1) | opi=D(p2—1)
pur2 | T2(pi+1) (patl) 2

Rem. w, for prime ¢ > 3 is often better than w¢.




What is the smallest invariant?
Extension of Enge+M. of ANTSV:

? 0, oy 10273 102,97 g __ !

9%, = 7201 = 481 ° 376 = 147/4,8 > 361 = 361
_ e _ Wi _ My 16 1025 w313 MWy
— 36,1 T 36,1 T~ 36.1 > 32,6 > 30,1 > 28,2 T 282

g 0,2 W2 w2 w337 Wy 0361
> 27,12 > 132/5,5 > 26,7 > 51/2,12 > 76/3,6 — 76/3,15 > 124/5,10
S Ws7 Wy _ wp w3 w3

242 24.1 24,6 24,1 241

12 » J
> 317 21 7 1

j=1n="7-+1728.

t: Ramanujan (Konstantinou/Kontogeorgis 08, Enge 08) for
D=1 mod 12.



Looking for 1/96

Selberg+Abramovich+Bréker/Stevenhagen: for all f for
O(N), c(f) > 1/96.

Generalized Weber:
o 8 N—1+S(N)

Best value so far: 1/72 obtained with c(toy) = c(v},)!/* for
N=2,5s=24.

Enge/Schertz:

s oS (=D —1)
C(mplvpz) 12 (p1+1)(p2+1)

Rem. g(Xo(N)) ~ y(N)/12 and deg; > g(Xo(N)) + 1, so that



Looking for 1/96 (cont'd)

For prime N = ¢:

go(6) /) = EXEEL 2O =y (v

= ¢(f) =~ 1/12, since deg; > 2(g(X;(¢) +1).

Best values for Atkin’s minimal functions for X;(¢) (for
£ <2000):

14 71 | 131 | 191
c(f) || 1/36|1/33|1/32
deg; | 2 4 6
g 0 2 3

a1 = (02,19 —0435)/Mn71 (also obtainable by Atkin’s laundry
method). Usable as soon as (D/71) # —1.

Going further: use composite values of N (work in progress).



Using class invariants

procedure BUILDCMCURVE(p, D)
0. Compute Hp[u|(X) and ®[u|(X,J) (precomputation).
1. Compute a root uy of Hp[u|(X) =0 mod p.

2. Compute the set _# of all roots of ®[u](u,J) =0 mod p
and find one elliptic curve having j-invariant in _# which
has cardinality p+1—U.

Rem.
» Most favorable case when X, (N) is of genus 0.

» Some j can be discarded if we know that j — 1728 must be
a square, orj a cube.

» No need to compute ®[tvys], use P[w¢] together with
resultants.



IV. Finding the correct twist
Pb. Given p = (U> —DV?) /4, j, find an equation of

3j 2
E.:Y?=X? 2x 3
¢ T T s ¢

st #E.(F,) =p+1—U.

The actual Frobenius of the curve is # = (U + Vv/D) /2, and
w.l.o.g. |[U| = |U], so we need fix the sign.

Why bother? find a point P, check [m|P = Og (or even & — 1P
using rational CM formulas to get some speedup) and if not try
the twist.

» 1.5 curves tried on average; can be tricky to distinguish E
from E’ (cf. Mestre’s algorithm).

» If solving the problem can be done at no cost, do it! And it
involves nice mathematics (character sums, etc.).



A short history

» D= —4, D= —-3: many variants, starting with Gauss (of
course!).

» h=1: Rajwade et alii, Joux+M., Leprévost + M.,
Padma+Venkataraman, Ishii, etc.

» Stark (1996): ged(D,6) = 1, but needs y, and ;.

» M. (2007): use small torsion points; e.g., use to3 to get a
3-torsion point P; and compute action of 7 on Ps.

» Rubin & Silverberg (2009): all cases for D fundamental,
but use costly invariants (j or y3v/D); ok for small |D|’s

(precomputations), probably not for large |D|’s and on the
fly computations.



Rubin/Silverberg: the case |D|/4 =1 mod 4

With d = |D| /4, write
Hp[j](X) = fi(X) + Vd f5(X)

where deg(fi) = deg(f») = h/2. This is possible since 4 || D
implies D = (—4)q1---q-(—¢q,+1)---(—¢:) and

Vd=+/-D/\-1/2 € Ky.

Algorithm: fix § = v/d mod p and proceed with easy formulas
(cost ~ one modular exponentiation over F,).

To make this more efficient:

» replace j with any real invariant (using complex invariants
does not seem straightforward);

» factor HD[M] over K; = Q(\/ ’qi‘)lgl‘g;;
» use Galois theory over K.



Rubin/Silverberg: other cases

Solve the problem completely using minimal polynomial of
VEDy; (remember that y3()? = j(a) — 1728).

A particular case: in some cases, \/Dmf\{2 is a real class
invariant. Then use ws = w3(a)% or w; = w7 ()2, since

_ w3 18w —27  wh+ 14w§+67wg +70w3 —7
w3 w7

v(a)

see Weber; these are the only equations with wy and y; only.
Now rewrite
VDy(a) =D———.
VD)/?

Rem. The case /|D|y; seems more difficult.



V. Benchmarks

N; = 2072644824759 - 233333 L 5 N, = 59056921173 - 234030 1 7,
N3 = §(—4305)/(—1), Ny = Cycloazo12(10)

N N N N N
#dd 10047 10255 10342 10081
#steps 921 960 937 917
fime (d)| 86+ 32 44116 49+15 49113
mmod 4| (376+247)/286 (395+258)/288 (401+230)/288 (401+209)/284
954271591/14272 339174836/14400
D,h 3997096072]12080 ?ggéig%g?g 1 gg}{g Aol 108601428] 13520
91 10313 75 103 13 78 toys 80 tuys
69 f1/V2 | 81 1o 66 0315 | 58 o33
new 63 10337 48 149 59 Nig 56 1049
W] 39 §(=4D) | 41 1(=4D) | 45 w 50 Ny
" | 38 sy 37 Nig 40 §(—4D) | 43 §(—4D)
25 to3 6 34 2/V2 38 337 36 1337
19 2/v2 | 29 w33y 36 2/vV2 | 25 wg

D = 679224920: .43 + Galois needed 8869 s;

2+2+2+2+2+2+229 roots mod p33450, to0k 51097 s; [m]P 300 s.




More statistics

Nip: Luhn; N»: Jordan; N;: Broadhurst; Ns: Broadhurst2.

what Ny Ny N3 Ny

# steps 921 | 960 | 937 | 917
VD 255|155 | 159 | 14.8
find (D, h) 50 | 43 | 6.0 | 5.2
Cornacchia| 3.2 | 1.3 | 25 | 1.8
FKW 9.1 44 | 52 | 5.9
PRP 43.1 | 25,5 | 26.6 | 22.9
Hp 08 | 0.6 | 0.7 | 0.7
root Hp 279 | 14.0 | 13.0 | 11.5
Step 1 85.9 | 50.2 | 56.4 | 48.8
Step 2 31.8 | 16.1 | 15.2 | 134
Check 08 | 05| 06 | 0.6

Timings are in cumulated days on some AMD Athlon(tm) 64 Processor 3400+ (2.4 GHz).



Conclusions

» ECPP vs. crypto-CM: the present talk was biased
towards ECPP; different optimizations are claimed for by
crypto-CM.

» New invariants are being used in practice. Some more to
come (1/9677?). Wait for CRT method to be operational for
all of these.

» Some unsolved problems in ECPP: compute /(D) for a
batch of D € &; even more faster root finding?

» My programs: in the process of cleaning, new 13.8.7
arriving soon (SAGE?) —— yet another attempt at having
them survive without me (?).

Rem. More references on my web page.



