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Welcome to the isogeny party!

Goal: shed some light on the use of isogenies in cryptology.
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Schedule

¢ 9.00- 9.45: FM, Introduction to isogenies and their cryptologic
applications.

Coffee break
¢ 10.00-10.45: M. Fouquet, Isogeny cycles and volcanoes.
¢ 10.50-11.35: A. Enge, Fast computation of modular polynomials.
e 11.40-12.25: E. Schost, Fast algorithms for isogeny computation in
large characteristic

Lunch break
e 13.30-14.15: |. Déchéne, Cryptographic Potential of Generalized
Jacobians
e 14h20-15h05: R. Lercier, Computing isogenies in small or medium
characteristic

Coffee break
e 15.20-16.05: E. Teske, Trapdooring with isogenies
e 16.10-16.55: A. Stolbunov, Public key cryptosystem based on
isogenies
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Motivations

In cryptography: find reasonable objects to work with.

Reasonable = “small” group G, easy to perform operations in,
resistant to attacks (#G ~ 22%).

Finite fields are too easy. Algebraic curves are worth a try.

Why focus on isogenies?

e Computational Number Theory:

» First life (1985-1997): Schoof-Elkies-Atkin (SEA), Couveignes,
Lercier;

» Second life (1996-): Kohel, Fouquet/FM (cycles and volcanoes);
Couveignes/Henocq, Broker and Stevenhagen (CM curves using
p-adic method).

e More direct cryptologic applications (1999-): Galbraith;
Galbraith/Hess/Smart; Smart; Jao/Miller/Venkatesan; Teske;
Rostovtsev/Stolbunov; etc.
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Plan

I. Elliptic curves.
. Isogenies.
lll. Isogeny graphs.

IV. Cryptologic applications.
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|. Elliptic curves

q:pr)E/]FqY2+a1XY+a3Y:X3+a2X2+a4X+a6
Thm. (Hasse) #E=q+1—t, [t| < 2,/4.

It is important that #E not be smooth, for cryptographic reasons
(ECDLP should not be trivially easy).

Methods for computing #E:

e Shanks/Pollard: O(qY/4).
e Schoof family (any field)
» Original: any fieldO((logq)®) deterministic.
» Improvements by Elkies/Atkin (SEA): O((logq)®) probabilistic for p
large. Rather slow for p small (Couveignes, Lercier).
> p medium: (Joux/Lercier) SEA over Qq (unramified extension of
Qp), O((logq)*). See talk by Lercier.
« p-adic methods (Satoh; Kedlaya), O(r®) (q = p'). Very efficient
for p small.
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Torsion

Def. (torsion points) For n € N, E[n] = {P € E(K), [n]P = Og}.
Thm. E[n] ~ Z/nZ x Z/nZ when gcd(n, p) = 1.
E[p] - Z./p*Z  if E is ordinary
Pl= {Oe} if Eis supersingular
Rem. E supersingular iff p | t; typical example is Y2 = X3 — X over F,

when p = 3 mod 4.

In this talk: almost always E is ordinary over Fy, p > 5, hence:

E: Y%= X3+ AX +Bover K, char(K) ¢ {2,3}.

7127

Division polynomials

B (bn(X, Y) wn(X7 Y)
M““‘(%mw?%mwQ

On = XUE — Uni1tn-1,  AYwn = Yny2ti_y — Yn_2¥i,
In K[X,Y]/(Y? — (X3 + AX + B)), one has:
Yomi1(X,Y) = fomp1(X),  Yom = 2Yfom(X)
f1=—1f=0f =1,f, =1(X,Y) = 3X* + 6AX% 4+ 12BX — A2
fon = fn(fn+2fr1271 - fn—anZ+1)
foofd — 2. ,f_1(16Y#) if nisodd
1:2n-§—1 =
(16Y*)fniofd — 2 1fo1  otherwise.
deg(fn(X)) = (n* — {1,4})/2
Thm. P = (x,y) € E[{] <= [2]P = Og or f;(x) = 0.
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Schoof’s algorithm in a slide

1. Compute L s.t. [[, £ > 4,/q(= L = O(logq)).
2. for/ < Ldo
compute t, =t mod 4.

3. recover t using CRT.

To find t,, exploit characteristic polynomial of the Frobenius
(X,Y) — (X9,Y9), i.e.

(XF,YT) & [t] (X%, Y9) @ [a](X, Y) = 0
in Ag = Fo[X, Y]/(Y2 + & XY + ..., fo(X)).

Involves heavy polynomial computations (deg(f,) = O(¢2)).
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ll. Isogenies

Def. non-constant rational map | : E — E, preserving the group
structure (in particular 1(Og) = Og).

First examples
1. Separable:

K% y) = <¢k w)

27 7/)3

ko Yk
2. Complex multiplication: [i](x,y) = (=X,iy) on E : y? = x> — x.
3. Inseparable: ¢(x,y) = (xP,yP), K = Fp.

In the sequel: only separable isogenies.
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How does an isogeny look like?

Thm. If F is a finite subgroup of E(K), then there exists | and E s.t.
| :E—E=E/F, ker(l)=F.

Extending Vélu, Dewaghe:
D)= J] (x—x) =x""—ox"2+....

QeF~

Fundamental proposition. The isogeny | can be written as

_ (NG (NGO
o (ow”(mm) )

Ex. E: Y2 = X34 bX, F = ((0,0)); we find E : Y2 = X® — 4bX, and

xX+bx x2—b
x2 77 X2 '

I:(X,y)H(
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Dual isogeny

Thm. (dual isogeny) There is a unique | : E — E, Tol = [/], ¢ = degl.

E— E
11 \'A
E

Coro. D | vZ (resp. g | o).
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From Schoof to SEA

Key point of Elkies: find a prime ¢ for which there exists a rational
(-isogeny from E; (happens with proba 1/2). Then g(x) | f¢(x) with
deg(g) = (/- 1)/2.

How do we know that E and E are ¢-isogenous? there exists
®4(X,Y) € Z[X, Y] (@ modular polynomial) s.t. E and E are
isogenous only if

o (i(E).i(E)) = 0.

Black box: there exists formulas to compute (E,o—) given K, E, ¢, o,
(see green book).

Computing | from (A, B, ¢, A B, o): see talks by (p large)
+ (p small or medium).
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lll. Isogeny graphs

Def. G = (V, ) where (E1, Ey) € € if and only if E; and E; are
isogenous.

Thm. (Tate) isogenous curves (over Fy) have the same cardinality.

In order to understand the graph, we must study the graph of
¢-isogenies for ¢ fixed.

It turns out that endomorphisms are important:
End(E) = {I : E — E}.

First task: classify curves according to their endomorphism ring.
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Endomorphism rings for elliptic curves over C
OverC,E=C/L=C/(Z+ 7Z), 3(7) > 0.
Prop. End(E) ~ {a € C,aL C L}.

Prop. End(E) contains more than Z iff € K = Q(1/—D). E is said to
have complex multiplications.

Prop. If 7 is quadratic, End(E) is an order in Ok (ring of integers of
K), of conductor ¢ = [Ok : End(E)].

Thm. (Class field theory) If End(E) = O, E can be defined over the
ring class field of O. This is an extension of degree h = h(O) of K; it
can be realized via the special values of j(a) for

Cl(O) = {a4,...,an}, where j is the modular function

j(X) =1/x+744+ - -.

Thm. E is isogenous to E/a, and this forms cycles of length the
order of a in Cl(O).
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Endomorphism rings for curves over finite fields

Thm. If E is ordinary, write #E = q+ 1 —tand t> — 4q = —d = —f2D.
Then End(E) is an order O in K = Q(+/—D) where —D = disc(K).

Deuring lifting: given E/Fq, one can lift it over C (actually over the
ring class field of ©) and preserve the endomorphism ring.

Rem. inefficient in practice unless p is small (see for instance
Couveignes/Henocq; Broker and Stevenhagen).

General picture: Z[r] = Z[(—d + v/—d)/2] € End(E) C Ok.

Important result: (Deuring, Waterhouse, Schoof) number of
isomorphism classes of curves having the same cardinal is

H-d)y= Y h(0).

Zlr)cOC Ok

= #V is reasonably large (h(A) = O(|A|Y/?+9)).
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How do we find End(E)?

Thm. (Kohel) Let | : E; — E; s.t. End(E;) C End(E;) (resp.
End(Ez) C End(E;)). Suppose ¢ | [End(E) : End(E;)] (resp.
¢ | [End(E;) : End(E2)]). Then ¢ | deg(l).

Classification: If | isogeny of prime degree /.

1. If End(E1) ~ End(Ey), then | is horizontal (—) at ¢.
2. [End(E;) : End(E)] = ¢: down () at 2.

3. [End(E2) : End(E1)] = ¢: up (1) at .

= cycles, volcanoes.
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Volcano
Most interesting case is (=2) = +1and ¢ | disc(r) = t? - 4q;

Ok N ord() NP
AN R,
f—1curves _ 7 o N XD -
O ___/L LN ZIN_ZINZIN_ 2NN LN LN JLINC /1N
ii ¢ distinct curves
ZI7] e Y

Navigating in the structure is relatively easy, using modular
polynomials.

See for more.
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Two graphs

G: complete isogeny graph.

If we fix O, there is a subgraph, which corresponds to the Cayley
graph of Cl(O): vertices are ideals of CI(O); two ideals [a;] and [ay]
are related iff there is some b s.t. [a1b] = [ag].

Given an edge on the Cayley graph, it is relatively easy to compute
the corresponding edge on the isogeny graph.

The converse seems difficult.

Even more fundamental difference: exponentiation is easy on the
Cayley graph; it is not on the isogeny graph.
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Galbraith’s algorithm

Problem: given E1, E; € V, find a path from E; to E,.

Thm. (Over Fy) there exists a probabilistic algorithm that builds an
isogeny | : E; — E; requiring O(p%/?logp) expected time and
expected space O(plogp) at worse.

Algorithm:

INPUT: E; and E, which are isogenous.

OuTPUT: an isogeny path from E; to E,.

1. Find E/ isogenous to E; s.t. End(E/) = Ok.

2. Find two paths from E] and E} that meet in some point.
3. Assemble the isogeny.

Idea: build paths using ¢-isogenies of prime degree
¢ < L=0((logD)? (under GRH).

Conjecture: this will terminate after O(log h ) iterations.
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Building a binary tree

Start from any curve and build a tree, at each node selecting some ¢
at random (this is needed since for fixed ¢, we find a cycle).
Generically, ®,(X,]j(E)) has two roots.

2 2

L 14 14 14
log, h 2 2 3 3

Classical property of binary trees: if height is log, h, then the total
number of nodes is h, half of which are leaves.
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Building a “bushy” tree

2 2
ly lo
52 2 53 £3
IogZ h fz
Uy ls lg ls 12 47
s

At each iteration ¢, for each vertex j, compute the roots of ®,(X,]).
Expect the tree to have size O(v/h) after O(logh) iterations.

Using two trees and a birthday-paradox approach, there exists a
common vertex in both trees after O(logh) iterations.

Build the respective paths and that’s it.
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Jao, Miller, Venkatesan (ASIACRYPT 2005)

G = (V,&) where (E1, E,) € € if and only if
3l : E; — Bz, deg(l) = ¢ € O((logg)?+?) for some § > 0.

Prop. G is an expander graph, hence there is a rapid mixing
property for random walks.

Prop. Let G be a regular graph of degree k on h vertices. Suppose
that the eigenvalue A of any nonconstant eigenvector satisfies the
bound |A| < c for some ¢ < k. Let Sbe any subset of the vertices of
G, and x be any vertex in G. Then a random walk of any length at
log(2h/|S*'?)
log(k/c)
IS _ IS’
2h  2|G|

least starting from x will land in Swith probability at

least

Coro. ECDLP is not stronger among an isogeny class.
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I\V. Cryptologic applications
A) The setting

Where is the difficult problem? Given two isogenous curves E;
and E,, build an explicit isogeny | : E; — E;.

Only known attack: Galbraith’s in O(+/h).
Two propositions: ;
B) ECDLP

Gaudry/Hess/Smart attack: transform ECDLP in E;(Fq) into one on
a curve of genus g over Fy.

Rem. The GHS attack is not invariant under isogeny, hence we
could dream of finding an isogenous curve E; for which the GHS is
more (resp. less) successful. Confirmed by JaMiVe05.

= key for trapdoors, see
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C) Hash function (D. Charles, E. Goren, K. Lauter)

When E is supersingular, for fixed ¢, End(E) is connected (property
of quaternions, actually).

Idea: use graph of 2-isogenies of a supersingular elliptic curve. The
graph is 3-connected.

H(mpmy ... mc_1): start from a given E; use m; to decide to go left or
right at each step; hash value is the last curve.

Security: given Eyrig and Eging, find another path so as to make a
collision. Could only be doable in O(+/h).
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D) Miscellaneous

e Brier & Joye (CHES-2003): for crypto reasons, one prefers
Y2 = X3 — 3X + b. If original E is not isomorphic to this type of
curve, find an isogenous one that is ([A, B] ~ [u*A, u°B]).

e Smart (CHES-2003): preventing the existence of “special
points” & la Goubin (points (x,y) with x =0 ory = 0).

e Doche, Icart, Kohel (PKCO06): speed up the computation of [k]P
when small degree isogeny exist (¢ = 2, 3).
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Conclusions

In this talk:
¢ |sogeny classes form a graph with interesting properties.
e Navigating in the graph is relatively easy.

e ECDLP can be transported from a curve to another in the same
isogeny class.

Open problems:
¢ |s the isogeny-path problem really difficult?

¢ In higher genus: make algorithms practical; understand the
isogeny graph.

More to come: after the coffee break!
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