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Welcome to the isogeny party!

Goal: shed some light on the use of isogenies in cryptology.
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Schedule

• 9.00- 9.45: FM, Introduction to isogenies and their cryptologic
applications.

Coffee break
• 10.00-10.45: M. Fouquet, Isogeny cycles and volcanoes.
• 10.50-11.35: A. Enge, Fast computation of modular polynomials.
• 11.40-12.25: É. Schost, Fast algorithms for isogeny computation in
large characteristic

Lunch break
• 13.30-14.15: I. Déchène, Cryptographic Potential of Generalized
Jacobians
• 14h20-15h05: R. Lercier, Computing isogenies in small or medium
characteristic

Coffee break
• 15.20-16.05: E. Teske, Trapdooring with isogenies
• 16.10-16.55: A. Stolbunov, Public key cryptosystem based on
isogenies

3/27

Motivations
In cryptography: find reasonable objects to work with.

Reasonable = “small” group G, easy to perform operations in,
resistant to attacks (#G ≈ 2200).

Finite fields are too easy. Algebraic curves are worth a try. See
I. Déchène’s talk.

Why focus on isogenies?

• Computational Number Theory:
I First life (1985–1997): Schoof-Elkies-Atkin (SEA), Couveignes,

Lercier;
I Second life (1996–): Kohel, Fouquet/FM (cycles and volcanoes);

Couveignes/Henocq, Bröker and Stevenhagen (CM curves using
p-adic method).

• More direct cryptologic applications (1999–): Galbraith;
Galbraith/Hess/Smart; Smart; Jao/Miller/Venkatesan; Teske;
Rostovtsev/Stolbunov; etc.
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Plan

I. Elliptic curves.

II. Isogenies.

III. Isogeny graphs.

IV. Cryptologic applications.
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I. Elliptic curves

q = pr,E/Fq : Y2 + a1XY + a3Y = X3 + a2X2 + a4X + a6

Thm. (Hasse) #E = q + 1 − t, |t| ≤ 2
√

q.

It is important that #E not be smooth, for cryptographic reasons
(ECDLP should not be trivially easy).

Methods for computing #E:

• Shanks/Pollard: Õ(q1/4).
• Schoof family (any field)

I Original: any fieldÕ((log q)5) deterministic.
I Improvements by Elkies/Atkin (SEA): Õ((log q)4) probabilistic for p

large. Rather slow for p small (Couveignes, Lercier).
I p medium: (Joux/Lercier) SEA over Qq (unramified extension of

Qp), Õ((log q)4). See talk by Lercier.

• p-adic methods (Satoh; Kedlaya), Õ(r3) (q = pr). Very efficient
for p small.
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Torsion

Def. (torsion points) For n ∈ N, E[n] = {P ∈ E(K), [n]P = OE}.

Thm. E[n] ' Z/nZ × Z/nZ when gcd(n, p) = 1.

E[pk] =

{

Z/pkZ if E is ordinary
{OE} if E is supersingular

Rem. E supersingular iff p | t; typical example is Y2 = X3 − X over Fp

when p ≡ 3 mod 4.

In this talk: almost always E is ordinary over Fp, p ≥ 5, hence:

E : Y2 = X3 + AX + B over K, char(K) 6∈ {2, 3}.
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Division polynomials

[n](X,Y) =

(

φn(X,Y)

ψn(X,Y)2
,
ωn(X,Y)

ψn(X,Y)3

)

φn = xψ2
n − ψn+1ψn−1, 4Yωn = ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1

In K[X,Y]/(Y2 − (X3 + AX + B)), one has:

ψ2m+1(X,Y) = f2m+1(X), ψ2m = 2Yf2m(X)

f−1 = −1, f0 = 0, f1 = 1, f2 = 1, f3(X,Y) = 3X4 + 6AX2 + 12BX − A2

f2n = fn(fn+2f 2
n−1 − fn−2f 2

n+1)

f2n+1 =







fn+2f 3
n − f 3

n+1fn−1(16Y4) if n is odd

(16Y4)fn+2f 3
n − f 3

n+1fn−1 otherwise.

deg(fn(X)) = (n2 − {1, 4})/2

Thm. P = (x, y) ∈ E[`] ⇐⇒ [2]P = OE or f`(x) = 0.
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Schoof’s algorithm in a slide

1. Compute L s.t.
∏

`≤L ` > 4
√

q (⇒ L = O(log q)).

2. for ` ≤ L do

compute t` ≡ t mod `.

3. recover t using CRT.

To find t`, exploit characteristic polynomial of the Frobenius
(X,Y) 7→ (Xq,Yq), i.e.

(Xq2

,Yq2

) 	 [t`](X
q,Yq) ⊕ [q](X,Y) = 0

in A` = Fq[X,Y]/(Y2 + a1XY + . . . , f`(X)).

Involves heavy polynomial computations (deg(f`) = O(`2)).
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II. Isogenies

Def. non-constant rational map I : E → Ẽ, preserving the group
structure (in particular I(OE) = OẼ).

First examples
1. Separable:

[k](x, y) =

(

φk

ψ2
k

,
ωk

ψ3
k

)

2. Complex multiplication: [i](x, y) = (−x, iy) on E : y2 = x3 − x.
3. Inseparable: ϕ(x, y) = (xp, yp), K = Fp.

In the sequel: only separable isogenies.

10/27

How does an isogeny look like?

Thm. If F is a finite subgroup of E(K), then there exists I and Ẽ s.t.

I : E → Ẽ = E/F, ker(I) = F.

Extending Vélu, Dewaghe:

D(x) =
∏

Q∈F∗

(x − xQ) = x`−1 − σx`−2 + · · · .

Fundamental proposition. The isogeny I can be written as

I(x, y) =

(

N(x)
D(x)

, y

(

N(x)
D(x)

)′
)

,

Ex. E : Y2 = X3 + bX, F = 〈(0, 0)〉; we find Ẽ : Y2 = X3 − 4bX, and

I : (x, y) 7→
(

x3 + bx
x2

, y
x2 − b

x2

)

.
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Dual isogeny

Thm. (dual isogeny) There is a unique Î : Ẽ → E, Î ◦ I = [`], ` = degI.

E -I
Ẽ

E
?

Î

@
@

@
@@R

[`]

Coro. D | ψ2
` (resp. g | f`).
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From Schoof to SEA

Key point of Elkies: find a prime ` for which there exists a rational
`-isogeny from E; (happens with proba 1/2). Then g(x) | f`(x) with
deg(g) = (`− 1)/2.

How do we know that E and Ẽ are `-isogenous? there exists
Φ`(X,Y) ∈ Z[X,Y] (a modular polynomial) s.t. E and Ẽ are
isogenous only if

Φ`(j(E), j(Ẽ)) = 0.

cf. A. Enge’s talk.

Black box: there exists formulas to compute (Ẽ, σ) given K, E, `, Φ`

(see green book).

Computing I from (A,B, `, Ã, B̃, σ): see talks by É. Schost (p large)
+ R. Lercier (p small or medium).
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III. Isogeny graphs

Def. G = (V, E) where (E1,E2) ∈ E if and only if E1 and E2 are
isogenous.

Thm. (Tate) isogenous curves (over Fq) have the same cardinality.

In order to understand the graph, we must study the graph of
`-isogenies for ` fixed.

It turns out that endomorphisms are important:
End(E) = {I : E → E}.

First task: classify curves according to their endomorphism ring.
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Endomorphism rings for elliptic curves over C

Over C, E = C/L = C/(Z + τZ), =(τ) > 0.

Prop. End(E) ∼ {α ∈ C, αL ⊂ L}.

Prop. End(E) contains more than Z iff τ ∈ K = Q(
√
−D). E is said to

have complex multiplications.

Prop. If τ is quadratic, End(E) is an order in OK (ring of integers of
K), of conductor c = [OK : End(E)].

Thm. (Class field theory) If End(E) = O, E can be defined over the
ring class field of O. This is an extension of degree h = h(O) of K; it
can be realized via the special values of j(a) for
Cl(O) = {a1, . . . , ah}, where j is the modular function
j(x) = 1/x + 744 + · · · . Cf. A. Enge’s talk.

Thm. E is isogenous to E/a, and this forms cycles of length the
order of a in Cl(O).
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Endomorphism rings for curves over finite fields

Thm. If E is ordinary, write #E = q + 1 − t and t2 − 4q = −d = −f 2D.
Then End(E) is an order O in K = Q(

√
−D) where −D = disc(K).

Deuring lifting: given E/Fq, one can lift it over C (actually over the
ring class field of O) and preserve the endomorphism ring.

Rem. inefficient in practice unless p is small (see for instance
Couveignes/Henocq; Bröker and Stevenhagen).

General picture: Z[π] = Z[(−d +
√
−d)/2] ⊂ End(E) ⊂ OK .

Important result: (Deuring, Waterhouse, Schoof) number of
isomorphism classes of curves having the same cardinal is

H(−d) =
∑

Z[π]⊂O⊂OK

h(O).

⇒ #V is reasonably large (h(∆) = O(|∆|1/2+ε)).
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How do we find End(E)?

Thm. (Kohel) Let I : E1 → E2 s.t. End(E1) ⊂ End(E2) (resp.
End(E2) ⊂ End(E1)). Suppose ` | [End(E2) : End(E1)] (resp.
` | [End(E1) : End(E2)]). Then ` | deg(I).

Classification: If I isogeny of prime degree `.
1. If End(E1) ' End(E2), then I is horizontal (→) at `.
2. [End(E1) : End(E2)] = `: down (↓) at `.
3. [End(E2) : End(E1)] = `: up (↑) at `.

⇒ cycles, volcanoes.
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Volcano
Most interesting case is

(

−D
`

)

= +1 and ` | disc(π) = t2 − 4q:

�

�

� �

�

�

ord(l)

`− 1 curves

OK

O

` distinct curves
Z[π]

Navigating in the structure is relatively easy, using modular
polynomials.

See M. Fouquet’s talk for more.
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Two graphs

G: complete isogeny graph.

If we fix O, there is a subgraph, which corresponds to the Cayley
graph of Cl(O): vertices are ideals of Cl(O); two ideals [a1] and [a2]
are related iff there is some b s.t. [a1b] = [a2].

Given an edge on the Cayley graph, it is relatively easy to compute
the corresponding edge on the isogeny graph.

The converse seems difficult.

Even more fundamental difference: exponentiation is easy on the
Cayley graph; it is not on the isogeny graph.
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Galbraith’s algorithm

Problem: given E1,E2 ∈ V, find a path from E1 to E2.

Thm. (Over Fp) there exists a probabilistic algorithm that builds an
isogeny I : E1 → E2 requiring O(p3/2 log p) expected time and
expected space O(p log p) at worse.

Algorithm:
INPUT: E1 and E2 which are isogenous.
OUTPUT: an isogeny path from E1 to E2.
1. Find E′

i isogenous to Ei s.t. End(E′
i) = OK .

2. Find two paths from E′
1 and E′

2 that meet in some point.
3. Assemble the isogeny.

Idea: build paths using `-isogenies of prime degree
` ≤ L = O((log D)2 (under GRH).

Conjecture: this will terminate after O(log hK) iterations.
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Building a binary tree

Start from any curve and build a tree, at each node selecting some `
at random (this is needed since for fixed `, we find a cycle).
Generically, Φ`(X, j(E)) has two roots.

`1 `1

`2 `2 `3 `3

`4 `4 `5 `5 `6 `6 `7 `7

log2 h

Classical property of binary trees: if height is log2 h, then the total
number of nodes is h, half of which are leaves.
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Building a “bushy” tree

`1 `1

`2 `2 `3 `3

`4
`4

`5
`5

`6 `6 `7 `7

`2

`2

`3

`4

log2 h

At each iteration `, for each vertex j, compute the roots of Φ`(X, j).
Expect the tree to have size O(

√
h) after O(log h) iterations.

Using two trees and a birthday-paradox approach, there exists a
common vertex in both trees after O(log h) iterations.
Build the respective paths and that’s it.

22/27

Jao, Miller, Venkatesan (ASIACRYPT 2005)

G = (V, E) where (E1,E2) ∈ E if and only if
∃I : E1 → E2, deg(I) = ` ∈ O((log q)2+δ) for some δ > 0.

Prop. G is an expander graph, hence there is a rapid mixing
property for random walks.

Prop. Let G be a regular graph of degree k on h vertices. Suppose
that the eigenvalue λ of any nonconstant eigenvector satisfies the
bound |λ| ≤ c for some c < k. Let S be any subset of the vertices of
G, and x be any vertex in G. Then a random walk of any length at

least
log(2h/|S|1/2)

log(k/c)
starting from x will land in S with probability at

least
|S|
2h

=
|S|

2|G| .

Coro. ECDLP is not stronger among an isogeny class.
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IV. Cryptologic applications
A) The setting

Where is the difficult problem? Given two isogenous curves E1

and E2, build an explicit isogeny I : E1 → E2.

Only known attack: Galbraith’s in O(
√

h).

Two propositions: E. Teske; A. Stolbunov.

B) ECDLP

Gaudry/Hess/Smart attack: transform ECDLP in E1(Fqn) into one on
a curve of genus g over Fq.

Rem. The GHS attack is not invariant under isogeny, hence we
could dream of finding an isogenous curve E2 for which the GHS is
more (resp. less) successful. Confirmed by JaMiVe05.

⇒ key for trapdoors, see E. Teske’s talk.
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C) Hash function (D. Charles, E. Goren, K. Lauter)

When E is supersingular, for fixed `, End(E) is connected (property
of quaternions, actually).

Idea: use graph of 2-isogenies of a supersingular elliptic curve. The
graph is 3-connected.

H(m0m1 . . .mk−1): start from a given E; use mi to decide to go left or
right at each step; hash value is the last curve.

Security: given Eorig and Efinal, find another path so as to make a
collision. Could only be doable in O(

√
h).
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D) Miscellaneous

• Brier & Joye (CHES-2003): for crypto reasons, one prefers
Y2 = X3 − 3X + b. If original E is not isomorphic to this type of
curve, find an isogenous one that is ([A,B] ∼ [u4A, u6B]).

• Smart (CHES-2003): preventing the existence of “special
points” à la Goubin (points (x, y) with x = 0 or y = 0).

• Doche, Icart, Kohel (PKC06): speed up the computation of [k]P
when small degree isogeny exist (` = 2, 3).
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Conclusions

In this talk:
• Isogeny classes form a graph with interesting properties.

• Navigating in the graph is relatively easy.

• ECDLP can be transported from a curve to another in the same
isogeny class.

Open problems:
• Is the isogeny-path problem really difficult?

• In higher genus: make algorithms practical; understand the
isogeny graph.

More to come: after the coffee break!
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