Introduction to isogenies and their cryptologic applications

F. Morain

Laboratoire d'Informatique de l'École polytechnique

Isogeny party, July 18th, 2006

1/27

Schedule

• 9.00- 9.45: FM, Introduction to isogenies and their cryptologic applications.

Coffee break

• 10.00-10.45: M. Fouquet, Isogeny cycles and volcanoes.

• 10.50-11.35: A. Enge, Fast computation of modular polynomials.

• 11.40-12.25: É. Schost, Fast algorithms for isogeny computation in large characteristic

Lunch break

• 13.30-14.15: I. Déchène, Cryptographic Potential of Generalized Jacobians

• 14h20-15h05: R. Lercier, Computing isogenies in small or medium characteristic

Coffee break

• 15.20-16.05: E. Teske, Trapdooring with isogenies

• 16.10-16.55: A. Stolbunov, Public key cryptosystem based on isogenies

Welcome to the isogeny party!

Goal: shed some light on the use of isogenies in cryptology.

Motivations

In cryptography: find reasonable objects to work with.

Reasonable = "small" group *G*, easy to perform operations in, resistant to attacks ($\#G \approx 2^{200}$).

Finite fields are too easy. Algebraic curves are worth a try. See I. Déchène's talk.

Why focus on isogenies?

- Computational Number Theory:
 - First life (1985–1997): Schoof-Elkies-Atkin (SEA), Couveignes, Lercier;
 - Second life (1996–): Kohel, Fouquet/FM (cycles and volcanoes); Couveignes/Henocq, Bröker and Stevenhagen (CM curves using *p*-adic method).
- More direct cryptologic applications (1999–): Galbraith; Galbraith/Hess/Smart; Smart; Jao/Miller/Venkatesan; Teske; Rostovtsev/Stolbunov; etc.

2/27

I. Elliptic curves.

II. Isogenies.

III. Isogeny graphs.

IV. Cryptologic applications.

5/27

Torsion

Def. (torsion points) For $n \in \mathbb{N}$, $E[n] = \{P \in E(\overline{\mathbf{K}}), [n]P = O_E\}$.

Thm. $E[n] \simeq \mathbb{Z}/n\mathbb{Z} \times \mathbb{Z}/n\mathbb{Z}$ when gcd(n, p) = 1.

 $E[p^k] = \begin{cases} \mathbb{Z}/p^k \mathbb{Z} & \text{if } E \text{ is ordinary} \\ \{O_E\} & \text{if } E \text{ is supersingular} \end{cases}$

Rem. *E* supersingular iff $p \mid t$; typical example is $Y^2 = X^3 - X$ over \mathbb{F}_p when $p \equiv 3 \mod 4$.

In this talk: almost always *E* is ordinary over \mathbb{F}_p , $p \ge 5$, hence:

 $E: Y^2 = X^3 + AX + B \text{ over } \mathbf{K}, \text{char}(\mathbf{K}) \notin \{2, 3\}.$

I. Elliptic curves

$$q = p^r, E/\mathbb{F}_q : Y^2 + a_1XY + a_3Y = X^3 + a_2X^2 + a_4X + a_6$$

Thm. (Hasse) #E = q + 1 - t, $|t| \le 2\sqrt{q}$.

It is important that #E not be smooth, for cryptographic reasons (ECDLP should not be trivially easy).

Methods for computing #E:

- Shanks/Pollard: $\tilde{O}(q^{1/4})$.
- Schoof family (any field)
 - Original: any fi eld $\tilde{O}((\log q)^5)$ deterministic.
 - Improvements by Elkies/Atkin (SEA): Õ((log q)⁴) probabilistic for p large. Rather slow for p small (Couveignes, Lercier).
 - ▶ p medium: (Joux/Lercier) SEA over Q_q (unramified extension of Q_p), Õ((log q)⁴). See talk by Lercier.
- *p*-adic methods (Satoh; Kedlaya), $\tilde{O}(r^3)$ ($q = p^r$). Very efficient for *p* small.

6/27

Division polynomials

 $[n](X,Y) = \left(\frac{\phi_n(X,Y)}{\psi_n(X,Y)^2}, \frac{\omega_n(X,Y)}{\psi_n(X,Y)^3}\right)$ $\phi_n = x\psi_n^2 - \psi_{n+1}\psi_{n-1}, \quad 4Y\omega_n = \psi_{n+2}\psi_{n-1}^2 - \psi_{n-2}\psi_{n+1}^2$ In **K**[X,Y]/(Y² - (X³ + AX + B)), one has:

 $\psi_{2m+1}(X,Y) = f_{2m+1}(X), \quad \psi_{2m} = 2Yf_{2m}(X)$ $f_{-1} = -1, f_0 = 0, f_1 = 1, f_2 = 1, f_3(X,Y) = 3X^4 + 6AX^2 + 12BX - A^2$ $f_{2n} = f_n(f_{n+2}f_{n-1}^2 - f_{n-2}f_{n+1}^2)$ $f_{2n+1} = \begin{cases} f_{n+2}f_n^3 - f_{n+1}^3f_{n-1}(16Y^4) & \text{if } n \text{ is odd} \\ (16Y^4)f_{n+2}f_n^3 - f_{n+1}^3f_{n-1} & \text{otherwise.} \end{cases}$ $\deg(f_n(X)) = (n^2 - \{1,4\})/2$ Thm. $P = (x, y) \in E[\ell] \iff [2]P = O_E \text{ or } f_\ell(x) = 0.$

Schoof's algorithm in a slide

1. Compute *L* s.t.
$$\prod_{\ell \leq L} \ell > 4\sqrt{q} \ (\Rightarrow L = O(\log q)).$$

2. for $\ell \leq L$ do

compute $t_{\ell} \equiv t \mod \ell$.

3. recover *t* using CRT.

To find t_{ℓ} , exploit characteristic polynomial of the Frobenius $(X, Y) \mapsto (X^q, Y^q)$, i.e.

 $(X^{q^2},Y^{q^2})\ominus [t_\ell](X^q,Y^q)\oplus [q](X,Y)=0$

in $A_\ell = \mathbb{F}_q[X,Y]/(Y^2 + a_1XY + \ldots, f_\ell(X)).$

Involves heavy polynomial computations (deg(f_{ℓ}) = $O(\ell^2)$).

9/27

How does an isogeny look like?

Thm. If *F* is a finite subgroup of $E(\overline{\mathbf{K}})$, then there exists *I* and \tilde{E} s.t.

$$I: E \to \tilde{E} = E/F$$
, $\ker(I) = F$.

Extending Vélu, Dewaghe:

$$D(x) = \prod_{\mathcal{Q}\in F^*} (x-x_{\mathcal{Q}}) = x^{\ell-1} - \sigma x^{\ell-2} + \cdots$$

Fundamental proposition. The isogeny *I* can be written as

$$I(x,y) = \left(\frac{N(x)}{D(x)}, y\left(\frac{N(x)}{D(x)}\right)'\right),$$

Ex. $E: Y^2 = X^3 + bX$, $F = \langle (0,0) \rangle$; we find $\tilde{E}: Y^2 = X^3 - 4bX$, and

$$I: (x, y) \mapsto \left(\frac{x^3 + bx}{x^2}, y\frac{x^2 - b}{x^2}\right)$$

II. Isogenies

Def. non-constant rational map $I : E \to \tilde{E}$, preserving the group structure (in particular $I(O_E) = O_{\tilde{E}}$).

First examples

1. Separable:

$$[k](x,y) = \left(\frac{\phi_k}{\psi_k^2}, \frac{\omega_k}{\psi_k^3}\right)$$

2. Complex multiplication: [i](x, y) = (-x, iy) on $E : y^2 = x^3 - x$. 3. Inseparable: $\varphi(x, y) = (x^p, y^p)$, $\mathbf{K} = \mathbb{F}_p$.

In the sequel: only separable isogenies.

10/27

Dual isogeny

Thm. (dual isogeny) There is a unique $\hat{I} : \tilde{E} \to E$, $\hat{I} \circ I = [\ell]$, $\ell = \deg I$.

Coro. $D \mid \psi_{\ell}^2$ (resp. $g \mid f_{\ell}$).

From Schoof to SEA

Key point of Elkies: find a prime ℓ for which there exists a rational ℓ -isogeny from *E*; (happens with proba 1/2). Then $g(x) | f_{\ell}(x)$ with $\deg(g) = (\ell - 1)/2$.

How do we know that *E* and \tilde{E} are ℓ -isogenous? there exists $\Phi_{\ell}(X, Y) \in \mathbb{Z}[X, Y]$ (a modular polynomial) s.t. *E* and \tilde{E} are isogenous only if

 $\Phi_{\ell}(j(E), j(\tilde{E})) = 0.$

cf. A. Enge's talk.

Black box: there exists formulas to compute (\tilde{E}, σ) given **K**, *E*, ℓ , Φ_{ℓ} (see green book).

Computing *I* from $(A, B, \ell, \tilde{A}, \tilde{B}, \sigma)$: see talks by É. Schost (*p* large) + R. Lercier (*p* small or medium).

13/27

Endomorphism rings for elliptic curves over $\mathbb C$

Over \mathbb{C} , $E = \mathbb{C}/L = \mathbb{C}/(\mathbb{Z} + \tau \mathbb{Z})$, $\Im(\tau) > 0$.

Prop. End(E) ~ { $\alpha \in \mathbb{C}, \alpha L \subset L$ }.

Prop. End(*E*) contains more than \mathbb{Z} iff $\tau \in \mathbf{K} = \mathbb{Q}(\sqrt{-D})$. *E* is said to have complex multiplications.

Prop. If τ is quadratic, End(*E*) is an order in \mathcal{O}_K (ring of integers of **K**), of conductor $c = [\mathcal{O}_K : \text{End}(E)]$.

Thm. (Class field theory) If $\operatorname{End}(E) = \mathcal{O}$, *E* can be defined over the ring class field of \mathcal{O} . This is an extension of degree $h = h(\mathcal{O})$ of **K**; it can be realized via the special values of $j(\mathfrak{a})$ for $\operatorname{Cl}(\mathcal{O}) = \{\mathfrak{a}_1, \ldots, \mathfrak{a}_h\}$, where *j* is the modular function $j(x) = 1/x + 744 + \cdots$. Cf. A. Enge's talk.

Thm. *E* is isogenous to E/\mathfrak{a} , and this forms cycles of length the order of \mathfrak{a} in $Cl(\mathcal{O})$.

III. Isogeny graphs

Def. $G = (\mathcal{V}, \mathcal{E})$ where $(E_1, E_2) \in \mathcal{E}$ if and only if E_1 and E_2 are isogenous.

Thm. (Tate) isogenous curves (over \mathbb{F}_q) have the same cardinality.

In order to understand the graph, we must study the graph of $\ell\text{-}isogenies$ for ℓ fixed.

It turns out that endomorphisms are important: End(E) = { $I : E \rightarrow E$ }.

First task: classify curves according to their endomorphism ring.

14/27

Endomorphism rings for curves over finite fields

Thm. If *E* is ordinary, write #E = q + 1 - t and $t^2 - 4q = -d = -f^2D$. Then End(*E*) is an order \mathcal{O} in $\mathbf{K} = \mathbb{Q}(\sqrt{-D})$ where $-D = \text{disc}(\mathbf{K})$.

Deuring lifting: given E/\mathbb{F}_q , one can lift it over \mathbb{C} (actually over the ring class field of \mathcal{O}) and preserve the endomorphism ring.

Rem. inefficient in practice unless p is small (see for instance Couveignes/Henocq; Bröker and Stevenhagen).

General picture: $\mathbb{Z}[\pi] = \mathbb{Z}[(-d + \sqrt{-d})/2] \subset \operatorname{End}(E) \subset \mathcal{O}_K.$

Important result: (Deuring, Waterhouse, Schoof) number of isomorphism classes of curves having the same cardinal is

$$H(-d) = \sum_{\mathbb{Z}[\pi] \subset \mathcal{O} \subset \mathcal{O}_K} h(\mathcal{O}).$$

 $\Rightarrow \# \mathcal{V}$ is reasonably large $(h(\Delta) = O(|\Delta|^{1/2 + \varepsilon}))$.

How do we find End(E)?

Thm. (Kohel) Let $I : E_1 \to E_2$ s.t. $\operatorname{End}(E_1) \subset \operatorname{End}(E_2)$ (resp. $\operatorname{End}(E_2) \subset \operatorname{End}(E_1)$). Suppose $\ell \mid [\operatorname{End}(E_2) : \operatorname{End}(E_1)]$ (resp. $\ell \mid [\operatorname{End}(E_1) : \operatorname{End}(E_2)]$). Then $\ell \mid \deg(I)$.

Classification: If *I* isogeny of prime degree ℓ .

1. If $\operatorname{End}(E_1) \simeq \operatorname{End}(E_2)$, then *I* is horizontal (\rightarrow) at ℓ . 2. $[\operatorname{End}(E_1) : \operatorname{End}(E_2)] = \ell$: down (\downarrow) at ℓ . 3. $[\operatorname{End}(E_2) : \operatorname{End}(E_1)] = \ell$: up (\uparrow) at ℓ .

 \Rightarrow cycles, volcanoes.

17/27

Two graphs

G: complete isogeny graph.

If we fix \mathcal{O} , there is a subgraph, which corresponds to the Cayley graph of $Cl(\mathcal{O})$: vertices are ideals of $Cl(\mathcal{O})$; two ideals $[\mathfrak{a}_1]$ and $[\mathfrak{a}_2]$ are related iff there is some \mathfrak{b} s.t. $[\mathfrak{a}_1\mathfrak{b}] = [\mathfrak{a}_2]$.

Given an edge on the Cayley graph, it is relatively easy to compute the corresponding edge on the isogeny graph.

The converse seems difficult.

Even more fundamental difference: exponentiation is easy on the Cayley graph; it is not on the isogeny graph.

Volcano

Most interesting case is $\left(\frac{-D}{\ell}\right) = +1$ and $\ell \mid \operatorname{disc}(\pi) = t^2 - 4q$:

Navigating in the structure is relatively easy, using modular polynomials.

See M. Fouquet's talk for more.

18/27

Galbraith's algorithm

Problem: given $E_1, E_2 \in \mathcal{V}$, find a path from E_1 to E_2 .

Thm. (Over \mathbb{F}_p) there exists a probabilistic algorithm that builds an isogeny $I : E_1 \to E_2$ requiring $O(p^{3/2} \log p)$ expected time and expected space $O(p \log p)$ at worse.

Algorithm:

INPUT: E_1 and E_2 which are isogenous. OUTPUT: an isogeny path from E_1 to E_2 . 1. Find E'_i isogenous to E_i s.t. $\text{End}(E'_i) = \mathcal{O}_K$. 2. Find two paths from E'_1 and E'_2 that meet in some point. 3. Assemble the isogeny.

Idea: build paths using ℓ -isogenies of prime degree $\ell \leq L = O((\log D)^2$ (under GRH).

Conjecture: this will terminate after $O(\log h_K)$ iterations.

Building a binary tree

Start from any curve and build a tree, at each node selecting some ℓ at random (this is needed since for fixed ℓ , we find a cycle). Generically, $\Phi_{\ell}(X, j(E))$ has two roots.

Classical property of binary trees: if height is $\log_2 h$, then the total number of nodes is *h*, half of which are leaves.

21/27

Jao, Miller, Venkatesan (ASIACRYPT 2005)

 $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ where $(E_1, E_2) \in \mathcal{E}$ if and only if $\exists I : E_1 \to E_2, \deg(I) = \ell \in O((\log q)^{2+\delta})$ for some $\delta > 0$.

Prop. \mathcal{G} is an expander graph, hence there is a rapid mixing property for random walks.

Prop. Let *G* be a regular graph of degree *k* on *h* vertices. Suppose that the eigenvalue λ of any nonconstant eigenvector satisfies the bound $|\lambda| \leq c$ for some c < k. Let *S* be any subset of the vertices of *G*, and *x* be any vertex in *G*. Then a random walk of any length at least $\frac{\log(2h/|S|^{1/2})}{\log(k/c)}$ starting from *x* will land in *S* with probability at least $\frac{|S|}{2h} = \frac{|S|}{2|G|}$.

Coro. ECDLP is not stronger among an isogeny class.

Building a "bushy" tree

At each iteration ℓ , for each vertex *j*, compute the roots of $\Phi_{\ell}(X, j)$. Expect the tree to have size $O(\sqrt{h})$ after $O(\log h)$ iterations. Using two trees and a birthday-paradox approach, there exists a common vertex in both trees after $O(\log h)$ iterations. Build the respective paths and that's it.

IV. Cryptologic applicationsA) The setting

Where is the difficult problem? Given two isogenous curves E_1 and E_2 , build an explicit isogeny $I : E_1 \rightarrow E_2$.

Only known attack: Galbraith's in $O(\sqrt{h})$.

Two propositions: E. Teske; A. Stolbunov.

B) ECDLP

Gaudry/Hess/Smart attack: transform ECDLP in $E_1(\mathbb{F}_{q^n})$ into one on a curve of genus g over \mathbb{F}_q .

Rem. The GHS attack is not invariant under isogeny, hence we could dream of finding an isogenous curve E_2 for which the GHS is more (resp. less) successful. Confirmed by JaMiVe05.

 \Rightarrow key for trapdoors, see E. Teske's talk.

C) Hash function (D. Charles, E. Goren, K. Lauter)

When *E* is supersingular, for fixed ℓ , End(*E*) is connected (property of quaternions, actually).

Idea: use graph of 2-isogenies of a supersingular elliptic curve. The graph is 3-connected.

 $H(m_0m_1...m_{k-1})$: start from a given *E*; use m_i to decide to go left or right at each step; hash value is the last curve.

Security: given E_{orig} and E_{final} find another path so as to make a collision. Could only be doable in $O(\sqrt{h})$.

D) Miscellaneous

- Brier & Joye (CHES-2003): for crypto reasons, one prefers $Y^2 = X^3 3X + b$. If original *E* is not isomorphic to this type of curve, find an isogenous one that is $([A, B] \sim [u^4A, u^6B])$.
- Smart (CHES-2003): preventing the existence of "special points" à la Goubin (points (*x*, *y*) with *x* = 0 or *y* = 0).
- Doche, Icart, Kohel (PKC06): speed up the computation of [k]P when small degree isogeny exist ($\ell = 2, 3$).

25/27

Conclusions

In this talk:

- Isogeny classes form a graph with interesting properties.
- Navigating in the graph is relatively easy.
- ECDLP can be transported from a curve to another in the same isogeny class.

Open problems:

- Is the isogeny-path problem really difficult?
- In higher genus: make algorithms practical; understand the isogeny graph.

More to come: after the coffee break!