Public-Key Cryptosystem Based on Isogenies #### Alexander Rostovtsev Anton Stolbunov Saint-Petersburg State Polytechnical University ## Quantum Computer #### Basic conceptions - Non-supersingular elliptic curves over a finite field F_p: Y² = X³ + aX + b; j ≠ 0, 1728 - $= \pi^2 t\pi + p = 0$ a Frobenius equation - $D_{\pi} = t^2 4p$ a Frobenius discriminant - Isogenous elliptic curves - Isogeny degree - Isogeny kernel - Modular equation: Φ_I (S, T) = 0 # Branchless Cycles Elkies criterion: for an elliptic curve given, if $$\left(\frac{D_{\pi}}{l}\right) = 1,$$ then there are two I -isogenous elliptic curves over F_p Isogenies of an Elkies degree form branchless cycles: #### Direction Determination Frobenius equation for points of order I: π² - tπ + p = 0 (mod I) - $\left(\frac{t^2 4p}{l}\right) = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t$ - the Frobenius eigenvalues - Action of the Frobenius endomorphism on an isogeny kernel is equivalent to multiplication of points by an eigenvalue [Elkies 1998]: $$(X^p, Y^p) = \pi \cdot (X, Y) \text{ in } F_p[X, Y] / (Y^2 - X^{3-} aX - b, H(X))$$ ## Directed Step Input: field F_p , curve E, degree I, direction π Algorithm: - Find a root j_1 of $\Phi_1(j, T) = 0$ over F_p - Compute an isogenous elliptic curve E₁ - Compute the polynomial H₁(X) which determines the isogeny kernel [Müller 1995] - Check whether (X^p, Y^p) = π·(X, Y) in F_p [X, Y] / (Y² X³ aX b, H₁(X)) If not, then compute E₂ using the root j₂ # Cycle of Prime Length - U a set of isogenous elliptic curves over F_p - #U = H (D_{π}) a class number [Schoof 1987] - Practical observation: #U is prime => single isogeny cycle ## Isogeny Star #### Example over F₈₃: A graph of prime number of elliptic curves, connected by isogenies of Elkies degrees #### Route on Star - For given - □ F_D a finite field - □ E an elliptic curve in a star - □ { l_i } a set of isogeny degrees - A route is a set R={ r_i }, where r_i is a number of steps by l_i -isogeny in the direction π_i a route {2,1}: Routes are commutative: R_A R_B = R_B R_A # Key Agreement $$A \xrightarrow{R_A(E_0)} B$$ $$R_A \xrightarrow{R_B(E_0)} B$$ $$R_A(E_0)$$ $$R_B \xrightarrow{R_B(E_0)} R_B$$ $$R_A(E_0)$$ $$R_B \xrightarrow{R_A(E_0)} R_B$$ $$R_A(E_0)$$ #### Key Agreement - Algorithm #### **Common parameters:** - F_D a finite field - E₀ an initial elliptic curve - { I_i } a set of Elkies isogeny degrees - { π_i} a set of Frobenius eigenvalues #### **Algorithm:** - A randomly chooses a route R_A and sends $E_A = R_A(E_0)$ - B randomly chooses a route R_B and sends $E_B = R_B(E_0)$ - A computes $E_K = R_A(E_B)$, B computes $E_K = R_B(E_A)$ - Resulting key is the j-invariant of E_K ## Public-Key Encryption # Security - Problem of searching for a route between elliptic curves - Solving methods on an #U-curves star: - □ Brute-force: O (#U) isogenous steps - □ Meet-in-the-middle: O (√#U) isogenous steps - □ Others ? #### Quantum Computer Resistance - An algorithm of a route search requires a subroutine, which calculates a chain of isogeny steps - Calculation of an isogeny chain requires consecutive solving of modular equation Φ_| (j, T) = 0, where j is being changed with every step - Leads to exponential time of the algorithm ## Complexity and Sizes - Key agreement complexity: - □ O (log #U) isogeny steps, or - □ O (log⁴ p) field operations - Consuming operations: - \square X^p mod H(X) - \square solving of $\Phi_{I}(j, T) = 0$ - For 2⁸⁰ secrecy: - □ field characteristic: p ~ 2³²⁰ - □ star size ~ 2¹⁶⁰ - □ number of isogeny degrees ~ 40 - □ steps per degree: 0 ... ±8 #### Parameters Selection - Obtaining a large prime #U is very complicated - Hypothesis: #U must have a large prime divisor - Choose D_π = D f², where f is a large prime conductor and h(D) is small. Then [Cohen, 1996] $$h_{D_{\pi}} = h_D \cdot \left(f - \left(\frac{D}{f} \right) \right) = h_D \cdot (f \pm 1)$$ Choose f such that $\frac{f\pm 1}{2}$ is prime # Test Implementation - Mathematica 5.0 - **F**₂₀₃₈₀₇₄₇₄₃ - Star of 55103 elliptic curves (prime), chosen by direct computation of a class number - 6 isogeny degrees: {3, 5, 7, 11, 13, 17} - 0...9 steps per each isogeny degree #### The End A. Rostovtsev and A. Stolbunov Public-Key Cryptosystem Based on Isogenies http://eprint.iacr.org/2006/145