Public-Key Cryptosystem Based on Isogenies

Alexander Rostovtsev Anton Stolbunov

Saint-Petersburg State Polytechnical University

Quantum Computer

Basic conceptions

- Non-supersingular elliptic curves over a finite field F_p: Y² = X³ + aX + b; j ≠ 0, 1728
- $= \pi^2 t\pi + p = 0$ a Frobenius equation
- $D_{\pi} = t^2 4p$ a Frobenius discriminant
- Isogenous elliptic curves
- Isogeny degree
- Isogeny kernel
- Modular equation: Φ_I (S, T) = 0

Branchless Cycles

Elkies criterion: for an elliptic curve given, if

$$\left(\frac{D_{\pi}}{l}\right) = 1,$$

then there are two I -isogenous elliptic curves over F_p

Isogenies of an Elkies degree form branchless cycles:

Direction Determination

 Frobenius equation for points of order I: π² - tπ + p = 0 (mod I)

- $\left(\frac{t^2 4p}{l}\right) = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there are 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_1, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_1 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t^2 4p}{l} = 1 = \text{ there 2 roots: } \pi_2, \, \pi_2 \text{ over } F_2 \frac{t$
 - the Frobenius eigenvalues
- Action of the Frobenius endomorphism on an isogeny kernel is equivalent to multiplication of points by an eigenvalue [Elkies 1998]:

$$(X^p, Y^p) = \pi \cdot (X, Y) \text{ in } F_p[X, Y] / (Y^2 - X^{3-} aX - b, H(X))$$

Directed Step

Input: field F_p , curve E, degree I, direction π Algorithm:

- Find a root j_1 of $\Phi_1(j, T) = 0$ over F_p
- Compute an isogenous elliptic curve E₁
- Compute the polynomial H₁(X) which determines the isogeny kernel [Müller 1995]
- Check whether (X^p, Y^p) = π·(X, Y) in F_p [X, Y] / (Y² X³ aX b, H₁(X)) If not, then compute E₂ using the root j₂

Cycle of Prime Length

- U a set of isogenous elliptic curves over F_p
- #U = H (D_{π}) a class number [Schoof 1987]
- Practical observation:
 #U is prime => single isogeny cycle

Isogeny Star

Example over F₈₃:

A graph of prime number of elliptic curves, connected by isogenies of Elkies degrees

Route on Star

- For given
 - □ F_D a finite field
 - □ E an elliptic curve in a star
 - □ { l_i } a set of isogeny degrees
- A route is a set R={ r_i },
 where r_i is a number of steps
 by l_i -isogeny in the direction π_i

a route {2,1}:

Routes are commutative: R_A R_B = R_B R_A

Key Agreement

$$A \xrightarrow{R_A(E_0)} B$$

$$R_A \xrightarrow{R_B(E_0)} B$$

$$R_A(E_0)$$

$$R_B \xrightarrow{R_B(E_0)} R_B$$

$$R_A(E_0)$$

$$R_B \xrightarrow{R_A(E_0)} R_B$$

$$R_A(E_0)$$

Key Agreement - Algorithm

Common parameters:

- F_D a finite field
- E₀ an initial elliptic curve
- { I_i } a set of Elkies isogeny degrees
- { π_i} a set of Frobenius eigenvalues

Algorithm:

- A randomly chooses a route R_A and sends $E_A = R_A(E_0)$
- B randomly chooses a route R_B and sends $E_B = R_B(E_0)$
- A computes $E_K = R_A(E_B)$, B computes $E_K = R_B(E_A)$
- Resulting key is the j-invariant of E_K

Public-Key Encryption

Security

- Problem of searching for a route between elliptic curves
- Solving methods on an #U-curves star:
 - □ Brute-force: O (#U) isogenous steps
 - □ Meet-in-the-middle: O (√#U) isogenous steps
 - □ Others ?

Quantum Computer Resistance

- An algorithm of a route search requires a subroutine, which calculates a chain of isogeny steps
- Calculation of an isogeny chain requires consecutive solving of modular equation Φ_| (j, T) = 0, where j is being changed with every step
- Leads to exponential time of the algorithm

Complexity and Sizes

- Key agreement complexity:
 - □ O (log #U) isogeny steps, or
 - □ O (log⁴ p) field operations
- Consuming operations:
 - \square X^p mod H(X)
 - \square solving of $\Phi_{I}(j, T) = 0$
- For 2⁸⁰ secrecy:
 - □ field characteristic: p ~ 2³²⁰
 - □ star size ~ 2¹⁶⁰
 - □ number of isogeny degrees ~ 40
 - □ steps per degree: 0 ... ±8

Parameters Selection

- Obtaining a large prime #U is very complicated
- Hypothesis: #U must have a large prime divisor
- Choose D_π = D f², where f is a large prime conductor and h(D) is small. Then [Cohen, 1996]

$$h_{D_{\pi}} = h_D \cdot \left(f - \left(\frac{D}{f} \right) \right) = h_D \cdot (f \pm 1)$$

Choose f such that $\frac{f\pm 1}{2}$ is prime

Test Implementation

- Mathematica 5.0
- **F**₂₀₃₈₀₇₄₇₄₃
- Star of 55103 elliptic curves (prime), chosen by direct computation of a class number
- 6 isogeny degrees: {3, 5, 7, 11, 13, 17}
- 0...9 steps per each isogeny degree

The End

A. Rostovtsev and A. Stolbunov Public-Key Cryptosystem Based on Isogenies http://eprint.iacr.org/2006/145