Proving the primality of very large numbers
with fast ECPP

J. Franke', T. Kleinjung', F. Morain?, and T. Wirth'

! Dept. of Math., Bonn University, Beringstr. 1, 53115 Bonn, Germany
{franke,thor,wirth}@math.uni-bonn.de
% Laboratoire d’'Informatique de I’Ecole polytechnique (LIX)
F-91128 Palaiseau Cedex France
morain@lix.polytechnique.fr

* Kk x

Abstract. The elliptic curve primality proving algorithm is one of the
fastest practical algorithms for proving the primality of large numbers.
Its fastest version, fastECPP, runs in heuristic time O((log N)*). The aim
of this article is to describe new ideas used when dealing with very large
numbers. We illustrate these with the primality proofs of some numbers
with more than 10,000 decimal digits.

1 Introduction

The work by Agrawal, Kayal and Saxena [1] on the existence of a deterministic
polynomial time algorithm for deciding primality stimulated the field of primality
proving at large. As a result, this caused the study and implementation of a fast
version of the elliptic curve primality proving algorithm (ECPP). We refer to [2]
for a presentation of the method and [13] for the description of the faster version,
originally due to J. O. Shallit. Whereas ECPP has a heuristic running time of
O((log N)?) for proving the primality of N, the new algorithm has complexity
O((log N')*). This new approach enabled one of us (FM), to prove the primality
of numbers with more than 7,000 decimal digits.

Independently, three of us (JF, TK and TW) started to write a new imple-
mentation of ECPP in November 2002 which was available by December 2002,
and this was improved step by step until the team working in Bonn came up with
a set of programs used to prove the primality of 10°°°? 4 33603 on August 19,
2003.

The two teams decided after this to exchange ideas and comparisons, forming
the present article that concentrates on issues regarding distributed implemen-
tations of fast ECPP and its use in the proving of very large numbers. The theory
of fastECPP will be described more fully in the final version of [13].

Our article is organized as follows. Section 2 provides a short description
of fastECPP. Section 3 gives two strategies for distributing the computations.
Section 4 deals with a faster way of looking for small prime factors of a bunch

*** Projet TANC, Pole Commun de Recherche en Informatique du Plateau de Saclay,
CNRS, Ecole polytechnique, INRTA, Université Paris-Sud.

of numbers at the same time. This part has an independent interest and we
think that it could be useful in other algorithms. In Section 5, an alternative
to the method of [9,5] for the root finding in the proving steps of ECPP is
described. Section 6 deals with the use of fast multiplication beyond the GMP
level in order to speed up all basic multiplications. In Section 7, we describe an
early abort strategy for limiting the number of steps in ECPP. We conclude with
timings on primality proofs for some very large numbers, obtained with either
implementation.

2 The fast version of ECPP

Ordinary ECPP is described in [2] and fastECPP in [13]. We sketch the descrip-
tion of the latter, assuming the reader has some familiarity with the algorithm.

We want to prove that N is prime. The algorithm builds a so-called downrun
that is a sequence of decreasing probable primes Ng, Ny, ..., Nj such that Ny =
N and the primality of each N; is sufficient to prove that of N;_;. Theory tells
us that we should anticipate a length of k = O(log N) for the sequence.

If ¢ is an odd prime, put ¢* = (—1)(¢=1/2¢; add to this special primes
—4,—8,8 as explained in [13].

The algorithm runs as follows:

[Step 1.]
1.1. Find the r smallest primes ¢* such that (qﬁ) =1, yielding Q = {qf, ¢3,

)

1.2. Compute all 1/¢* mod N for ¢* € Q.

1.3. Try all subsets of distinct elements of S = {q¢} ,q},,...,q; } of Q for
which —D = Hq* cs ¢" <0, until a solution of the equation

4N =U? + DV? (1)

in rational integers U and V is found, which involves computing +/—D mod N
and use Cornacchia’s algorithm. When this is the case, let {Uy,...U,} be the
different U-values (we have at most w = 6 and generally w = 2).

[Step 2.] For all U;’s, compute m; = N + 1 — U;; if none of these numbers can
be written as ¢N' with ¢ a B-smooth number and N’ a probable prime, go to
Step 1. If there is a good one, call it m.

[Step 3.] Build an elliptic curve E over Q having complex multiplication by the
ring of integers of K = Q(v/—D).

[Step 4.] Reduce E modulo N to get a curve F of cardinality m.
[Step 5.] Find P on E such that [N']P = Og. If this cannot be done, then N is
composite, otherwise, it is prime.

[Step 6.] Set N = N’ and go back to Step 1.

Note that what differentiates ECPP from its fast version is Step 1. In Step
1.3, we only consider fundamental discriminants, as a curve with CM by a non-
principal order has the same cardinality as one with CM by the principal order.

ECPP is a Las Vegas type algorithm. Its running time cannot be proved
rigorously, but only in a heuristic way using standard hypotheses in number
theory. When given a number N it can answer one of three things: “/V is prime”,
“N is composite” or “I do not know”. In the first two of these cases, the answer
is definitely correct and there is an accompanying proof that can be verified in
polynomial time. The problem is in showing that the third case happens with
very low probability.

In real life, programs implementing (fast)ECPP should follow this philosophy
and never return something wrong. When the third answer is returned, this
corresponds very frequently to the fact that the program ran out of precomputed
data (such as discriminants, or class polynomials) or used too small factorisation
parameters in Step 2. The programmer has to correct this and start again with
the number. We never saw a number resisting indefinitely, though we cannot
prove none exists.

All algorithms and tricks [11,12] developed over the years for ECPP apply
mutatis mutandis to the new version. This includes the invariants developed in
[6,4] and the Galois approach for solving the equation Hp[u](X) modulo p (see
[9, 5]) needed in Step 3, which favors smooth class numbers.

When dealing with very large numbers (10000 decimal digit numbers, say),
every part of the algorithm should be scrutinized again, which includes optimiz-
ing the basic routines beyond the current level of GMP. In Step 2., B-smooth
numbers are to be identified. The number B is important in the actual running
time, and its precise value must be set depending on the algorithm used. See
Section 4 below. A new strategy (early abort) is described in section 7. Also,
Step 3-4 can be merged, as explained in section 5.

3 First strategies for distribution

Step 1-2 and Step 3-5 are easy to distribute over clusters of workstations. In this
section, we give two distribution strategies.

3.1 Strategy 1

The following is easily implemented when all slaves have the same computing
power, making it a parallel implementation.

S1. The master sends to each slave a batch of \/f to compute.

S2. Each slave computes its batch and sends the results back to the master.

S3. The master sends all the squareroots to all the slaves, so that each slave
can compute any v/—D that is needed.

S4. The master sends batches of D’s to all the slaves. Each slave is responsible
for the resolution of (1) and the factorization of the m’s. If one is found, it is
sent back to the master which checks the results and restarts a new phase.

S3 needs synchronization and communications.

In S4, load balancing is not easy, since the results are probabilistic in nature
(for which D does N split?). A probabilistic answer is to compute beforehand the
average number of splitting D’s that can occur. By genus theory, each D with ¢
prime factors has splitting probability g(—D)/h(—D) with g(—D) = 2!=!. This
suggests to build the whole set of discriminants D in Step 1.3 and to sort them
with respect to (h(—D)/g(—D), D). One could also add a criterion describing
the difficulty of building the class polynomial Hp(X) later on, maybe using the
height of the polynomial (as evaluated in [4]). We send to each slave discriminants
D;,,D;,,...,D; in such a way that

i1 ik

= 9(Dy)/h(Dy,) > 5

(the value of 5 is somewhat arbitrary) which corresponds to the fact that on
average, 5 values of D will be splitting values. Of course, this quantity should
depend on the power of the slave.

3.2 Strategy 2

Another approach would be to set up a complicated system in which the master
keeps trace of the work of each slave and decides what kind of work to do at
some point. This is easily implemented on the side of the slaves: they wait for a
task from the master, do it and send the result back. We now describe a possible
implementation of the master.

There are 6 different tasks which the slaves work on:

T1. Check whether the class number for a discriminant D is good, i.e. is not
too big and does not contain a very large prime factor.

T2. Compute a modular square root \/(f modulo N.

T3. Try to solve (1) for a given D.

T4. Do trial division for an interval of primes and a batch of m’s and return
the factored parts. See Section 4.

T5. Do a Fermat test.

T6. Do a Miller-Rabin test.

The master keeps lists of tasks of these six types which at the beginning are
all empty. If all task lists are empty the master creates new tasks of type T1.
The tasks are sorted according to their priority, T1 having lowest and T6 having
highest priority. If a slave requests a new task the master selects from all available
tasks one with the highest priority and passes it to this slave. A completed task
will create a varying number of new task, e.g. a computed square root (T2) may
create many tasks of type T3 whilst a Fermat test (T5) will only on success
create a task of type T6. If a certain number of tasks T6 for the same integer
are successful one reduction step is finished and pending tasks are cancelled.

4 An optimized test for the divisibility by small primes

Let us first analyze the effect of trial division on the number of pseudo-primality
tests (the most time consuming part of our implementation). Suppose we do
trial division up to B on a number N = fR where f is only divisible by primes
< B and R only divisible by primes > B. Let us assume that log B < /log N, a
condition which is almost always satisfied in practice. Let pmax(n) be the largest
prime divisor of n. One can combine the prime number theorem with Rankin’s
trick and Mertens’s theorem [14, 9.1.5 and 9.1.8] and related facts to investigate
the sums

s= Y w(/f)
f<z
pmaX(f)<B

1= > log(f)m(z/f)
b <B

where 7(z) counts the number of primes below z. Assuming log B < {/log z, we
find them to be

zexp(7y) (log B) + O(l))

s =

zexp(7) (log(B)? + O(log B))

= log(2)

)

where 7 is Eulers constant. Since s counts the number of N < z for which R
is prime, while [is the sum of log(f) over such N, one concludes that for a
randomly chosen N € [(1 — €)z,x] with a fixed positive € < 1 and for z — oo,
z — oo subject to log B < +/logx, the probability that R is prime tends to
exp(7y) log(B)/log(N) while the expectation value of log(l) is log(B) + O(1). By
this heuristic argument, one expects the number of pseudo-primality tests for a
reduction of fixed size to be proportional to (log B) 2.

We now describe how to perform the trial division in Step 2 more efficiently
by doing it on many numbers simultaneously. This is essentially a simplification
of the algorithm in [3]. Let N be a (pseudo)prime for which we want to do a
reduction step and let mq,...,m; be the numbers computed in Step 2 (we may

choose t of order 1—0"%) For simplicity we assume that ¢ = 2" is a power of two.

2log
The following algorithm strips the primes up to B from the numbers m;:

L. Build the product P =[], g, prime P Using a binary tree. Unless the bound
B is changed this has to be done only once.

2. Compute the product M = [], m; as follows: Set m'®

;. = m; and for a =
1,...,u successively compute m\" = m{?"Dm{?™ 1 < i < 2u=a. Set
M = mgu).

3. Compute M = P mod M and set m; = M.

4. Compute m; = P mod m; as follows: For a = u,...,1 compute mg‘;:}) =

mﬁ“) mod mg?:ll) and mgi‘” = mga) mod mg;_l), 1<e <24 Set my; =
"

5. For 1 < i <t replace repeatedly m; by ged(m;,m;) and m; by =t until
iy = 1.
Remarks:

Note that for P < M we can save some of the top level computations and the
application of the algorithm becomes equivalent to several applications with a
smaller u, grouping the m; appropriately. So we assume that u is chosen such
that P > M holds.

If we store the partial products

PO — H P
p< Z ,pprime
which are computed during the precomputation we can decrease the trial division
bound by powers of 2 with no extra effort.
Step 5 can be improved e. g. by replacing 1, by ged(m;, mf) in the iteration.

We now analyze the cost of the algorithm. Let M (n) denote the cost of a
multiplication of two numbers of size exp(n). We assume that the FFT is used
and set M(n) = O(n(logn)'™). The first step is a precomputation whose cost
is O(B(log B)?). The cost for the second step is

u—1
Z 2v=1=F 1 (28 log N) = O(u2% log(N) (log(2¥ log N))'*¢)
k=0

since all m; are of size N. In the fourth step the operation count is the same
except that an n - n-multiplication is replaced by an 2n : n-division. Since the
latter is asymptotically as fast as the former the cost for step 4 is the same as for
step 2. Since P = exp(B) the cost of the third step is O(B(log(2%log N))1*¢).
The last step as described above has complexity O(2%(log N)?(loglog N)>*¢)
since the iteration ends after at most log, IV steps each consisting of a division
and a gecd. This could be improved by modifying this step but we do not need it
here. Note also that in practice this step consists mainly of the first ged(m;, m;),
which with high probability is very small, and the number of iterations also is
very small.

Assuming 2" < log N and neglecting loglog-terms the time spent in pseudo-

3
primality tests is O(%) for a reduction of size log B whereas the time for

trial division is O(B + (log N)?). So it is optimal to choose B = O((log N)?)
which also implies that the cost for the precomputation can be neglected.
Some remarks about storage and parallelization:
The algorithm above needs a lot of memory; most of it at the end of the
computation of P. To reduce the memory requirement we may compute partial

products P; of the primes below B whose product is P and modify step 3 into
computing the residues P; mod M and the modular product of these residues.
For this to be efficient the partial products should be larger than M.

For a distributed implementation we propose to split P into as many pieces
as slaves are present. Each slave executes steps 2-4 of the algorithm for its own
P; and passes at the end ged(m;, mi;) = ged(my;, Pj) to the master. The master
assembles these informations and executes step 5 which in practice is very fast.

For the number 10°°?? + 33603, the bound B was set to 232.

5 Computing roots of the Hilbert polynomial modulo p

The run-down sequence contains, among other things, a list of pairs (p, D), where
p is a pseudo-prime and where it is expected that an elliptic curve with complex
multiplication by the ring Ok of integers in K = Q(v/—D) can be used to derive
the primality of p from the primality of some smaller number. It is necessary to
compute an element j, of F, which is the j-invariant of an elliptic curve over [,
with complex multiplication by Og.

We outline the method which was used to perform this step for the run-
down sequence of 109%%? + 33603. As in [9], the idea is to split this task into
several steps, each one involving the determination of the modular solution of
an equation of degree £;, where the ¢; are the prime factors of the class number
h of K. One difference is that [9] tries to compute a sequence of polynomials
which define a sequence of intermediate fields terminating in the Hilbert class
field L of K. By contrast, the implementation which was used for 10°??° + 33603
constructs methods to reduce elements z of the intermediate fields modulo an
appropriate prime ideal over p, increasing the subfield in each step. The element
x is given by floating point approximations to its conjugate algebraic numbers.
Thus, the sequence of intermediate fields occurs in both methods but otherwise
the language used is somewhat different, making it difficult to explain to what
extent the methods are similar. Since the available space is not sufficient for a
careful description of the new method, we give a short example explaining how
it works in the case p =479, D = 335.

The program chooses the modular invariant = z15 from [2, 2.7.1] and a
precision of 32 bit is sufficient for the floating point calculations. The class group
of K, and therefore Gal(L/K), is cyclic of order 18. The program has selected a
generator o of the Galois group, and has computed the complex numbers o'(z).
It has then decided to choose the prime ideal p, C Ok such that

(a4 bv/—D) mod p, = %(([Qa] + 12[5—%]) mod p), (2)

where v/D = 18.30300521772312668 is the positive square root of D, the subex-
pressions in square brackets are in real life floating point numbers which will
be rounded to nearest integers, and the factor 12 in the second summand is of
course a square root of —D mod p.

The Hilbert class field has unique subfields Ly and Ls of degrees 2 and 3 over
K. The program knows that the genus field L, which is the largest subfield of
L which is Abelian over Q, is given by L; = K (v/5). Tt decides to work with the
prime ideal p; C Or, such that, for each element z of Ly given by a complex
floating point approximation to z and o(z), we have

zmod p; = % (((z + 0(2)) mod p, + 196((z — o(2))V5 mod po)), (3)

where v/5 = 2.23606798 and the factor 196 in the second summand is of course
a modular square root of 1/5 mod p. The reductions modulo p, occuring in this
formula are computed by the program using (2).

It is more difficult to describe a prime ideal po» C Oy, with po N O = p, in
a way which is suitable for calculations. The program considers

5

Ty = Z aSi(ac),

i=0
which is an algebraic integer. We have

Ty = —60.2484307 4 78.0404771y/—1
o(xy) = —14.7805113 — 15.4588718/—1
0?(xy) = —10.4710580 + 1.47891293+/—1.

Note that o?(z3) depends only on i mod 3. The program computes a complex
floating point approximation to the minimal polynomial of x5 over K and finds,
using (2) to reduce polynomial coefficients modulo p,, that this polynomial is
congruent to T° + 28372 + 22671 + 108 modulo p,. It finds that 341, 395 and 418
are the roots of this polynomial modulo p and decides to work with the prime
ideal p» C Lo such that 22 = 341 (mod p2). It computes coefficients v; € F,,
0 < < 3, such that

2

z mod ps = Z v; ((Z ot (x5)07 (z)) mod po), (4)
7=0

=0

where in practice the reduction mod p, is carried out using (2). For this to
be possible, it is necessary that z» generates a normal basis of O, over Ox
after localisation at p,. The program will abort if this assumption fails. This
does not happen in this example, nor did it ever happen during the calculations
for 10%9%? 4+ 33603. But it should be possible to construct examples of failure
of the program, although it is very unlikely for this to happen in practice. In
order to determine the coefficients of (4), it is also necessary that the modular
roots &; of the minimal polynomial have been ordered in such a way that & =
o'(25) mod ps. The choice of & is of course free, since a different & only gives a
different ps. But the order of the other modular zeros is no longer free and the
program has to compute them in the correct order. We will describe in a different

paper how this is done without a major increase of the required precision, where
of course the order of the cyclic extension will often be larger than 3. Once the &;
have been computed in the correct order, it is a linear algebra task to determine
the v; such that (4) holds for z = o*(z2), 0 < k < 3. In the given example, the
result is

vo = 417 v = 170 vy = 393.

The compositum L3 = L L has degree 6 over K, and there is a unique prime
ideal p3 C Oy, such that p3 N Oy, = p; for i € {1;2}. If an element z of Of, is
given by complex floating point approximations to o?(z), where 0 < i < 6, then

zmod p3 = %(zo mod ps 4+ 196(2; mod po)), (5)

where the 291 € L are given by
o'(20) = 0'(2) + 0" (2)

o'(z1) = V5(0'(2) — 0"3(2)),

and z; mod ps is computed by (4).

The program now computes a complex floating point approximation to o (P)
for 0 < i < 6, where P is the minimal polynomial of x over Ls. Using (5), it
finds P to be congruent to T° + 15172 + 434T + 346 modulo p3. The largest
rounding error was 0.000488281. One modular root of P is 153. This means that
there exists a prime ideal p dividing p in Oy, such that x = 153 mod p. From z,
one can compute the j-invariant of an elliptic curve with complex multiplication
by Ok using the formula

(z* + 722 4 2022 + 192 + 1)3(2® + 5z + 13)

T

With z = 153 mod 479, this gives j = 307 mod 479.

Calculating the minimal polynomial of 2 over K and reducing it modulo p,,
using (2), turns out to be impossible with 32 bit precision. If 48 bits are used,
the largest rounding error is 0.0195312. Of course, this increase of the required
precision is due to the fact that the theory of the genus field was not used.

The program used for 10°%%° + 33603 was a development version, with many
possible optimisations not yet implemented. For instance, it is clear from the
above example that not all Weber class invariants were implemented.

6 Use of the Fastest Fourier Transform in the West

For most of the calculations for 1099%° + 33603, we used integer multiplication
using the Fastest Fourier Transform in the West (see http://www.fftw.org
and [7,8]). To square a number of size 1097 it was broken into 1661 digits of
size 20 bit. These digits were inserted into an array of 3600 double variables,
which was then transformed using the functions provided by libfftw3.a, the

result was squared and transformed back also using 1ibfftw3.a. The same thing
can be done for a product of two different factors, and if a factor occurs often
then its Fourier transform may be precalculated and stored to reduce the time
for a multiplication by this factor to the time for a squaring. It is easy to see
that this choice of parameters does not guarantee exact results. Therefore, we
also calculated a 32-bit checksum. If the checksum test indicates an error, the
multiplication is recalculated using the GMP function. In the case of the p10000,
these recalculations appear to be rare, if they occur at all. Of course, even the
checksum does not make this multiplication method rigorous.

We used this fast multiplication both for primality tests and for the calcula-
tion of modular square roots in the calculation of the run down sequence. While
a modular square root can be checked, and the calculation repeated if necessary,
there appears to be no way to detect a false negative result of a Miller-Rabin
test. Therefore, by using this method we accepted a small but probably positive
probability of a prime number being declared composite by mistake.

The following benchmark results were obtained on an 800-MHz Athlon, using
version 4.1.1 of 1ibgmp.a, version 3.0 of 1ibfftw3.a, and 10°%%9 + 33603 as the
input number:

— One call to the GMP function mpz_probab_prime_p with second argument
equal to 1, which means that one Fermat and one Rabin-Miller pseudo-
primality test is carried out: 317 seconds user time.

— A Rabin-Miller test using 2 as base, and using Montgomery modular multi-
plication [10] and the GMP functions: 149 seconds.

— A similar program, but using 1ibfftw3.a for multiplications: 56 seconds.

The advantage of using 1ibfftw3.a could perhaps be reduced if GMP allowed
for a way to precalculate Fourier and Toom-Cook transforms of frequently used
factors. It is difficult to predict whether this is sufficient to achieve the speed
of a multiplication subroutine which is optimized for speed at the expense of
producing sometimes (albeit rarely) a false result.

7 The early abort strategy

The idea behind this strategy is to force the new candidate N’ in Step 2. to satisfy
N/N' > 29 for some (small) integer value § = §(N), with the hope to decrease
the number of steps and thereby the number of proving steps. Of course, this
might slow down the search for N a little bit and some optimization is necessary.
Yet it appeared critical when used in the primality proof of 1079?94+ 33603, when
it was first implemented and used.

In FM’s implementation, the following value for the lower bound on §(N) =
b(N) — b(N') was used, where b(z) denotes the number of bits of integer x:

b(N) <]1000[2500[5000]7500]10000[15000]cc
S(N) | 05 [10]15] 20 | 25 |30

The following data were gathered (with the mpi program to be described). The
first column contains the time without EAS, the second with. The line Hp stands
for the time needed to compute the polynomials representing the class field, as
in [9]; CZ is the time needed for the special variant of the Cantor-Zassenhaus
algorithm using a trick of Atkin (using roots of unity modulo N); the number of
steps in the downrun is then given, and the last lines contain the maximal value
for h, before the mean value.

Number [[10%777 4 1887[[10%7%% + 4771[[10%%° + 22669
Steps 1-2[| 81 h[58 h|[280 h[164 h{[716 h] 476 h
Steps 3-5|| 26 h| 26 h|| 76h| 86 h|[209h| 261h
Hp 1680 s| 4880 s|{4497 s| 7317 s|| 3 h 5h
CZ 22h| 22h|| 63h| 75h||179h| 234h
steps 436 358| 597 437| 734 512
max h 1968| 2336 2184| 2432|| 3400 4000
h 86| 116|| 120 164| 152 272

The restriction one puts on m and thus on D tends to make D and h larger
than in the plain case. This can have an impact on the time for computing Hp,
and also on the proving part. In the first phase, fewer N’ are ever tested for
probable primality, though more must be produced. EAS indeed decreases the
number of steps, which tends to decrease the total time for the 1st phase, the
2nd being constant or increasing a little. In any case, a strategy yielding a factor
of 2 in the total running time is certainly worthwhile.

8 Some large primality proofs

8.1 The first records of fastECPP

We begin with some data from FM’s implementation that uses MPI on top of his
ecpp program, and implementing Strategy 1. All computations were done on a
cluster of 6 biprocessor Xeon at 2.66 MHz. We took the following numbers from
the tables of P. Leyland*. These are numbers of the form z¥ + y*. WCT stands
for wall clock time and includes the time wasted by the distribution process
(waiting time of the slaves, typically). The line “Checking” indicates the time
needed to check the certificate. Note that the time for this should be O((log N)?)
and this is compatible with the timings given.

All numbers were proven in 2003. The “when” line indicates the elapsed
human dates in big endian notation.

The first number was dealt with an experimental program that turned out
to spend too much time in the \/—¢* computations. As a matter of fact, a value
of r = 4000 was used. This led to proceed by chunks of 400 squareroots from
a total of 4000, adding 400 more if this was not enough. All discriminants with
D < 10%, h < 6000 (later increased to 8000) and the largest prime factor of h

* http://research.microsoft.com/~pleyland/primes/xyyx.htm

x 2177 2589 2551 2438 3571

y 580 218 622 1995 648
#dd 6016 6055 7127 8046 10041
when 0513-0604 | 0606-0617(| 0618-0714|| 0715-0901|| 1001-1220

steps 801 736 965 1128 947

Steps 1-2 (CPU)| 164 days|| 103 days|| 235 days|| 355 days|| 531 days
Steps 1-2 (WCT)| 164 x 1.2|| 103 x 1.1|| 235 x 1.3{|355 x 1.13|| 531 x 1.2

V= 81 days|| 30 days|| 74 days|| 138 days|| 204 days
Steps 3-5 28 days 21 days 55 days 77 days|| 138 days
Hp 2951 sec|| 1686 sec|| 18451 sec|| 22552 sec|| 20285 sec
CZ 26 days 20 days 50 days 69 days|| 124 days
Checking 25 hours|| 22 hours|| 45 hours|| 70 hours|| 85 hours
maxh 1980 2080 3312 3640 6176
h 121 103 190 209 409
max D 7,749,263|(19,076,479(|52,396,648(|87,949,348((95,895,480

Table 1. Some large numbers proven with FASTECPP.

not exceeding 200 were decided to be usable. A look at column 3 compared to 4
justifies the claim of complexity of O((log N)*). The 8046dd number was done
after the annoucement of the proof of 109999 433603 (see next section), and EAS
was not used for this. The 10041dd number was finished on December 20, 2003,
well after the one to be described in the next section. This was the first use of
EAS for this implementation.

8.2 A new frontier

Let us turn our attention to the barrier-breaking number 10°°°° 4+ 33603, whose
primality was verified by JF, TK with the help of TW.

The calculations were done using two programs, a pvm program producing
the sequence of discriminants, group orders and their prime number factorization
(called a run down sequence in what follows), and the second program calculating
the elliptic curves.

The calculation of a run down sequence was started on July 17, 2003 on
six 900MHz PIIT CPUs. On July 21, the computation was moved to 12 nodes
of parnass2, the LINUX cluster built at the Scientific Computing Institute in
Bonn. 4 of these nodes had two 800MHz CPUs, the other nodes were double
PII/400MHz computers. At 8550 digits (on July 30) and 8286 digits (on July
31) we interrupted these calculations to replace the program by a faster version,
using the Fastest Fourier Transform in the West in the way explained above.
This improvement resulted by a speedup by a factor of about 2. On August 5,
we reached 6574 digits. On August 8, we stopped the program at 3256 digits.
The final calculations for the run down sequence took about 8 hours on eight
800MHz CPUs. The total CPU time to produce the run down (i.e., without
calculating the elliptic curves) was estimated to 234.5 days on a 1GHz Pentium.

The CPU time spent for the actual certificates is more difficult to estimate,
since the program for this step was still under development when the calculation
of the run down sequence started, and since these calculations were done in
heterogeneous environment. We estimate that it would have taken less than 140
days on a single 800MHz Athlon CPU.

The certificate is available as:

ftp://ftp.math.uni-bonn.de:pub/people/franke/p10000.cert

9 Conclusions

We have described some new ideas to speed up practical primality proving of
large numbers using fastECPP. These ideas need more testing and improvements.
We hope that this will serve as benchmarks and motivations for the study of other
primality proving algorithms as well.

Acknowledgments. Thanks to A. Enge for some useful discussions about this
work and for his careful reading of the manuscript. The authors of the certificate
for 109999 +33603 would like to thank the Scientific Computing Institute at Bonn
University for providing the parallel computer which produced the downrun. One
of us (J. F.) would also like to thank G. Zumbusch for pointing out the existence
of libfftw3.a to him. Thanks also to D. Bernstein for sending us his remarks on
a preliminary version and to the referees that helped clarify some points.

References

1. M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Preprint; available at
http://www.cse.iitk.ac.in/primality.pdf, August 2002.

2. A.O. L. Atkin and F. Morain. Elliptic curves and primality proving. Math. Comp.,
61(203):29-68, July 1993.

3. D. J. Bernstein. How to find small factors of integers. June 2002. Available at
http://cr.yp.to/papers.html.

4. A. Enge and F. Morain. Comparing invariants for class fields of imaginary
quadratic fields. In C. Fieker and D. R. Kohel, editors, Algorithmic Number The-
ory, volume 2369 of Lecture Notes in Comput. Sci., pages 252—266. Springer-Verlag,
2002. 5th International Symposium, ANTS-V, Sydney, Australia, July 2002, Pro-
ceedings.

5. A. Enge and F. Morain. Fast decomposition of polynomials with known Galois
group. In M. Fossorier, T. Hgholdt, and A. Poli, editors, Applied Algebra, Al-
gebraic Algorithms and Error-Correcting Codes, volume 2643 of Lecture Notes in
Comput. Sci., pages 254-264. Springer-Verlag, 2003. 15th International Sympo-
sium, AAECC-15, Toulouse, France, May 2003, Proceedings.

6. A. Enge and R. Schertz. Constructing elliptic curves from modular curves of
positive genus. Soumis, 2001.

7. Matteo Frigo and Steven G. Johnson. The fastest Fourier transform in the
west. Technical Report MIT-LCS-TR-728, Massachusetts Institute of Technology,
September 1997.

10.

11.

12.

13.

14.

Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software architecture for
the FFT. In Proc. 1998 IEEE Intl. Conf. Acoustics Speech and Signal Processing,
volume 3, pages 1381-1384. IEEE, 1998.

G. Hanrot and F. Morain. Solvability by radicals from an algorithmic point of
view. In B. Mourrain, editor, Symbolic and algebraic computation, pages 175-182.
ACM, 2001. Proceedings ISSAC’2001, London, Ontario.

Peter L. Montgomery. Modular multiplication without trial division. Math. Comp.,
44:519-521, 1985.

F. Morain. Primality proving using elliptic curves: an update. In J. P. Buhler,
editor, Algorithmic Number Theory, volume 1423 of Lecture Notes in Comput. Sci.,
pages 111-127. Springer-Verlag, 1998. Third International Symposium, ANTS-III,
Portland, Oregon, june 1998, Proceedings.

F. Morain. Computing the cardinality of CM elliptic curves using torsion points.
Submitted, October 2002.

F. Morain. Implementing the asymptotically fast version of the el-
liptic curve primality proving algorithm. June 2003. Available at
http://www.lix.polytechnique.fr/Labo/Francois.Morain/.

M. Ram Murty. Problems in Analytic Number Theory, volume 206 of Graduate
Texts in Mathematics. Springer-Verlag, 2001.

