
Proving the primality of very large numbers

with fastECPP

J. Franke

1

, T. Kleinjung

1

, F. Morain

2

, and T. Wirth

1

1

Dept. of Math., Bonn University, Beringstr. 1, 53115 Bonn, Germany

ffranke,thor,wirthg�math.uni-bonn.de

2

Laboratoire d'Informatique de l'

�

E
ole polyte
hnique (LIX)

? ? ?

F-91128 Palaiseau Cedex Fran
e

morain�lix.polyte
hnique.fr

Abstra
t. The ellipti

urve primality proving algorithm is one of the

fastest pra
ti
al algorithms for proving the primality of large numbers.

Its fastest version, fastECPP, runs in heuristi
 time

~

O((logN)

4

). The aim

of this arti
le is to des
ribe new ideas used when dealing with very large

numbers. We illustrate these with the primality proofs of some numbers

with more than 10,000 de
imal digits.

1 Introdu
tion

The work by Agrawal, Kayal and Saxena [1℄ on the existen
e of a deterministi

polynomial time algorithm for de
iding primality stimulated the �eld of primality

proving at large. As a result, this
aused the study and implementation of a fast

version of the ellipti

urve primality proving algorithm (ECPP). We refer to [2℄

for a presentation of the method and [13℄ for the des
ription of the faster version,

originally due to J. O. Shallit. Whereas ECPP has a heuristi
 running time of

~

O((logN)

5

) for proving the primality of N , the new algorithm has
omplexity

~

O((logN)

4

). This new approa
h enabled one of us (FM), to prove the primality

of numbers with more than 7; 000 de
imal digits.

Independently, three of us (JF, TK and TW) started to write a new imple-

mentation of ECPP in November 2002 whi
h was available by De
ember 2002,

and this was improved step by step until the team working in Bonn
ame up with

a set of programs used to prove the primality of 10

9999

+ 33603 on August 19,

2003.

The two teams de
ided after this to ex
hange ideas and
omparisons, forming

the present arti
le that
on
entrates on issues regarding distributed implemen-

tations of fastECPP and its use in the proving of very large numbers. The theory

of fastECPP will be des
ribed more fully in the �nal version of [13℄.

Our arti
le is organized as follows. Se
tion 2 provides a short des
ription

of fastECPP. Se
tion 3 gives two strategies for distributing the
omputations.

Se
tion 4 deals with a faster way of looking for small prime fa
tors of a bun
h

? ? ?

Projet TANC, Pôle Commun de Re
her
he en Informatique du Plateau de Sa
lay,

CNRS,

�

E
ole polyte
hnique, INRIA, Universit�e Paris-Sud.

of numbers at the same time. This part has an independent interest and we

think that it
ould be useful in other algorithms. In Se
tion 5, an alternative

to the method of [9, 5℄ for the root �nding in the proving steps of ECPP is

des
ribed. Se
tion 6 deals with the use of fast multipli
ation beyond the GMP

level in order to speed up all basi
 multipli
ations. In Se
tion 7, we des
ribe an

early abort strategy for limiting the number of steps in ECPP. We
on
lude with

timings on primality proofs for some very large numbers, obtained with either

implementation.

2 The fast version of ECPP

Ordinary ECPP is des
ribed in [2℄ and fastECPP in [13℄. We sket
h the des
rip-

tion of the latter, assuming the reader has some familiarity with the algorithm.

We want to prove that N is prime. The algorithm builds a so-
alled downrun

that is a sequen
e of de
reasing probable primes N

0

; N

1

; : : : ; N

k

su
h that N

0

=

N and the primality of ea
h N

i

is suÆ
ient to prove that of N

i�1

. Theory tells

us that we should anti
ipate a length of k = O(logN) for the sequen
e.

If q is an odd prime, put q

�

= (�1)

(q�1)=2

q; add to this spe
ial primes

�4;�8; 8 as explained in [13℄.

The algorithm runs as follows:

[Step 1.℄

1.1. Find the r smallest primes q

�

su
h that

�

q

�

N

�

= 1, yielding Q = fq

�

1

, q

�

2

,

: : :, q

�

r

g.

1.2. Compute all

p

q

�

mod N for q

�

2 Q.

1.3. Try all subsets of distin
t elements of S = fq

�

i

1

; q

�

i

2

; : : : ; q

�

i

s

g of Q for

whi
h �D =

Q

q

�

2S

q

�

< 0, until a solution of the equation

4N = U

2

+DV

2

(1)

in rational integers U and V is found, whi
h involves
omputing

p

�D mod N

and use Corna

hia's algorithm. When this is the
ase, let fU

1

; : : : U

w

g be the

di�erent U -values (we have at most w = 6 and generally w = 2).

[Step 2.℄ For all U

i

's,
ompute m

i

= N + 1 � U

i

; if none of these numbers
an

be written as
N

0

with
 a B-smooth number and N

0

a probable prime, go to

Step 1. If there is a good one,
all it m.

[Step 3.℄ Build an ellipti

urve E over Q having
omplex multipli
ation by the

ring of integers of K = Q(

p

�D).

[Step 4.℄ Redu
e E modulo N to get a
urve E of
ardinality m.

[Step 5.℄ Find P on E su
h that [N

0

℄P = O

E

. If this
annot be done, then N is

omposite, otherwise, it is prime.

[Step 6.℄ Set N = N

0

and go ba
k to Step 1.

Note that what di�erentiates ECPP from its fast version is Step 1. In Step

1.3, we only
onsider fundamental dis
riminants, as a
urve with CM by a non-

prin
ipal order has the same
ardinality as one with CM by the prin
ipal order.

ECPP is a Las Vegas type algorithm. Its running time
annot be proved

rigorously, but only in a heuristi
 way using standard hypotheses in number

theory. When given a number N , it
an answer one of three things: \N is prime",

\N is
omposite" or \I do not know". In the �rst two of these
ases, the answer

is de�nitely
orre
t and there is an a

ompanying proof that
an be veri�ed in

polynomial time. The problem is in showing that the third
ase happens with

very low probability.

In real life, programs implementing (fast)ECPP should follow this philosophy

and never return something wrong. When the third answer is returned, this

orresponds very frequently to the fa
t that the program ran out of pre
omputed

data (su
h as dis
riminants, or
lass polynomials) or used too small fa
torisation

parameters in Step 2. The programmer has to
orre
t this and start again with

the number. We never saw a number resisting inde�nitely, though we
annot

prove none exists.

All algorithms and tri
ks [11, 12℄ developed over the years for ECPP apply

mutatis mutandis to the new version. This in
ludes the invariants developed in

[6, 4℄ and the Galois approa
h for solving the equation H

D

[u℄(X) modulo p (see

[9, 5℄) needed in Step 3, whi
h favors smooth
lass numbers.

When dealing with very large numbers (10000 de
imal digit numbers, say),

every part of the algorithm should be s
rutinized again, whi
h in
ludes optimiz-

ing the basi
 routines beyond the
urrent level of GMP. In Step 2., B-smooth

numbers are to be identi�ed. The number B is important in the a
tual running

time, and its pre
ise value must be set depending on the algorithm used. See

Se
tion 4 below. A new strategy (early abort) is des
ribed in se
tion 7. Also,

Step 3-4
an be merged, as explained in se
tion 5.

3 First strategies for distribution

Step 1-2 and Step 3-5 are easy to distribute over
lusters of workstations. In this

se
tion, we give two distribution strategies.

3.1 Strategy 1

The following is easily implemented when all slaves have the same
omputing

power, making it a parallel implementation.

S1. The master sends to ea
h slave a bat
h of

p

q

�

i

to
ompute.

S2. Ea
h slave
omputes its bat
h and sends the results ba
k to the master.

S3. The master sends all the squareroots to all the slaves, so that ea
h slave

an
ompute any

p

�D that is needed.

S4. The master sends bat
hes of D's to all the slaves. Ea
h slave is responsible

for the resolution of (1) and the fa
torization of the m's. If one is found, it is

sent ba
k to the master whi
h
he
ks the results and restarts a new phase.

S3 needs syn
hronization and
ommuni
ations.

In S4, load balan
ing is not easy, sin
e the results are probabilisti
 in nature

(for whi
h D doesN split?). A probabilisti
 answer is to
ompute beforehand the

average number of splitting D's that
an o

ur. By genus theory, ea
h D with t

prime fa
tors has splitting probability g(�D)=h(�D) with g(�D) = 2

t�1

. This

suggests to build the whole set of dis
riminants D in Step 1.3 and to sort them

with respe
t to (h(�D)=g(�D); D). One
ould also add a
riterion des
ribing

the diÆ
ulty of building the
lass polynomial H

D

(X) later on, maybe using the

height of the polynomial (as evaluated in [4℄). We send to ea
h slave dis
riminants

D

i

1

; D

i

2

; : : : ; D

i

k

in su
h a way that

X

j

g(D

i

j

)=h(D

i

j

) � 5

(the value of 5 is somewhat arbitrary) whi
h
orresponds to the fa
t that on

average, 5 values of D will be splitting values. Of
ourse, this quantity should

depend on the power of the slave.

3.2 Strategy 2

Another approa
h would be to set up a
ompli
ated system in whi
h the master

keeps tra
e of the work of ea
h slave and de
ides what kind of work to do at

some point. This is easily implemented on the side of the slaves: they wait for a

task from the master, do it and send the result ba
k. We now des
ribe a possible

implementation of the master.

There are 6 di�erent tasks whi
h the slaves work on:

T1. Che
k whether the
lass number for a dis
riminant D is good, i.e. is not

too big and does not
ontain a very large prime fa
tor.

T2. Compute a modular square root

p

q

�

i

modulo N .

T3. Try to solve (1) for a given D.

T4. Do trial division for an interval of primes and a bat
h of m's and return

the fa
tored parts. See Se
tion 4.

T5. Do a Fermat test.

T6. Do a Miller-Rabin test.

The master keeps lists of tasks of these six types whi
h at the beginning are

all empty. If all task lists are empty the master
reates new tasks of type T1.

The tasks are sorted a

ording to their priority, T1 having lowest and T6 having

highest priority. If a slave requests a new task the master sele
ts from all available

tasks one with the highest priority and passes it to this slave. A
ompleted task

will
reate a varying number of new task, e.g. a
omputed square root (T2) may

reate many tasks of type T3 whilst a Fermat test (T5) will only on su

ess

reate a task of type T6. If a
ertain number of tasks T6 for the same integer

are su

essful one redu
tion step is �nished and pending tasks are
an
elled.

4 An optimized test for the divisibility by small primes

Let us �rst analyze the e�e
t of trial division on the number of pseudo-primality

tests (the most time
onsuming part of our implementation). Suppose we do

trial division up to B on a number N = fR where f is only divisible by primes

� B and R only divisible by primes > B. Let us assume that logB �

3

p

logN , a

ondition whi
h is almost always satis�ed in pra
ti
e. Let p

max

(n) be the largest

prime divisor of n. One
an
ombine the prime number theorem with Rankin's

tri
k and Mertens's theorem [14, 9.1.5 and 9.1.8℄ and related fa
ts to investigate

the sums

s =

X

f<x

p

max

(f)<B

�(x=f)

l =

X

f<x

p

max

(f)<B

log(f)�(x=f)

where �(x)
ounts the number of primes below x. Assuming logB �

3

p

logx, we

�nd them to be

s =

x exp(
)

�

log(B) +O(1)

�

log(x)

l =

x exp(
)

�

log(B)

2

+O(logB)

�

log(x)

;

where
 is Eulers
onstant. Sin
e s
ounts the number of N < x for whi
h R

is prime, while l is the sum of log(f) over su
h N , one
on
ludes that for a

randomly
hosen N 2 [(1 � �)x; x℄ with a �xed positive � < 1 and for x ! 1,

z ! 1 subje
t to logB �

3

p

logx, the probability that R is prime tends to

exp(
) log(B)= log(N) while the expe
tation value of log(l) is log(B)+O(1). By

this heuristi
 argument, one expe
ts the number of pseudo-primality tests for a

redu
tion of �xed size to be proportional to (logB)

�2

.

We now des
ribe how to perform the trial division in Step 2 more eÆ
iently

by doing it on many numbers simultaneously. This is essentially a simpli�
ation

of the algorithm in [3℄. Let N be a (pseudo)prime for whi
h we want to do a

redu
tion step and let m

1

; : : : ;m

t

be the numbers
omputed in Step 2 (we may

hoose t of order

logN

2 logB

). For simpli
ity we assume that t = 2

u

is a power of two.

The following algorithm strips the primes up to B from the numbers m

i

:

1. Build the produ
t P =

Q

p�B;pprime

p using a binary tree. Unless the bound

B is
hanged this has to be done only on
e.

2. Compute the produ
t M =

Q

i

m

i

as follows: Set m

(0)

i

= m

i

and for a =

1; : : : ; u su

essively
ompute m

(a)

i

= m

(a�1)

2i�1

m

(a�1)

2i

, 1 � i � 2

u�a

. Set

M = m

(u)

1

.

3. Compute

~

M = P modM and set ~m

1

=

~

M .

4. Compute ~m

i

= P mod m

i

as follows: For a = u; : : : ; 1
ompute ~m

(a�1)

2i�1

=

~m

(a)

i

mod m

(a�1)

2i�1

and ~m

(a�1)

2i

= ~m

(a)

i

mod m

(a�1)

2i

, 1 � i � 2

u�a

. Set ~m

i

=

~m

(0)

i

.

5. For 1 � i � t repla
e repeatedly ~m

i

by g
d(m

i

; ~m

i

) and m

i

by

m

i

~m

i

until

~m

i

= 1.

Remarks:

Note that for P < M we
an save some of the top level
omputations and the

appli
ation of the algorithm be
omes equivalent to several appli
ations with a

smaller u, grouping the m

i

appropriately. So we assume that u is
hosen su
h

that P > M holds.

If we store the partial produ
ts

P

(i)

=

Y

p�

B

2

i

;pprime

p

whi
h are
omputed during the pre
omputation we
an de
rease the trial division

bound by powers of 2 with no extra e�ort.

Step 5
an be improved e. g. by repla
ing ~m

i

by g
d(m

i

; ~m

i

2

) in the iteration.

We now analyze the
ost of the algorithm. Let M(n) denote the
ost of a

multipli
ation of two numbers of size exp(n). We assume that the FFT is used

and set M(n) = O(n(log n)

1+�

). The �rst step is a pre
omputation whose
ost

is O(B(logB)

2

). The
ost for the se
ond step is

u�1

X

k=0

2

u�1�k

M(2

k

logN) = O(u2

u

log(N)(log(2

u

logN))

1+�

)

sin
e all m

i

are of size N . In the fourth step the operation
ount is the same

ex
ept that an n � n-multipli
ation is repla
ed by an 2n : n-division. Sin
e the

latter is asymptoti
ally as fast as the former the
ost for step 4 is the same as for

step 2. Sin
e P � exp(B) the
ost of the third step is O(B(log(2

u

logN))

1+�

).

The last step as des
ribed above has
omplexity O(2

u

(logN)

2

(log logN)

2+�

)

sin
e the iteration ends after at most log

2

N steps ea
h
onsisting of a division

and a g
d. This
ould be improved by modifying this step but we do not need it

here. Note also that in pra
ti
e this step
onsists mainly of the �rst g
d(m

i

; ~m

i

),

whi
h with high probability is very small, and the number of iterations also is

very small.

Assuming 2

u

< logN and negle
ting log log-terms the time spent in pseudo-

primality tests is O(

(logN)

3

logB

) for a redu
tion of size logB whereas the time for

trial division is O(B + (logN)

3

). So it is optimal to
hoose B = O((logN)

3

)

whi
h also implies that the
ost for the pre
omputation
an be negle
ted.

Some remarks about storage and parallelization:

The algorithm above needs a lot of memory; most of it at the end of the

omputation of P . To redu
e the memory requirement we may
ompute partial

produ
ts P

j

of the primes below B whose produ
t is P and modify step 3 into

omputing the residues P

j

mod M and the modular produ
t of these residues.

For this to be eÆ
ient the partial produ
ts should be larger than M .

For a distributed implementation we propose to split P into as many pie
es

as slaves are present. Ea
h slave exe
utes steps 2-4 of the algorithm for its own

P

j

and passes at the end g
d(m

i

; ~m

i

) = g
d(m

i

; P

j

) to the master. The master

assembles these informations and exe
utes step 5 whi
h in pra
ti
e is very fast.

For the number 10

9999

+ 33603, the bound B was set to 2

32

.

5 Computing roots of the Hilbert polynomial modulo p

The run-down sequen
e
ontains, among other things, a list of pairs (p;D), where

p is a pseudo-prime and where it is expe
ted that an ellipti

urve with
omplex

multipli
ation by the ring O

K

of integers in K = Q(

p

�D)
an be used to derive

the primality of p from the primality of some smaller number. It is ne
essary to

ompute an element j

p

of F

p

whi
h is the j-invariant of an ellipti

urve over F

p

with
omplex multipli
ation by O

K

.

We outline the method whi
h was used to perform this step for the run-

down sequen
e of 10

9999

+ 33603. As in [9℄, the idea is to split this task into

several steps, ea
h one involving the determination of the modular solution of

an equation of degree `

i

, where the `

i

are the prime fa
tors of the
lass number

h of K. One di�eren
e is that [9℄ tries to
ompute a sequen
e of polynomials

whi
h de�ne a sequen
e of intermediate �elds terminating in the Hilbert
lass

�eld L of K. By
ontrast, the implementation whi
h was used for 10

9999

+33603

onstru
ts methods to redu
e elements x of the intermediate �elds modulo an

appropriate prime ideal over p, in
reasing the sub�eld in ea
h step. The element

x is given by
oating point approximations to its
onjugate algebrai
 numbers.

Thus, the sequen
e of intermediate �elds o

urs in both methods but otherwise

the language used is somewhat di�erent, making it diÆ
ult to explain to what

extent the methods are similar. Sin
e the available spa
e is not suÆ
ient for a

areful des
ription of the new method, we give a short example explaining how

it works in the
ase p = 479, D = 335.

The program
hooses the modular invariant x = x

13

from [2, 2.7.1℄ and a

pre
ision of 32 bit is suÆ
ient for the
oating point
al
ulations. The
lass group

of K, and therefore Gal(L=K), is
y
li
 of order 18. The program has sele
ted a

generator � of the Galois group, and has
omputed the
omplex numbers �

i

(x).

It has then de
ided to
hoose the prime ideal p

o

� O

K

su
h that

(a+ b

p

�D) mod p

o

=

1

2

�

�

[2a℄ + 12

�

2b

p

D

��

mod p

�

; (2)

where

p

D = 18:30300521772312668 is the positive square root of D, the subex-

pressions in square bra
kets are in real life
oating point numbers whi
h will

be rounded to nearest integers, and the fa
tor 12 in the se
ond summand is of

ourse a square root of �D mod p.

The Hilbert
lass �eld has unique sub�elds L

1

and L

2

of degrees 2 and 3 over

K. The program knows that the genus �eld L

1

, whi
h is the largest sub�eld of

L whi
h is Abelian over Q, is given by L

1

= K(

p

5). It de
ides to work with the

prime ideal p

1

� O

L

1

su
h that, for ea
h element z of L

1

given by a
omplex

oating point approximation to z and �(z), we have

z mod p

1

=

1

2

�

�

(z + �(z)

�

mod p

o

+ 196

�

(z � �(z))

p

5 mod p

o

�

�

; (3)

where

p

5 = 2:23606798 and the fa
tor 196 in the se
ond summand is of
ourse

a modular square root of 1=5 mod p. The redu
tions modulo p

o

o

uring in this

formula are
omputed by the program using (2).

It is more diÆ
ult to des
ribe a prime ideal p

2

� O

L

2

with p

2

\ O

K

= p

o

in

a way whi
h is suitable for
al
ulations. The program
onsiders

x

2

=

5

X

i=0

�

3i

(x);

whi
h is an algebrai
 integer. We have

x

2

= �60:2484307+ 78:0404771

p

�1

�(x

2

) = �14:7805113� 15:4588718

p

�1

�

2

(x

2

) = �10:4710580+ 1:47891293

p

�1:

Note that �

i

(x

2

) depends only on i mod 3. The program
omputes a
omplex

oating point approximation to the minimal polynomial of x

2

over K and �nds,

using (2) to redu
e polynomial
oeÆ
ients modulo p

o

, that this polynomial is

ongruent to T

3

+283T

2

+226T +108 modulo p

o

. It �nds that 341, 395 and 418

are the roots of this polynomial modulo p and de
ides to work with the prime

ideal p

2

� L

2

su
h that x

2

� 341 (mod p

2

). It
omputes
oeÆ
ients v

i

2 F

p

,

0 � i < 3, su
h that

z mod p

2

=

2

X

i=0

v

i

�

�

2

X

j=0

�

i+j

(x

2

)�

j

(z)

�

mod p

o

�

; (4)

where in pra
ti
e the redu
tion mod p

o

is
arried out using (2). For this to

be possible, it is ne
essary that x

2

generates a normal basis of O

L

2

over O

K

after lo
alisation at p

o

. The program will abort if this assumption fails. This

does not happen in this example, nor did it ever happen during the
al
ulations

for 10

9999

+ 33603. But it should be possible to
onstru
t examples of failure

of the program, although it is very unlikely for this to happen in pra
ti
e. In

order to determine the
oeÆ
ients of (4), it is also ne
essary that the modular

roots �

i

of the minimal polynomial have been ordered in su
h a way that �

i

=

�

i

(x

2

) mod p

2

. The
hoi
e of �

0

is of
ourse free, sin
e a di�erent �

0

only gives a

di�erent p

2

. But the order of the other modular zeros is no longer free and the

program has to
ompute them in the
orre
t order. We will des
ribe in a di�erent

paper how this is done without a major in
rease of the required pre
ision, where

of
ourse the order of the
y
li
 extension will often be larger than 3. On
e the �

i

have been
omputed in the
orre
t order, it is a linear algebra task to determine

the v

i

su
h that (4) holds for z = �

k

(x

2

), 0 � k < 3. In the given example, the

result is

v

0

= 417 v

1

= 170 v

2

= 393:

The
ompositum L

3

= L

1

L

2

has degree 6 overK, and there is a unique prime

ideal p

3

� O

L

3

su
h that p

3

\ O

L

i

= p

i

for i 2 f1; 2g. If an element z of O

L

3

is

given by
omplex
oating point approximations to �

i

(z), where 0 � i < 6, then

z mod p

3

=

1

2

�

z

o

mod p

2

+ 196(z

1

mod p

o

)

�

; (5)

where the z

0;1

2 L

2

are given by

�

i

(z

0

) = �

i

(z) + �

i+3

(z)

�

i

(z

1

) =

p

5

�

�

i

(z)� �

i+3

(z)

�

;

and z

i

mod p

2

is
omputed by (4).

The program now
omputes a
omplex
oating point approximation to �

i

(P)

for 0 � i < 6, where P is the minimal polynomial of x over L

3

. Using (5), it

�nds P to be
ongruent to T

3

+ 151T

2

+ 434T + 346 modulo p

3

. The largest

rounding error was 0:000488281. One modular root of P is 153. This means that

there exists a prime ideal p dividing p in O

L

su
h that x � 153 mod p. From x,

one
an
ompute the j-invariant of an ellipti

urve with
omplex multipli
ation

by O

K

using the formula

j =

(x

4

+ 7x

3

+ 20x

2

+ 19x+ 1)

3

(x

2

+ 5x+ 13)

x

:

With x = 153 mod 479, this gives j = 307 mod 479.

Cal
ulating the minimal polynomial of x over K and redu
ing it modulo p

o

,

using (2), turns out to be impossible with 32 bit pre
ision. If 48 bits are used,

the largest rounding error is 0:0195312. Of
ourse, this in
rease of the required

pre
ision is due to the fa
t that the theory of the genus �eld was not used.

The program used for 10

9999

+33603 was a development version, with many

possible optimisations not yet implemented. For instan
e, it is
lear from the

above example that not all Weber
lass invariants were implemented.

6 Use of the Fastest Fourier Transform in the West

For most of the
al
ulations for 10

9999

+ 33603, we used integer multipli
ation

using the Fastest Fourier Transform in the West (see http://www.fftw.org

and [7, 8℄). To square a number of size 10

9999

, it was broken into 1661 digits of

size 20 bit. These digits were inserted into an array of 3600 double variables,

whi
h was then transformed using the fun
tions provided by libfftw3.a, the

result was squared and transformed ba
k also using libfftw3.a. The same thing

an be done for a produ
t of two di�erent fa
tors, and if a fa
tor o

urs often

then its Fourier transform may be pre
al
ulated and stored to redu
e the time

for a multipli
ation by this fa
tor to the time for a squaring. It is easy to see

that this
hoi
e of parameters does not guarantee exa
t results. Therefore, we

also
al
ulated a 32-bit
he
ksum. If the
he
ksum test indi
ates an error, the

multipli
ation is re
al
ulated using the GMP fun
tion. In the
ase of the p10000,

these re
al
ulations appear to be rare, if they o

ur at all. Of
ourse, even the

he
ksum does not make this multipli
ation method rigorous.

We used this fast multipli
ation both for primality tests and for the
al
ula-

tion of modular square roots in the
al
ulation of the run down sequen
e. While

a modular square root
an be
he
ked, and the
al
ulation repeated if ne
essary,

there appears to be no way to dete
t a false negative result of a Miller-Rabin

test. Therefore, by using this method we a

epted a small but probably positive

probability of a prime number being de
lared
omposite by mistake.

The following ben
hmark results were obtained on an 800-MHz Athlon, using

version 4.1.1 of libgmp.a, version 3.0 of libfftw3.a, and 10

9999

+33603 as the

input number:

{ One
all to the GMP fun
tion mpz probab prime p with se
ond argument

equal to 1, whi
h means that one Fermat and one Rabin-Miller pseudo-

primality test is
arried out: 317 se
onds user time.

{ A Rabin-Miller test using 2 as base, and using Montgomery modular multi-

pli
ation [10℄ and the GMP fun
tions: 149 se
onds.

{ A similar program, but using libfftw3.a for multipli
ations: 56 se
onds.

The advantage of using libfftw3.a
ould perhaps be redu
ed if GMP allowed

for a way to pre
al
ulate Fourier and Toom-Cook transforms of frequently used

fa
tors. It is diÆ
ult to predi
t whether this is suÆ
ient to a
hieve the speed

of a multipli
ation subroutine whi
h is optimized for speed at the expense of

produ
ing sometimes (albeit rarely) a false result.

7 The early abort strategy

The idea behind this strategy is to for
e the new
andidateN

0

in Step 2. to satisfy

N=N

0

� 2

Æ

for some (small) integer value Æ = Æ(N), with the hope to de
rease

the number of steps and thereby the number of proving steps. Of
ourse, this

might slow down the sear
h forN

0

a little bit and some optimization is ne
essary.

Yet it appeared
riti
al when used in the primality proof of 10

9999

+33603, when

it was �rst implemented and used.

In FM's implementation, the following value for the lower bound on Æ(N) =

b(N)� b(N

0

) was used, where b(x) denotes the number of bits of integer x:

b(N) � 1000 2500 5000 7500 10000 150001

Æ(N) 0 5 10 15 20 25 30

The following data were gathered (with the mpi program to be des
ribed). The

�rst
olumn
ontains the time without EAS, the se
ond with. The lineH

D

stands

for the time needed to
ompute the polynomials representing the
lass �eld, as

in [9℄; CZ is the time needed for the spe
ial variant of the Cantor-Zassenhaus

algorithm using a tri
k of Atkin (using roots of unity modulo N); the number of

steps in the downrun is then given, and the last lines
ontain the maximal value

for h, before the mean value.

Number 10

2999

+ 1887 10

3999

+ 4771 10

4999

+ 22669

Steps 1-2 81 h 58 h 280 h 164 h 716 h 476 h

Steps 3-5 26 h 26 h 76 h 86 h 209 h 261 h

H

D

1680 s 4880 s 4497 s 7317 s 3 h 5 h

CZ 22 h 22 h 63 h 75 h 179 h 234 h

steps 436 358 597 437 734 512

maxh 1968 2336 2184 2432 3400 4000

h 86 116 120 164 152 272

The restri
tion one puts on m and thus on D tends to make D and h larger

than in the plain
ase. This
an have an impa
t on the time for
omputing H

D

,

and also on the proving part. In the �rst phase, fewer N

0

are ever tested for

probable primality, though more must be produ
ed. EAS indeed de
reases the

number of steps, whi
h tends to de
rease the total time for the 1st phase, the

2nd being
onstant or in
reasing a little. In any
ase, a strategy yielding a fa
tor

of 2 in the total running time is
ertainly worthwhile.

8 Some large primality proofs

8.1 The �rst re
ords of fastECPP

We begin with some data from FM's implementation that uses MPI on top of his

e
pp program, and implementing Strategy 1. All
omputations were done on a

luster of 6 bipro
essor Xeon at 2.66 MHz. We took the following numbers from

the tables of P. Leyland

?

. These are numbers of the form x

y

+ y

x

. WCT stands

for wall
lo
k time and in
ludes the time wasted by the distribution pro
ess

(waiting time of the slaves, typi
ally). The line \Che
king" indi
ates the time

needed to
he
k the
erti�
ate. Note that the time for this should be

~

O((logN)

3

)

and this is
ompatible with the timings given.

All numbers were proven in 2003. The \when" line indi
ates the elapsed

human dates in big endian notation.

The �rst number was dealt with an experimental program that turned out

to spend too mu
h time in the

p

�q

�

omputations. As a matter of fa
t, a value

of r = 4000 was used. This led to pro
eed by
hunks of 400 squareroots from

a total of 4000, adding 400 more if this was not enough. All dis
riminants with

D � 10

8

, h � 6000 (later in
reased to 8000) and the largest prime fa
tor of h

?

http://resear
h.mi
rosoft.
om/~pleyland/primes/xyyx.htm

x 2177 2589 2551 2438 3571

y 580 218 622 1995 648

#dd 6016 6055 7127 8046 10041

when 0513-0604 0606-0617 0618-0714 0715-0901 1001-1220

steps 801 736 965 1128 947

Steps 1-2 (CPU) 164 days 103 days 235 days 355 days 531 days

Steps 1-2 (WCT) 164� 1:2 103� 1:1 235 � 1:3 355� 1:13 531� 1:2

p

�q

�

81 days 30 days 74 days 138 days 204 days

Steps 3-5 28 days 21 days 55 days 77 days 138 days

H

D

2951 se
 1686 se
 18451 se
 22552 se
 20285 se

CZ 26 days 20 days 50 days 69 days 124 days

Che
king 25 hours 22 hours 45 hours 70 hours 85 hours

maxh 1980 2080 3312 3640 6176

h 121 103 190 209 409

maxD 7,749,263 19,076,479 52,396,648 87,949,348 95,895,480

Table 1. Some large numbers proven with fastECPP.

not ex
eeding 200 were de
ided to be usable. A look at
olumn 3
ompared to 4

justi�es the
laim of
omplexity of

~

O((logN)

4

). The 8046dd number was done

after the annou
ement of the proof of 10

9999

+33603 (see next se
tion), and EAS

was not used for this. The 10041dd number was �nished on De
ember 20, 2003,

well after the one to be des
ribed in the next se
tion. This was the �rst use of

EAS for this implementation.

8.2 A new frontier

Let us turn our attention to the barrier-breaking number 10

9999

+33603, whose

primality was veri�ed by JF, TK with the help of TW.

The
al
ulations were done using two programs, a pvm program produ
ing

the sequen
e of dis
riminants, group orders and their prime number fa
torization

(
alled a run down sequen
e in what follows), and the se
ond program
al
ulating

the ellipti

urves.

The
al
ulation of a run down sequen
e was started on July 17, 2003 on

six 900MHz PIII CPUs. On July 21, the
omputation was moved to 12 nodes

of parnass2, the LINUX
luster built at the S
ienti�
 Computing Institute in

Bonn. 4 of these nodes had two 800MHz CPUs, the other nodes were double

PII/400MHz
omputers. At 8550 digits (on July 30) and 8286 digits (on July

31) we interrupted these
al
ulations to repla
e the program by a faster version,

using the Fastest Fourier Transform in the West in the way explained above.

This improvement resulted by a speedup by a fa
tor of about 2. On August 5,

we rea
hed 6574 digits. On August 8, we stopped the program at 3256 digits.

The �nal
al
ulations for the run down sequen
e took about 8 hours on eight

800MHz CPUs. The total CPU time to produ
e the run down (i.e., without

al
ulating the ellipti

urves) was estimated to 234.5 days on a 1GHz Pentium.

The CPU time spent for the a
tual
erti�
ates is more diÆ
ult to estimate,

sin
e the program for this step was still under development when the
al
ulation

of the run down sequen
e started, and sin
e these
al
ulations were done in

heterogeneous environment. We estimate that it would have taken less than 140

days on a single 800MHz Athlon CPU.

The
erti�
ate is available as:

ftp://ftp.math.uni-bonn.de:pub/people/franke/p10000.
ert

9 Con
lusions

We have des
ribed some new ideas to speed up pra
ti
al primality proving of

large numbers using fastECPP. These ideas need more testing and improvements.

We hope that this will serve as ben
hmarks and motivations for the study of other

primality proving algorithms as well.

A
knowledgments. Thanks to A. Enge for some useful dis
ussions about this

work and for his
areful reading of the manus
ript. The authors of the
erti�
ate

for 10

9999

+33603 would like to thank the S
ienti�
 Computing Institute at Bonn

University for providing the parallel
omputer whi
h produ
ed the downrun. One

of us (J. F.) would also like to thank G. Zumbus
h for pointing out the existen
e

of lib�tw3.a to him. Thanks also to D. Bernstein for sending us his remarks on

a preliminary version and to the referees that helped
larify some points.

Referen
es

1. M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Preprint; available at

http://www.
se.iitk.a
.in/primality.pdf, August 2002.

2. A. O. L. Atkin and F. Morain. Ellipti

urves and primality proving. Math. Comp.,

61(203):29{68, July 1993.

3. D. J. Bernstein. How to �nd small fa
tors of integers. June 2002. Available at

http://
r.yp.to/papers.html.

4. A. Enge and F. Morain. Comparing invariants for
lass �elds of imaginary

quadrati
 �elds. In C. Fieker and D. R. Kohel, editors, Algorithmi
 Number The-

ory, volume 2369 of Le
ture Notes in Comput. S
i., pages 252{266. Springer-Verlag,

2002. 5th International Symposium, ANTS-V, Sydney, Australia, July 2002, Pro-

eedings.

5. A. Enge and F. Morain. Fast de
omposition of polynomials with known Galois

group. In M. Fossorier, T. H�holdt, and A. Poli, editors, Applied Algebra, Al-

gebrai
 Algorithms and Error-Corre
ting Codes, volume 2643 of Le
ture Notes in

Comput. S
i., pages 254{264. Springer-Verlag, 2003. 15th International Sympo-

sium, AAECC-15, Toulouse, Fran
e, May 2003, Pro
eedings.

6. A. Enge and R. S
hertz. Constru
ting ellipti

urves from modular
urves of

positive genus. Soumis, 2001.

7. Matteo Frigo and Steven G. Johnson. The fastest Fourier transform in the

west. Te
hni
al Report MIT-LCS-TR-728, Massa
husetts Institute of Te
hnology,

September 1997.

8. Matteo Frigo and Steven G. Johnson. FFTW: An adaptive software ar
hite
ture for

the FFT. In Pro
. 1998 IEEE Intl. Conf. A
ousti
s Spee
h and Signal Pro
essing,

volume 3, pages 1381{1384. IEEE, 1998.

9. G. Hanrot and F. Morain. Solvability by radi
als from an algorithmi
 point of

view. In B. Mourrain, editor, Symboli
 and algebrai

omputation, pages 175{182.

ACM, 2001. Pro
eedings ISSAC'2001, London, Ontario.

10. Peter L. Montgomery. Modular multipli
ation without trial division. Math. Comp.,

44:519{521, 1985.

11. F. Morain. Primality proving using ellipti

urves: an update. In J. P. Buhler,

editor, Algorithmi
 Number Theory, volume 1423 of Le
ture Notes in Comput. S
i.,

pages 111{127. Springer-Verlag, 1998. Third International Symposium, ANTS-III,

Portland, Oregon, june 1998, Pro
eedings.

12. F. Morain. Computing the
ardinality of CM ellipti

urves using torsion points.

Submitted, O
tober 2002.

13. F. Morain. Implementing the asymptoti
ally fast version of the el-

lipti

urve primality proving algorithm. June 2003. Available at

http://www.lix.polyte
hnique.fr/Labo/Fran
ois.Morain/.

14. M. Ram Murty. Problems in Analyti
 Number Theory, volume 206 of Graduate

Texts in Mathemati
s. Springer-Verlag, 2001.

