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Abstrat. The ellipti urve primality proving algorithm is one of the

fastest pratial algorithms for proving the primality of large numbers.

Its fastest version, fastECPP, runs in heuristi time

~

O((logN)

4

). The aim

of this artile is to desribe new ideas used when dealing with very large

numbers. We illustrate these with the primality proofs of some numbers

with more than 10,000 deimal digits.

1 Introdution

The work by Agrawal, Kayal and Saxena [1℄ on the existene of a deterministi

polynomial time algorithm for deiding primality stimulated the �eld of primality

proving at large. As a result, this aused the study and implementation of a fast

version of the ellipti urve primality proving algorithm (ECPP). We refer to [2℄

for a presentation of the method and [13℄ for the desription of the faster version,

originally due to J. O. Shallit. Whereas ECPP has a heuristi running time of

~

O((logN)

5

) for proving the primality of N , the new algorithm has omplexity

~

O((logN)

4

). This new approah enabled one of us (FM), to prove the primality

of numbers with more than 7; 000 deimal digits.

Independently, three of us (JF, TK and TW) started to write a new imple-

mentation of ECPP in November 2002 whih was available by Deember 2002,

and this was improved step by step until the team working in Bonn ame up with

a set of programs used to prove the primality of 10

9999

+ 33603 on August 19,

2003.

The two teams deided after this to exhange ideas and omparisons, forming

the present artile that onentrates on issues regarding distributed implemen-

tations of fastECPP and its use in the proving of very large numbers. The theory

of fastECPP will be desribed more fully in the �nal version of [13℄.

Our artile is organized as follows. Setion 2 provides a short desription

of fastECPP. Setion 3 gives two strategies for distributing the omputations.

Setion 4 deals with a faster way of looking for small prime fators of a bunh
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of numbers at the same time. This part has an independent interest and we

think that it ould be useful in other algorithms. In Setion 5, an alternative

to the method of [9, 5℄ for the root �nding in the proving steps of ECPP is

desribed. Setion 6 deals with the use of fast multipliation beyond the GMP

level in order to speed up all basi multipliations. In Setion 7, we desribe an

early abort strategy for limiting the number of steps in ECPP. We onlude with

timings on primality proofs for some very large numbers, obtained with either

implementation.

2 The fast version of ECPP

Ordinary ECPP is desribed in [2℄ and fastECPP in [13℄. We sketh the desrip-

tion of the latter, assuming the reader has some familiarity with the algorithm.

We want to prove that N is prime. The algorithm builds a so-alled downrun

that is a sequene of dereasing probable primes N

0

; N

1

; : : : ; N

k

suh that N

0

=

N and the primality of eah N

i

is suÆient to prove that of N

i�1

. Theory tells

us that we should antiipate a length of k = O(logN) for the sequene.

If q is an odd prime, put q

�

= (�1)

(q�1)=2

q; add to this speial primes

�4;�8; 8 as explained in [13℄.

The algorithm runs as follows:

[Step 1.℄

1.1. Find the r smallest primes q

�

suh that

�

q

�

N

�

= 1, yielding Q = fq

�

1

, q

�

2

,

: : :, q

�

r

g.

1.2. Compute all

p

q

�

mod N for q

�

2 Q.

1.3. Try all subsets of distint elements of S = fq

�

i

1

; q

�

i

2

; : : : ; q

�

i

s

g of Q for

whih �D =

Q

q

�

2S

q

�

< 0, until a solution of the equation

4N = U

2

+DV

2

(1)

in rational integers U and V is found, whih involves omputing

p

�D mod N

and use Cornahia's algorithm. When this is the ase, let fU

1

; : : : U

w

g be the

di�erent U -values (we have at most w = 6 and generally w = 2).

[Step 2.℄ For all U

i

's, ompute m

i

= N + 1 � U

i

; if none of these numbers an

be written as N

0

with  a B-smooth number and N

0

a probable prime, go to

Step 1. If there is a good one, all it m.

[Step 3.℄ Build an ellipti urve E over Q having omplex multipliation by the

ring of integers of K = Q(

p

�D).

[Step 4.℄ Redue E modulo N to get a urve E of ardinality m.

[Step 5.℄ Find P on E suh that [N

0

℄P = O

E

. If this annot be done, then N is

omposite, otherwise, it is prime.

[Step 6.℄ Set N = N

0

and go bak to Step 1.



Note that what di�erentiates ECPP from its fast version is Step 1. In Step

1.3, we only onsider fundamental disriminants, as a urve with CM by a non-

prinipal order has the same ardinality as one with CM by the prinipal order.

ECPP is a Las Vegas type algorithm. Its running time annot be proved

rigorously, but only in a heuristi way using standard hypotheses in number

theory. When given a number N , it an answer one of three things: \N is prime",

\N is omposite" or \I do not know". In the �rst two of these ases, the answer

is de�nitely orret and there is an aompanying proof that an be veri�ed in

polynomial time. The problem is in showing that the third ase happens with

very low probability.

In real life, programs implementing (fast)ECPP should follow this philosophy

and never return something wrong. When the third answer is returned, this

orresponds very frequently to the fat that the program ran out of preomputed

data (suh as disriminants, or lass polynomials) or used too small fatorisation

parameters in Step 2. The programmer has to orret this and start again with

the number. We never saw a number resisting inde�nitely, though we annot

prove none exists.

All algorithms and triks [11, 12℄ developed over the years for ECPP apply

mutatis mutandis to the new version. This inludes the invariants developed in

[6, 4℄ and the Galois approah for solving the equation H

D

[u℄(X) modulo p (see

[9, 5℄) needed in Step 3, whih favors smooth lass numbers.

When dealing with very large numbers (10000 deimal digit numbers, say),

every part of the algorithm should be srutinized again, whih inludes optimiz-

ing the basi routines beyond the urrent level of GMP. In Step 2., B-smooth

numbers are to be identi�ed. The number B is important in the atual running

time, and its preise value must be set depending on the algorithm used. See

Setion 4 below. A new strategy (early abort) is desribed in setion 7. Also,

Step 3-4 an be merged, as explained in setion 5.

3 First strategies for distribution

Step 1-2 and Step 3-5 are easy to distribute over lusters of workstations. In this

setion, we give two distribution strategies.

3.1 Strategy 1

The following is easily implemented when all slaves have the same omputing

power, making it a parallel implementation.

S1. The master sends to eah slave a bath of

p

q

�

i

to ompute.

S2. Eah slave omputes its bath and sends the results bak to the master.

S3. The master sends all the squareroots to all the slaves, so that eah slave

an ompute any

p

�D that is needed.

S4. The master sends bathes of D's to all the slaves. Eah slave is responsible

for the resolution of (1) and the fatorization of the m's. If one is found, it is

sent bak to the master whih heks the results and restarts a new phase.



S3 needs synhronization and ommuniations.

In S4, load balaning is not easy, sine the results are probabilisti in nature

(for whih D doesN split?). A probabilisti answer is to ompute beforehand the

average number of splitting D's that an our. By genus theory, eah D with t

prime fators has splitting probability g(�D)=h(�D) with g(�D) = 2

t�1

. This

suggests to build the whole set of disriminants D in Step 1.3 and to sort them

with respet to (h(�D)=g(�D); D). One ould also add a riterion desribing

the diÆulty of building the lass polynomial H

D

(X) later on, maybe using the

height of the polynomial (as evaluated in [4℄). We send to eah slave disriminants

D

i

1

; D

i

2

; : : : ; D

i

k

in suh a way that

X

j

g(D

i

j

)=h(D

i

j

) � 5

(the value of 5 is somewhat arbitrary) whih orresponds to the fat that on

average, 5 values of D will be splitting values. Of ourse, this quantity should

depend on the power of the slave.

3.2 Strategy 2

Another approah would be to set up a ompliated system in whih the master

keeps trae of the work of eah slave and deides what kind of work to do at

some point. This is easily implemented on the side of the slaves: they wait for a

task from the master, do it and send the result bak. We now desribe a possible

implementation of the master.

There are 6 di�erent tasks whih the slaves work on:

T1. Chek whether the lass number for a disriminant D is good, i.e. is not

too big and does not ontain a very large prime fator.

T2. Compute a modular square root

p

q

�

i

modulo N .

T3. Try to solve (1) for a given D.

T4. Do trial division for an interval of primes and a bath of m's and return

the fatored parts. See Setion 4.

T5. Do a Fermat test.

T6. Do a Miller-Rabin test.

The master keeps lists of tasks of these six types whih at the beginning are

all empty. If all task lists are empty the master reates new tasks of type T1.

The tasks are sorted aording to their priority, T1 having lowest and T6 having

highest priority. If a slave requests a new task the master selets from all available

tasks one with the highest priority and passes it to this slave. A ompleted task

will reate a varying number of new task, e.g. a omputed square root (T2) may

reate many tasks of type T3 whilst a Fermat test (T5) will only on suess

reate a task of type T6. If a ertain number of tasks T6 for the same integer

are suessful one redution step is �nished and pending tasks are anelled.



4 An optimized test for the divisibility by small primes

Let us �rst analyze the e�et of trial division on the number of pseudo-primality

tests (the most time onsuming part of our implementation). Suppose we do

trial division up to B on a number N = fR where f is only divisible by primes

� B and R only divisible by primes > B. Let us assume that logB �

3

p

logN , a

ondition whih is almost always satis�ed in pratie. Let p

max

(n) be the largest

prime divisor of n. One an ombine the prime number theorem with Rankin's

trik and Mertens's theorem [14, 9.1.5 and 9.1.8℄ and related fats to investigate

the sums

s =

X

f<x

p

max

(f)<B

�(x=f)

l =

X

f<x

p

max

(f)<B

log(f)�(x=f)

where �(x) ounts the number of primes below x. Assuming logB �

3

p

logx, we

�nd them to be

s =

x exp()

�

log(B) +O(1)

�

log(x)

l =

x exp()

�

log(B)

2

+O(logB)

�

log(x)

;

where  is Eulers onstant. Sine s ounts the number of N < x for whih R

is prime, while l is the sum of log(f) over suh N , one onludes that for a

randomly hosen N 2 [(1 � �)x; x℄ with a �xed positive � < 1 and for x ! 1,

z ! 1 subjet to logB �

3

p

logx, the probability that R is prime tends to

exp() log(B)= log(N) while the expetation value of log(l) is log(B)+O(1). By

this heuristi argument, one expets the number of pseudo-primality tests for a

redution of �xed size to be proportional to (logB)

�2

.

We now desribe how to perform the trial division in Step 2 more eÆiently

by doing it on many numbers simultaneously. This is essentially a simpli�ation

of the algorithm in [3℄. Let N be a (pseudo)prime for whih we want to do a

redution step and let m

1

; : : : ;m

t

be the numbers omputed in Step 2 (we may

hoose t of order

logN

2 logB

). For simpliity we assume that t = 2

u

is a power of two.

The following algorithm strips the primes up to B from the numbers m

i

:

1. Build the produt P =

Q

p�B;pprime

p using a binary tree. Unless the bound

B is hanged this has to be done only one.

2. Compute the produt M =

Q

i

m

i

as follows: Set m

(0)

i

= m

i

and for a =

1; : : : ; u suessively ompute m

(a)

i

= m

(a�1)

2i�1

m

(a�1)

2i

, 1 � i � 2

u�a

. Set

M = m

(u)

1

.

3. Compute

~

M = P modM and set ~m

1

=

~

M .



4. Compute ~m

i

= P mod m

i

as follows: For a = u; : : : ; 1 ompute ~m

(a�1)

2i�1

=

~m

(a)

i

mod m

(a�1)

2i�1

and ~m

(a�1)

2i

= ~m

(a)

i

mod m

(a�1)

2i

, 1 � i � 2

u�a

. Set ~m

i

=

~m

(0)

i

.

5. For 1 � i � t replae repeatedly ~m

i

by gd(m

i

; ~m

i

) and m

i

by

m

i

~m

i

until

~m

i

= 1.

Remarks:

Note that for P < M we an save some of the top level omputations and the

appliation of the algorithm beomes equivalent to several appliations with a

smaller u, grouping the m

i

appropriately. So we assume that u is hosen suh

that P > M holds.

If we store the partial produts

P

(i)

=

Y

p�

B

2

i

;pprime

p

whih are omputed during the preomputation we an derease the trial division

bound by powers of 2 with no extra e�ort.

Step 5 an be improved e. g. by replaing ~m

i

by gd(m

i

; ~m

i

2

) in the iteration.

We now analyze the ost of the algorithm. Let M(n) denote the ost of a

multipliation of two numbers of size exp(n). We assume that the FFT is used

and set M(n) = O(n(log n)

1+�

). The �rst step is a preomputation whose ost

is O(B(logB)

2

). The ost for the seond step is

u�1

X

k=0

2

u�1�k

M(2

k

logN) = O(u2

u

log(N)(log(2

u

logN))

1+�

)

sine all m

i

are of size N . In the fourth step the operation ount is the same

exept that an n � n-multipliation is replaed by an 2n : n-division. Sine the

latter is asymptotially as fast as the former the ost for step 4 is the same as for

step 2. Sine P � exp(B) the ost of the third step is O(B(log(2

u

logN))

1+�

).

The last step as desribed above has omplexity O(2

u

(logN)

2

(log logN)

2+�

)

sine the iteration ends after at most log

2

N steps eah onsisting of a division

and a gd. This ould be improved by modifying this step but we do not need it

here. Note also that in pratie this step onsists mainly of the �rst gd(m

i

; ~m

i

),

whih with high probability is very small, and the number of iterations also is

very small.

Assuming 2

u

< logN and negleting log log-terms the time spent in pseudo-

primality tests is O(

(logN)

3

logB

) for a redution of size logB whereas the time for

trial division is O(B + (logN)

3

). So it is optimal to hoose B = O((logN)

3

)

whih also implies that the ost for the preomputation an be negleted.

Some remarks about storage and parallelization:

The algorithm above needs a lot of memory; most of it at the end of the

omputation of P . To redue the memory requirement we may ompute partial



produts P

j

of the primes below B whose produt is P and modify step 3 into

omputing the residues P

j

mod M and the modular produt of these residues.

For this to be eÆient the partial produts should be larger than M .

For a distributed implementation we propose to split P into as many piees

as slaves are present. Eah slave exeutes steps 2-4 of the algorithm for its own

P

j

and passes at the end gd(m

i

; ~m

i

) = gd(m

i

; P

j

) to the master. The master

assembles these informations and exeutes step 5 whih in pratie is very fast.

For the number 10

9999

+ 33603, the bound B was set to 2

32

.

5 Computing roots of the Hilbert polynomial modulo p

The run-down sequene ontains, among other things, a list of pairs (p;D), where

p is a pseudo-prime and where it is expeted that an ellipti urve with omplex

multipliation by the ring O

K

of integers in K = Q(

p

�D) an be used to derive

the primality of p from the primality of some smaller number. It is neessary to

ompute an element j

p

of F

p

whih is the j-invariant of an ellipti urve over F

p

with omplex multipliation by O

K

.

We outline the method whih was used to perform this step for the run-

down sequene of 10

9999

+ 33603. As in [9℄, the idea is to split this task into

several steps, eah one involving the determination of the modular solution of

an equation of degree `

i

, where the `

i

are the prime fators of the lass number

h of K. One di�erene is that [9℄ tries to ompute a sequene of polynomials

whih de�ne a sequene of intermediate �elds terminating in the Hilbert lass

�eld L of K. By ontrast, the implementation whih was used for 10

9999

+33603

onstruts methods to redue elements x of the intermediate �elds modulo an

appropriate prime ideal over p, inreasing the sub�eld in eah step. The element

x is given by oating point approximations to its onjugate algebrai numbers.

Thus, the sequene of intermediate �elds ours in both methods but otherwise

the language used is somewhat di�erent, making it diÆult to explain to what

extent the methods are similar. Sine the available spae is not suÆient for a

areful desription of the new method, we give a short example explaining how

it works in the ase p = 479, D = 335.

The program hooses the modular invariant x = x

13

from [2, 2.7.1℄ and a

preision of 32 bit is suÆient for the oating point alulations. The lass group

of K, and therefore Gal(L=K), is yli of order 18. The program has seleted a

generator � of the Galois group, and has omputed the omplex numbers �

i

(x).

It has then deided to hoose the prime ideal p

o

� O

K

suh that

(a+ b

p

�D) mod p

o

=

1

2

�

�

[2a℄ + 12

�

2b

p

D

��

mod p

�

; (2)

where

p

D = 18:30300521772312668 is the positive square root of D, the subex-

pressions in square brakets are in real life oating point numbers whih will

be rounded to nearest integers, and the fator 12 in the seond summand is of

ourse a square root of �D mod p.



The Hilbert lass �eld has unique sub�elds L

1

and L

2

of degrees 2 and 3 over

K. The program knows that the genus �eld L

1

, whih is the largest sub�eld of

L whih is Abelian over Q, is given by L

1

= K(

p

5). It deides to work with the

prime ideal p

1

� O

L

1

suh that, for eah element z of L

1

given by a omplex

oating point approximation to z and �(z), we have

z mod p

1

=

1

2

�

�

(z + �(z)

�

mod p

o

+ 196

�

(z � �(z))

p

5 mod p

o

�

�

; (3)

where

p

5 = 2:23606798 and the fator 196 in the seond summand is of ourse

a modular square root of 1=5 mod p. The redutions modulo p

o

ouring in this

formula are omputed by the program using (2).

It is more diÆult to desribe a prime ideal p

2

� O

L

2

with p

2

\ O

K

= p

o

in

a way whih is suitable for alulations. The program onsiders

x

2

=

5

X

i=0

�

3i

(x);

whih is an algebrai integer. We have

x

2

= �60:2484307+ 78:0404771

p

�1

�(x

2

) = �14:7805113� 15:4588718

p

�1

�

2

(x

2

) = �10:4710580+ 1:47891293

p

�1:

Note that �

i

(x

2

) depends only on i mod 3. The program omputes a omplex

oating point approximation to the minimal polynomial of x

2

over K and �nds,

using (2) to redue polynomial oeÆients modulo p

o

, that this polynomial is

ongruent to T

3

+283T

2

+226T +108 modulo p

o

. It �nds that 341, 395 and 418

are the roots of this polynomial modulo p and deides to work with the prime

ideal p

2

� L

2

suh that x

2

� 341 (mod p

2

). It omputes oeÆients v

i

2 F

p

,

0 � i < 3, suh that

z mod p

2

=

2

X

i=0

v

i

�

�

2

X

j=0

�

i+j

(x

2

)�

j

(z)

�

mod p

o

�

; (4)

where in pratie the redution mod p

o

is arried out using (2). For this to

be possible, it is neessary that x

2

generates a normal basis of O

L

2

over O

K

after loalisation at p

o

. The program will abort if this assumption fails. This

does not happen in this example, nor did it ever happen during the alulations

for 10

9999

+ 33603. But it should be possible to onstrut examples of failure

of the program, although it is very unlikely for this to happen in pratie. In

order to determine the oeÆients of (4), it is also neessary that the modular

roots �

i

of the minimal polynomial have been ordered in suh a way that �

i

=

�

i

(x

2

) mod p

2

. The hoie of �

0

is of ourse free, sine a di�erent �

0

only gives a

di�erent p

2

. But the order of the other modular zeros is no longer free and the

program has to ompute them in the orret order. We will desribe in a di�erent



paper how this is done without a major inrease of the required preision, where

of ourse the order of the yli extension will often be larger than 3. One the �

i

have been omputed in the orret order, it is a linear algebra task to determine

the v

i

suh that (4) holds for z = �

k

(x

2

), 0 � k < 3. In the given example, the

result is

v

0

= 417 v

1

= 170 v

2

= 393:

The ompositum L

3

= L

1

L

2

has degree 6 overK, and there is a unique prime

ideal p

3

� O

L

3

suh that p

3

\ O

L

i

= p

i

for i 2 f1; 2g. If an element z of O

L

3

is

given by omplex oating point approximations to �

i

(z), where 0 � i < 6, then

z mod p

3

=

1

2

�

z

o

mod p

2

+ 196(z

1

mod p

o

)

�

; (5)

where the z

0;1

2 L

2

are given by

�

i

(z

0

) = �

i

(z) + �

i+3

(z)

�

i

(z

1

) =

p

5

�

�

i

(z)� �

i+3

(z)

�

;

and z

i

mod p

2

is omputed by (4).

The program now omputes a omplex oating point approximation to �

i

(P )

for 0 � i < 6, where P is the minimal polynomial of x over L

3

. Using (5), it

�nds P to be ongruent to T

3

+ 151T

2

+ 434T + 346 modulo p

3

. The largest

rounding error was 0:000488281. One modular root of P is 153. This means that

there exists a prime ideal p dividing p in O

L

suh that x � 153 mod p. From x,

one an ompute the j-invariant of an ellipti urve with omplex multipliation

by O

K

using the formula

j =

(x

4

+ 7x

3

+ 20x

2

+ 19x+ 1)

3

(x

2

+ 5x+ 13)

x

:

With x = 153 mod 479, this gives j = 307 mod 479.

Calulating the minimal polynomial of x over K and reduing it modulo p

o

,

using (2), turns out to be impossible with 32 bit preision. If 48 bits are used,

the largest rounding error is 0:0195312. Of ourse, this inrease of the required

preision is due to the fat that the theory of the genus �eld was not used.

The program used for 10

9999

+33603 was a development version, with many

possible optimisations not yet implemented. For instane, it is lear from the

above example that not all Weber lass invariants were implemented.

6 Use of the Fastest Fourier Transform in the West

For most of the alulations for 10

9999

+ 33603, we used integer multipliation

using the Fastest Fourier Transform in the West (see http://www.fftw.org

and [7, 8℄). To square a number of size 10

9999

, it was broken into 1661 digits of

size 20 bit. These digits were inserted into an array of 3600 double variables,

whih was then transformed using the funtions provided by libfftw3.a, the



result was squared and transformed bak also using libfftw3.a. The same thing

an be done for a produt of two di�erent fators, and if a fator ours often

then its Fourier transform may be prealulated and stored to redue the time

for a multipliation by this fator to the time for a squaring. It is easy to see

that this hoie of parameters does not guarantee exat results. Therefore, we

also alulated a 32-bit heksum. If the heksum test indiates an error, the

multipliation is realulated using the GMP funtion. In the ase of the p10000,

these realulations appear to be rare, if they our at all. Of ourse, even the

heksum does not make this multipliation method rigorous.

We used this fast multipliation both for primality tests and for the alula-

tion of modular square roots in the alulation of the run down sequene. While

a modular square root an be heked, and the alulation repeated if neessary,

there appears to be no way to detet a false negative result of a Miller-Rabin

test. Therefore, by using this method we aepted a small but probably positive

probability of a prime number being delared omposite by mistake.

The following benhmark results were obtained on an 800-MHz Athlon, using

version 4.1.1 of libgmp.a, version 3.0 of libfftw3.a, and 10

9999

+33603 as the

input number:

{ One all to the GMP funtion mpz probab prime p with seond argument

equal to 1, whih means that one Fermat and one Rabin-Miller pseudo-

primality test is arried out: 317 seonds user time.

{ A Rabin-Miller test using 2 as base, and using Montgomery modular multi-

pliation [10℄ and the GMP funtions: 149 seonds.

{ A similar program, but using libfftw3.a for multipliations: 56 seonds.

The advantage of using libfftw3.a ould perhaps be redued if GMP allowed

for a way to prealulate Fourier and Toom-Cook transforms of frequently used

fators. It is diÆult to predit whether this is suÆient to ahieve the speed

of a multipliation subroutine whih is optimized for speed at the expense of

produing sometimes (albeit rarely) a false result.

7 The early abort strategy

The idea behind this strategy is to fore the new andidateN

0

in Step 2. to satisfy

N=N

0

� 2

Æ

for some (small) integer value Æ = Æ(N), with the hope to derease

the number of steps and thereby the number of proving steps. Of ourse, this

might slow down the searh forN

0

a little bit and some optimization is neessary.

Yet it appeared ritial when used in the primality proof of 10

9999

+33603, when

it was �rst implemented and used.

In FM's implementation, the following value for the lower bound on Æ(N) =

b(N)� b(N

0

) was used, where b(x) denotes the number of bits of integer x:

b(N) � 1000 2500 5000 7500 10000 150001

Æ(N) 0 5 10 15 20 25 30



The following data were gathered (with the mpi program to be desribed). The

�rst olumn ontains the time without EAS, the seond with. The lineH

D

stands

for the time needed to ompute the polynomials representing the lass �eld, as

in [9℄; CZ is the time needed for the speial variant of the Cantor-Zassenhaus

algorithm using a trik of Atkin (using roots of unity modulo N); the number of

steps in the downrun is then given, and the last lines ontain the maximal value

for h, before the mean value.

Number 10

2999

+ 1887 10

3999

+ 4771 10

4999

+ 22669

Steps 1-2 81 h 58 h 280 h 164 h 716 h 476 h

Steps 3-5 26 h 26 h 76 h 86 h 209 h 261 h

H

D

1680 s 4880 s 4497 s 7317 s 3 h 5 h

CZ 22 h 22 h 63 h 75 h 179 h 234 h

# steps 436 358 597 437 734 512

maxh 1968 2336 2184 2432 3400 4000

h 86 116 120 164 152 272

The restrition one puts on m and thus on D tends to make D and h larger

than in the plain ase. This an have an impat on the time for omputing H

D

,

and also on the proving part. In the �rst phase, fewer N

0

are ever tested for

probable primality, though more must be produed. EAS indeed dereases the

number of steps, whih tends to derease the total time for the 1st phase, the

2nd being onstant or inreasing a little. In any ase, a strategy yielding a fator

of 2 in the total running time is ertainly worthwhile.

8 Some large primality proofs

8.1 The �rst reords of fastECPP

We begin with some data from FM's implementation that uses MPI on top of his

epp program, and implementing Strategy 1. All omputations were done on a

luster of 6 biproessor Xeon at 2.66 MHz. We took the following numbers from

the tables of P. Leyland

?

. These are numbers of the form x

y

+ y

x

. WCT stands

for wall lok time and inludes the time wasted by the distribution proess

(waiting time of the slaves, typially). The line \Cheking" indiates the time

needed to hek the erti�ate. Note that the time for this should be

~

O((logN)

3

)

and this is ompatible with the timings given.

All numbers were proven in 2003. The \when" line indiates the elapsed

human dates in big endian notation.

The �rst number was dealt with an experimental program that turned out

to spend too muh time in the

p

�q

�

omputations. As a matter of fat, a value

of r = 4000 was used. This led to proeed by hunks of 400 squareroots from

a total of 4000, adding 400 more if this was not enough. All disriminants with

D � 10

8

, h � 6000 (later inreased to 8000) and the largest prime fator of h

?

http://researh.mirosoft.om/~pleyland/primes/xyyx.htm



x 2177 2589 2551 2438 3571

y 580 218 622 1995 648

#dd 6016 6055 7127 8046 10041

when 0513-0604 0606-0617 0618-0714 0715-0901 1001-1220

# steps 801 736 965 1128 947

Steps 1-2 (CPU) 164 days 103 days 235 days 355 days 531 days

Steps 1-2 (WCT) 164� 1:2 103� 1:1 235 � 1:3 355� 1:13 531� 1:2

p

�q

�

81 days 30 days 74 days 138 days 204 days

Steps 3-5 28 days 21 days 55 days 77 days 138 days

H

D

2951 se 1686 se 18451 se 22552 se 20285 se

CZ 26 days 20 days 50 days 69 days 124 days

Cheking 25 hours 22 hours 45 hours 70 hours 85 hours

maxh 1980 2080 3312 3640 6176

h 121 103 190 209 409

maxD 7,749,263 19,076,479 52,396,648 87,949,348 95,895,480

Table 1. Some large numbers proven with fastECPP.

not exeeding 200 were deided to be usable. A look at olumn 3 ompared to 4

justi�es the laim of omplexity of

~

O((logN)

4

). The 8046dd number was done

after the annouement of the proof of 10

9999

+33603 (see next setion), and EAS

was not used for this. The 10041dd number was �nished on Deember 20, 2003,

well after the one to be desribed in the next setion. This was the �rst use of

EAS for this implementation.

8.2 A new frontier

Let us turn our attention to the barrier-breaking number 10

9999

+33603, whose

primality was veri�ed by JF, TK with the help of TW.

The alulations were done using two programs, a pvm program produing

the sequene of disriminants, group orders and their prime number fatorization

(alled a run down sequene in what follows), and the seond program alulating

the ellipti urves.

The alulation of a run down sequene was started on July 17, 2003 on

six 900MHz PIII CPUs. On July 21, the omputation was moved to 12 nodes

of parnass2, the LINUX luster built at the Sienti� Computing Institute in

Bonn. 4 of these nodes had two 800MHz CPUs, the other nodes were double

PII/400MHz omputers. At 8550 digits (on July 30) and 8286 digits (on July

31) we interrupted these alulations to replae the program by a faster version,

using the Fastest Fourier Transform in the West in the way explained above.

This improvement resulted by a speedup by a fator of about 2. On August 5,

we reahed 6574 digits. On August 8, we stopped the program at 3256 digits.

The �nal alulations for the run down sequene took about 8 hours on eight

800MHz CPUs. The total CPU time to produe the run down (i.e., without

alulating the ellipti urves) was estimated to 234.5 days on a 1GHz Pentium.



The CPU time spent for the atual erti�ates is more diÆult to estimate,

sine the program for this step was still under development when the alulation

of the run down sequene started, and sine these alulations were done in

heterogeneous environment. We estimate that it would have taken less than 140

days on a single 800MHz Athlon CPU.

The erti�ate is available as:

ftp://ftp.math.uni-bonn.de:pub/people/franke/p10000.ert

9 Conlusions

We have desribed some new ideas to speed up pratial primality proving of

large numbers using fastECPP. These ideas need more testing and improvements.

We hope that this will serve as benhmarks and motivations for the study of other

primality proving algorithms as well.
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