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Wrappers



Consider a function f: R" — R",

Set-membership technics propose methods to approximate
f(X),XCR"
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Boxes | Ellipsoids | octogons | polygons | LMI

Closed by N | Yes No Yes No Yes
Hull Yes No Yes No No
Bissectable Yes No Yes Yes Yes
Parametric Yes Yes Yes No No
linear perfect | No Yes No Yes Yes
Stabilizing No Yes No Yes Yes







Ellipsoidal Enclosure of Nonlinear Mappings




Ellipsoidal Enclosure of Nonlinear Mappings

Ellipsoidal enclosure: linear
case



Ellipsoidal Enclosure of Nonlinear Mappings

Consider the ellipsoid
& (x—%)' Q1 (x—%) <1

Consider a function f: R" — R"” and y = f(x) = Ax+c where A is
invertible. Then

f(&): (y—9) 'R (y-y)<1
with

R = AQAT
f(x)=Ax+c

<
I



Ellipsoidal Enclosure of Nonlinear Mappings

Ellipsoidal enclosure:
non-linear case



Ellipsoidal Enclosure of Nonlinear Mappings

Proposition [3]. Consider x inside
& (x—%)' Q1 (x—%) <1

Consider a function f: R” — R"” and y = f(x) where A = g—i (X) is
invertible. Then

(y=9)"((1+p)R) ' (y—-y) <1

with
= AQAT
f(x)
= MaXxes, 2b(x) TR~ (f(x) —¥)
b(x) = f(x)— (Y +A-(x—X))

’x“b‘<|;u
|



Ellipsoidal Enclosure of Nonlinear Mappings

Smallest box which encloses an ellipsoid
To enclose maxycs , we need first to find a box which encloses the
ellipsoid &%.



Ellipsoidal Enclosure of Nonlinear Mappings

Consider the ellipsoid:

(x—%)"Q1(x—-%)<1

The smallest box which encloses & is

x+ JI /el Qei-[-1,1]

ie{l,...,n}



Ellipsoidal Enclosure of Nonlinear Mappings

Algorithm.
In: f, 6% : {X,Qx}
1 A = 93
>y = f(%)
3 R = AQAT
4 [x] = X+Ilieq..npy/e Qxei-[-1,1]
5 b = (|%]@D-A)-(-%)
6 o] = 2R (X))
7 Q = (1+p7)R
8 Out: &y 1Y, Qy }



Ellipsoidal Enclosure of Nonlinear Mappings

En inner ellipse can also be obtained [4]
The online Python program can be found here:
https://replit.com/@aulin/ellipse
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Positive invariant sets



Positive invariant sets

Consider the discrete time system

Xk+1 = F(xk)

with f(0) = 0.



Positive invariant sets
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Positive invariant sets

We have to find

Such that



Positive invariant sets

If the system is stable and linear
Xk4+1 = A - Xy
we can find P = 0 such that V(x) =x"-P-xis a Lyapunov function

V(xki1) = V(xk) — x} xx

T T T
& xk+1-P-xk+1=xk-P-xk—xkxk
& xZ-AT-P-A-xk—xZ-P-xk:—xek

We have to solve the Lyapunov equation

AT.-P.A—P=—I



Stability of cycles
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Positive invariant sets

System: x = f(x)
Poincaré section ¢: g(x) =0



Positive invariant sets

We define
G

p(a)

where p(a) is the point of & such that the trajectory initialized at a
intersects ¢ for the first time.

Y =
p'a|—>



Positive invariant sets

The Poincaré first recurrence map is defined by

a(k+1) = p(a(k))



Positive invariant sets




Positive invariant sets

g9(x)=0

See [2]



Positive invariant sets

Consider the system

x = f(x)

The flow is ®(xo,t).
Define A(xo,t) = %:g’t) . We have the variational equation

of(x)

X A

A=

with A(0) =1.



Positive invariant sets

Example : Van der Pol system.

(%) (o)
)-(2 (1 —X12)X2 — X1 .
We have

a1 é12>:( 0 1 ).<311 312)

é21 é22 —2X1X2 —1 1— X12 ajr>1 dzo
with

dil  di2 . 1 0
<321 322)(0)_(0 1)



as1
\ d22 )

\

X2
(1 —X12)X2 — X1

dan1

dn2
(—2X1X2 — 1) ail + (1 —X12) ani
(—2X1X2 — 1) aio + (1 —X12) ano




Positive invariant sets

Using an interval ODE solver, we get an enclosure for x(t),A(t),
for a given initial box [xo].
We can also get the time at which the system crosses the surface

g(x)=0.
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Rolling stability problem



Positive invariant sets

Robot moving on a plane described by

X] = COSX3
)'Q = sin X3
5(3 = u

The robot is able to measure a function @(x1,x2) has to moves
along ¢(x1,x2) =0. [1]



Positive invariant sets




Positive invariant sets
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Positive invariant sets

0 <0 x9 >0
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Positive invariant sets

To <0
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Positive invariant sets

We consider the Hippopede of Proclus given by ¢(xj,x2) =0 where

2
Px1.x0) = 95 133 — (2 +13)°.



Positive invariant sets
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The online Python program can be found here:
https://replit.com/@aulin/rolling




Positive invariant sets
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Positive invariant sets
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