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Multi-agent exploration problem

Possible directions:

@ Objectives

o Auction methods
o Allocation tasks
Assumptions: ° ...

o Distributed multirobots exploration o Planification

o Heuristic methods (A*)
e Frontier methods

e Partial communication °

o Global

e Learning methods
o MCTS

@ Unknown environment
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Definition

MCTS

4 steps:
/—v Selection —— Expansion — Simulation —> Backpropagation \

Tree Default

Policy Policy
v

. — J

Browne et al. 2012 ﬁx
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Definition

MCTS

/—> Selection — Expansion — Simulation —> Backpropagation \

Tree Def.ault

Policy Policy
v
\- a y

Usually:
o Tree policy: Upper Confidence Bound UCB = X + \/7 M

— exploitation term + exploration term

@ Default policy: random choice g
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Example:
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Definition

MCTS

Example:
UCB = X + y/ 2 parent)

n
If end of rollout, choice of the real action — several criteria
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MCTS

Classic MCTS

@ Can usually demonstrate that UCB

converges toward an optimal solution o Computing power

o Easily parallelizable @ UCB performs poorly in domains with

@ Robust to the mission many trap states

@ Online and offline solution

_4
Variations

@ Decentralized MCTS : use communication to optimize its own tree and reduce
computating

@ Partially Observable environment : use the inherent properties (random) of MCTS

and particle filter &4
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Decentralized MCTS

Problem: Multi-robot exploration mission + Decentralized

Best et al. 2019
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Variations

MCTS

Decentralized MCTS

Problem: Multi-robot exploration mission + Decentralized

@ 1 robot =1 tree @ if communication is possible,

@ root = actual state share their trees

% - - -
@ 1 tree = sample of possible @ Optimization of the set of
sequences of actions over a possibles actions = prune the
time horizon tree ]

Best et al. 2019
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Variations

MCTS

Partially Observable MCTS

Problem: Exploration mission + partially observable

— Particle filter = compute random posterior distributions of a partially observable state
to find the most accurate.

— MCTS = compute random posterior actions to find the optimal one.

Idea :

Silver and Veness 2010 ﬁ!
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Variations

MCTS

Partially Observable MCTS

Problem: Exploration mission + partially observable

— Particle filter = compute random posterior distributions of a partially observable state
to find the most accurate.

— MCTS = compute random posterior actions to find the optimal one.

Idea :

@ Mix MCTS and particle filter

@ 1 node = either an action or on N Update belief state and find optimal
observation action
@ 1 simulation = update 1
particle
Silver and Veness 2010 ﬁx
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@ How to use knowledge of the environment to make exploration more efficient ?
@ Where are we according what we see ? Building ? Outdoor ?

e What we will probably see next ?

v v v v ¥
P oFin, or, o n
VD
| 1R A I'r] ﬁl‘l'l

Sharma et al. 2022 ﬁ!
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Current directions

Temporal Logic

@ Specify tasks :

o Rendez-vous/ gathering
e Communication
o Get back the info to the operator

@ If lots of robots :

e Specify density of the swarm
(Djeumou, Xu, and Topcu 2020; Djeumou, Xu, Cubuktepe, et al. 2021)
o Control if that they are not too far from each other

Epistemic Logic

@ Task to do only when we know something
@ Consensus over a leader, a task, an information, ...

@ Way to modelize communication
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